1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
|
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "c_types_map.hpp"
#include "utils.hpp"
#include "type_helpers.hpp"
#include "mkldnn_thread.hpp"
#include "math_utils.hpp"
#include "simple_q10n.hpp"
#include "gemm/gemm.hpp"
#include "gemm_x8s8s32x_convolution.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace mkldnn::impl::utils;
using namespace mkldnn::impl::math;
using namespace mkldnn::impl::memory_tracking::names;
template <data_type_t src_type, data_type_t dst_type>
void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::
execute_forward(const exec_ctx_t &ctx) const {
auto src_base = CTX_IN_MEM(const src_data_t *, MKLDNN_ARG_SRC);
auto wei_base = CTX_IN_MEM(const wei_data_t *, MKLDNN_ARG_WEIGHTS);
auto bia_base = CTX_IN_MEM(const char *, MKLDNN_ARG_BIAS);
auto dst_base = CTX_OUT_MEM(dst_data_t *, MKLDNN_ARG_DST);
auto scratchpad = this->scratchpad(ctx);
const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
assert(IMPLICATION(
jcp.id != 1, jcp.oh_block == jcp.oh && jcp.ow_block == jcp.ow));
assert(IMPLICATION(jcp.ow_block != jcp.ow, jcp.oh_block == 1));
parallel(jcp.nthr, [&](const int ithr, const int nthr) {
execute_forward_thr(ithr, nthr, src_base, wei_base, bia_base, dst_base,
scratchpad);
});
}
template <data_type_t src_type, data_type_t dst_type>
_gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::pp_ker_t::pp_ker_t(
const pd_t *pd)
: ker_(nullptr)
, jcp_(pd->jcp_)
, OC_(pd->jcp_.oc)
, OS_(pd->jcp_.os)
, bias_data_type_(data_type::undef)
, bias_data_type_size_(0)
, scale_idx_mult_(0)
, do_bias_(false)
, do_relu_(false)
, do_sum_(false)
{
using namespace types;
const auto dst_md = memory_desc_wrapper(pd->dst_md());
dst_os_stride_ = dst_md.blk_off(0, 0, 0, 1);
scale_idx_mult_ = (pd->attr()->output_scales_.mask_ == (1 << 1));
auto &post_ops = pd->attr()->post_ops_;
int entry_idx = -1;
for (int idx = 0; idx < post_ops.len_; ++idx) {
const auto &e = post_ops.entry_[idx];
if (e.is_relu(true, false)) {
entry_idx = idx;
break;
}
}
do_relu_ = entry_idx >= 0;
do_signed_scaling_ = jcp_.signed_input;
do_sum_ = post_ops.contain(primitive_kind::sum, 0);
do_bias_ = pd->with_bias();
bias_data_type_ = pd->desc()->bias_desc.data_type;
if (do_bias_) {
assert(bias_data_type_ != data_type::undef);
bias_data_type_size_ = data_type_size(bias_data_type_);
}
const size_t vlen_start
= cpu_isa_traits<avx512_common>::vlen / sizeof(float);
for (size_t i = vlen_start; i > 0; i--) {
if (OC_ % i == 0) {
vlen_ = i;
break;
}
}
if (!mayiuse(avx512_core))
// use fallback code for older CPUs
return;
else
generate();
}
template <data_type_t src_type, data_type_t dst_type>
void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::pp_ker_t::generate()
{
using namespace Xbyak;
using namespace utils;
// TODO: clean-up
Reg64 reg_param = abi_param1;
Reg64 reg_dst = rdx;
Reg64 reg_acc = rax;
Reg64 reg_bias = rbx;
Reg64 reg_scales = rsi;
Reg64 reg_len = r8;
Reg64 reg_tmp = rcx; // intentional for shifting purposes
Reg64 reg_oc_offset = r9;
Reg64 reg_rem_mask_short = r10;
Reg64 reg_rem_mask_vlen = r11;
Opmask kreg_rem_mask_short = k1;
Opmask kreg_rem_mask_vlen = k3;
Opmask kreg_relu_cmp = k2;
const size_t vlen = vlen_;
Zmm vreg_zero = Zmm(0);
Zmm vreg_scale = Zmm(1);
Zmm vreg_nslope = Zmm(2);
Zmm vreg_sum_scale = Zmm(3);
Zmm vreg_signed_scale = Zmm(4);
size_t def_unroll = 4;
size_t max_unroll = 12;
size_t zmm_step = 2;
if (do_sum_) {
max_unroll = 8;
zmm_step = 3;
}
auto vreg_dst = [&](int idx) {
return Zmm(5 + idx * zmm_step + 0);
};
auto vreg_bias = [&](int idx) {
return Zmm(5 + idx * zmm_step + 1);
};
auto vreg_prev_dst = [&](int idx) {
return Zmm(5 + idx * zmm_step + 2);
};
preamble();
#define PARAM_OFF(x) offsetof(ker_args, x)
mov(reg_dst, ptr[reg_param + PARAM_OFF(dst)]);
mov(reg_acc, ptr[reg_param + PARAM_OFF(acc)]);
mov(reg_bias, ptr[reg_param + PARAM_OFF(bias)]);
mov(reg_scales, ptr[reg_param + PARAM_OFF(scales)]);
mov(reg_len, ptr[reg_param + PARAM_OFF(len)]);
mov(reg_oc_offset, ptr[reg_param + PARAM_OFF(oc_offset)]);
vbroadcastss(vreg_nslope, ptr[reg_param + PARAM_OFF(nslope)]);
vbroadcastss(vreg_sum_scale, ptr[reg_param + PARAM_OFF(sum_scale)]);
vbroadcastss(vreg_signed_scale, ptr[reg_param + PARAM_OFF(signed_scale)]);
if (scale_idx_mult_ == 0)
vbroadcastss(vreg_scale, dword[reg_scales]);
#undef PARAM_OFF
mov(reg_rem_mask_vlen, 1);
shl(reg_rem_mask_vlen, vlen);
sub(reg_rem_mask_vlen, 1);
kmovq(kreg_rem_mask_vlen, reg_rem_mask_vlen);
if (do_relu_ || dst_type == data_type::u8)
vxorps(vreg_zero, vreg_zero, vreg_zero);
// Load accumulated value, convert to float, apply sum (if any),
// bias (if any), scaling, and relu (if any);
// then convert to destination type and store
auto compute = [&](size_t offset, int idx, bool apply_mask) {
auto acc_addr = ptr[reg_acc + offset * sizeof(acc_data_t)];
if (scale_idx_mult_ > 0) {
assert(scale_idx_mult_ == 1);
auto scale_addr = ptr[reg_scales + offset * sizeof(float)];
auto vreg_scale_ = vreg_scale;
if (apply_mask)
vreg_scale_ = vreg_scale_ | kreg_rem_mask_short;
else
vreg_scale_ = vreg_scale_ | kreg_rem_mask_vlen;
vmovups(vreg_scale_, scale_addr);
}
auto vreg_dst_ = vreg_dst(idx);
if (apply_mask)
vreg_dst_ = vreg_dst_ | kreg_rem_mask_short;
else
vreg_dst_ = vreg_dst_ | kreg_rem_mask_vlen;
vcvtdq2ps(vreg_dst_, acc_addr);
if (do_signed_scaling_)
vmulps(vreg_dst(idx), vreg_dst(idx), vreg_signed_scale);
if (do_bias_) {
auto bias_addr = ptr[reg_bias + offset * bias_data_type_size_];
auto vreg_bias_ = vreg_bias(idx);
if (apply_mask)
vreg_bias_ = vreg_bias_ | kreg_rem_mask_short;
else
vreg_bias_ = vreg_bias_ | kreg_rem_mask_vlen;
switch (bias_data_type_) {
case data_type::s8:
vpmovsxbd(vreg_bias_, bias_addr);
break;
case data_type::u8:
vpmovzxbd(vreg_bias_, bias_addr);
break;
case data_type::s32:
case data_type::f32:
vmovups(vreg_bias_, bias_addr);
break;
default: assert(!"unimplemented");
}
if (bias_data_type_ != data_type::f32)
vcvtdq2ps(vreg_bias(idx), vreg_bias(idx));
vaddps(vreg_dst(idx), vreg_dst(idx), vreg_bias(idx));
}
vmulps(vreg_dst(idx), vreg_dst(idx), vreg_scale);
auto dst_addr = ptr[reg_dst + offset * sizeof(dst_data_t)];
if (do_sum_)
{
auto vreg_prev_dst_ = vreg_prev_dst(idx);
if (apply_mask)
vreg_prev_dst_ = vreg_prev_dst_ | kreg_rem_mask_short;
else
vreg_prev_dst_ = vreg_prev_dst_ | kreg_rem_mask_vlen;
switch (dst_type) {
case data_type::f32:
case data_type::s32: vmovups(vreg_prev_dst_, dst_addr); break;
case data_type::s8: vpmovsxbd(vreg_prev_dst_, dst_addr); break;
case data_type::u8: vpmovzxbd(vreg_prev_dst_, dst_addr); break;
default: assert(!"unsupported data type");
}
if (dst_type != data_type::f32)
vcvtdq2ps(vreg_prev_dst(idx), vreg_prev_dst(idx));
vfmadd231ps(vreg_dst(idx), vreg_prev_dst(idx), vreg_sum_scale);
}
if (do_relu_) {
vcmpps(kreg_relu_cmp, vreg_dst(idx), vreg_zero, _cmp_lt_os);
vmulps(vreg_dst(idx) | kreg_relu_cmp, vreg_dst(idx), vreg_nslope);
}
if (dst_type != data_type::f32) {
vcvtps2dq(vreg_dst(idx), vreg_dst(idx));
}
if (dst_type == data_type::u8)
vpmaxsd(vreg_dst(idx), vreg_dst(idx), vreg_zero);
switch (dst_type) {
case data_type::s8:
vpmovsdb(dst_addr, vreg_dst_);
break;
case data_type::u8:
vpmovusdb(dst_addr, vreg_dst_);
break;
case data_type::f32:
case data_type::s32:
vmovups(dst_addr, vreg_dst_);
break;
default: assert(!"unimplemented");
}
};
// Advance all pointers by an immediate
auto advance_ptrs_imm = [&](size_t offset) {
add(reg_dst, offset * sizeof(dst_data_t));
add(reg_acc, offset * sizeof(acc_data_t));
if (scale_idx_mult_) {
assert(scale_idx_mult_ == 1);
add(reg_scales, offset * sizeof(float));
}
if (do_bias_)
add(reg_bias, offset * bias_data_type_size_);
};
// Advance all pointers by a value stored in a register
auto advance_ptrs_reg = [&](Reg64 offset) {
lea(reg_dst, ptr[reg_dst + offset * sizeof(dst_data_t)]);
lea(reg_acc, ptr[reg_acc + offset * sizeof(acc_data_t)]);
if (scale_idx_mult_) {
assert(scale_idx_mult_ == 1);
lea(reg_scales, ptr[reg_scales + offset * sizeof(float)]);
}
if (do_bias_)
lea(reg_bias, ptr[reg_bias + offset * bias_data_type_size_]);
};
// Rewind pointers that point to data that is indexed by output channel
// (bias or per-oc scaling factors)
auto rewind_ptrs = [&]() {
if (do_bias_)
sub(reg_bias, OC_ * bias_data_type_size_);
if (scale_idx_mult_) {
assert(scale_idx_mult_ == 1);
sub(reg_scales, OC_ * sizeof(float));
}
add(reg_dst, (dst_os_stride_ - OC_) * sizeof(dst_data_t));
};
// <--------- OC --------------->
//
// ^ ................+..............+-------------+.......................
// | . : not accessed |Prologue loop| .
// | . +--------------+-------------+ .
// . | | .
// O . | Main loop (unrolled) | .
// S . | | .
// . +--------------+-------------+ .
// | . | Epilogue loop|not accessed : .
// v ................+--------------+.............+.......................
Label prologue_end;
cmp(reg_oc_offset, 0);
je(prologue_end, T_NEAR);
// Prologue loop
{
mov(reg_tmp, OC_);
sub(reg_tmp, reg_oc_offset);
cmp(reg_tmp, reg_len);
cmovg(reg_tmp, reg_len);
sub(reg_len, reg_tmp);
Label prologue_loop, prologue_loop_tail, prologue_loop_end;
cmp(reg_tmp, vlen);
jle(prologue_loop_tail, T_NEAR);
L(prologue_loop); {
compute(0, 0, false);
advance_ptrs_imm(vlen);
sub(reg_tmp, vlen);
cmp(reg_tmp, vlen);
jge(prologue_loop, T_NEAR);
}
L(prologue_loop_tail);
mov(reg_rem_mask_short, 1);
// cl == reg_tmp because reg_tmp <= vlen here
shl(reg_rem_mask_short, cl);
sub(reg_rem_mask_short, 1);
jz(prologue_loop_end, T_NEAR);
kmovq(kreg_rem_mask_short, reg_rem_mask_short);
compute(0, 0, true);
advance_ptrs_reg(reg_tmp);
L(prologue_loop_end);
rewind_ptrs();
}
L(prologue_end);
// Main loop
Label main_loop_end;
{
cmp(reg_len, OC_);
jle(main_loop_end, T_NEAR);
Label main_loop;
L(main_loop); {
size_t OC_loop, OC_tail;
if (OC_ < max_unroll * vlen) {
// Fully unroll small loops
OC_loop = 0;
OC_tail = OC_;
}
else {
OC_loop = vlen * def_unroll;
OC_tail = OC_ % OC_loop;
}
assert(!!OC_loop || !!OC_tail);
if (OC_tail % vlen) {
int vlen_tail = OC_tail % vlen;
unsigned tail_mask = (1 << vlen_tail) - 1;
mov(reg_tmp, tail_mask);
kmovq(kreg_rem_mask_short, reg_tmp);
}
if (OC_loop) {
mov(reg_tmp, rnd_dn(OC_, OC_loop));
Label oc_loop;
L(oc_loop); {
for (size_t offset = 0; offset < OC_loop; offset += vlen)
compute(offset, offset / vlen, false);
advance_ptrs_imm(OC_loop);
sub(reg_tmp, OC_loop);
jnz(oc_loop);
}
}
if (OC_tail) {
for (size_t offset = 0; offset < OC_tail; offset += vlen) {
bool use_mask = (offset + vlen) > OC_tail;
compute(offset, offset / vlen, use_mask);
}
advance_ptrs_imm(OC_tail);
}
rewind_ptrs();
sub(reg_len, OC_);
cmp(reg_len, OC_);
jge(main_loop, T_NEAR);
}
}
L(main_loop_end);
// Epilogue loop
Label epilogue_end;
{
cmp(reg_len, 0);
je(epilogue_end, T_NEAR);
Label epilogue_loop, epilogue_loop_tail;
cmp(reg_len, vlen);
jle(epilogue_loop_tail, T_NEAR);
L(epilogue_loop); {
compute(0, 0, false);
sub(reg_len, vlen);
advance_ptrs_imm(vlen);
cmp(reg_len, vlen);
jge(epilogue_loop, T_NEAR);
}
L(epilogue_loop_tail);
mov(reg_tmp, reg_len); // reg_tmp is rcx, and we need cl for the shift
mov(reg_rem_mask_short, 1);
shl(reg_rem_mask_short, cl); // reg_tmp == rcx and reg_tail < vlen
sub(reg_rem_mask_short, 1);
jz(epilogue_end, T_NEAR);
kmovq(kreg_rem_mask_short, reg_rem_mask_short);
compute(0, 0, true);
}
L(epilogue_end);
postamble();
ker_ = getCode<decltype(ker_)>();
}
template <data_type_t src_type, data_type_t dst_type>
void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::pp_ker_t::operator ()
(dst_data_t *dst, const acc_data_t *acc, const char *bias,
const float *scales, float nslope, float sum_scale, float signed_scale,
int g, size_t start, size_t end)
{
using math::get_bias;
if (end <= start)
return;
if (ker_) {
// JIT
ker_args args;
size_t oc_offset = start % OC_;
size_t os_offset = start / OC_;
args.acc = acc + start;
args.dst = dst + os_offset * dst_os_stride_ + oc_offset;
args.bias = bias + (g * jcp_.oc + oc_offset) * bias_data_type_size_;
args.scales = scales + scale_idx_mult_ * (g * jcp_.oc + oc_offset);
args.nslope = nslope;
args.sum_scale = sum_scale;
args.signed_scale = signed_scale;
args.len = end - start;
args.oc_offset = oc_offset;
ker_(&args);
}
else {
// Fallback
const size_t first_oc = start % OC_;
const size_t last_oc = (end - 1) % OC_;
const size_t first_os = start / OC_;
const size_t last_os = (end - 1) / OC_;
for (size_t os = first_os; os <= last_os; os++) {
const size_t start_oc = (os == first_os) ? first_oc : 0;
const size_t end_oc = (os == last_os) ? last_oc : OC_ - 1;
for (size_t oc = start_oc; oc <= end_oc; oc++) {
const size_t acc_off = os * jcp_.oc + oc;
const size_t dst_off = os * dst_os_stride_ + oc;
float d = (float)(acc[acc_off]);
if (jcp_.signed_input)
d *= signed_scale;
if (do_bias_)
d += get_bias(bias, g * jcp_.oc + oc,
bias_data_type_);
d *= scales[(g * jcp_.oc + oc) * scale_idx_mult_];
if (do_sum_)
d += sum_scale * dst[dst_off];
if (do_relu_ && d < 0)
d *= nslope;
dst[dst_off] = qz_a1b0<float, dst_data_t>()(d);
}
}
}
};
template <data_type_t src_type, data_type_t dst_type>
void _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>::
execute_forward_thr(const int ithr, const int nthr, const src_data_t *src_base,
const wei_data_t *wei_base, const char *bia_base, dst_data_t *dst_base,
const memory_tracking::grantor_t &scratchpad) const {
const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
const auto src_md = memory_desc_wrapper(pd()->src_md());
const size_t src_mb_stride = src_md.blk_off(1);
const size_t src_g_stride = src_md.blk_off(0, 1) * jcp.ic;
const auto wei_md = memory_desc_wrapper(pd()->weights_md(0));
const size_t wei_g_stride = pd()->with_groups() ? wei_md.blk_off(1) : 0;
const auto dst_md = memory_desc_wrapper(pd()->dst_md());
const size_t dst_mb_stride = dst_md.blk_off(1);
const size_t dst_g_stride = dst_md.blk_off(0, 1) * jcp.oc;
const float *scales = pd()->attr()->output_scales_.scales_;
const auto &post_ops = pd()->attr()->post_ops_;
const bool do_sum = post_ops.contain(primitive_kind::sum, 0);
const float sum_scale = do_sum ? post_ops.entry_[0].sum.scale : 0;
float nslope = 0;
for (int idx = 0; idx < post_ops.len_; ++idx) {
const auto &e = post_ops.entry_[idx];
if (e.is_relu(true, false)) {
nslope = e.eltwise.alpha;
break;
}
}
auto col = scratchpad.get<uint8_t>(key_conv_gemm_col)
+ (ptrdiff_t)ithr * jcp.im2col_sz;
src_data_t *__restrict imtr = scratchpad.get<src_data_t>(key_conv_gemm_imtr)
+ (ptrdiff_t)ithr * jcp.is * jcp.ic;
auto acc = scratchpad.get<acc_data_t>(key_conv_int_dat_in_acc_dt)
+ (ptrdiff_t)ithr * jcp.oh_block * jcp.ow_block * jcp.oc;
const ptrdiff_t offset = (ptrdiff_t)jcp.ngroups * jcp.ks * jcp.ic * jcp.oc;
const int32_t *_wei_comp = (const int32_t *)(wei_base + offset);
int g{ 0 }, n{ 0 }, ohb{ 0 }, owb{ 0 };
size_t start = 0, end = 0;
const int nb_oh = div_up(jcp.oh, jcp.oh_block);
const int nb_ow = div_up(jcp.ow, jcp.ow_block);
const size_t work_amount = jcp.ngroups * jcp.mb * nb_oh * nb_ow;
balance211(work_amount, nthr, ithr, start, end);
nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ohb,
nb_oh, owb, nb_ow);
for (size_t iwork = start; iwork < end; ++iwork) {
int oh = ohb * jcp.oh_block;
int ow = owb * jcp.ow_block;
const src_data_t *__restrict src = src_base + n * src_mb_stride
+ g * src_g_stride;
const wei_data_t *__restrict wei = wei_base + g * wei_g_stride;
dst_data_t *__restrict dst =
dst_base + n * dst_mb_stride + g * dst_g_stride;
const int32_t *wei_comp = _wei_comp + g * jcp.oc;
const int h_step = nstl::min(jcp.oh_block, jcp.oh - oh);
const int w_step = nstl::min(jcp.ow_block, jcp.ow - ow);
if (jcp.im2col_sz)
jit_gemm_convolution_utils::im2col_u8<src_data_t>(
jcp, src, imtr, col, oh, h_step, ow, w_step);
const int M = jcp.oc;
const int K = jcp.ks * jcp.ic;
const int N = h_step * w_step;
const int LDA = M * jcp.ngroups;
const int LDB = jcp.im2col_sz ? N : K;
const char *BT = jcp.im2col_sz ? "T" : "N";
const int8_t off_a = 0, off_b = 0;
const int32_t off_c = 0;
const float onef = 1.0, zerof = 0.0;
gemm_s8x8s32("N", BT, jcp.signed_input ? "C" : "F",
&M, &N, &K, &onef, wei, &LDA, &off_a,
jcp.im2col_sz ? col : (uint8_t *)src, &LDB, &off_b,
&zerof, acc, &M, jcp.signed_input ? wei_comp : &off_c);
auto wei_adj_scale =
(wei_md.extra().flags | memory_extra_flags::scale_adjust)
? wei_md.extra().scale_adjust : 1.f;
parallel(0, [&](int ithr, int nthr) {
size_t start, end;
balance211((size_t)N * jcp.oc, nthr, ithr, start, end);
(*pp_ker_)(dst + (oh * jcp.ow + ow) * pp_ker_->dst_os_stride_,
acc, bia_base, scales, nslope, sum_scale,
1.f / wei_adj_scale, g, start, end);
});
nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ohb, nb_oh,
owb, nb_ow);
}
}
template <data_type_t dst_type>
void _gemm_u8s8s32x_convolution_bwd_data_t<dst_type>::
execute_backward_data(const exec_ctx_t &ctx) const {
auto diff_dst_base = CTX_IN_MEM(const diff_dst_data_t *, MKLDNN_ARG_DIFF_DST);
auto wei_base = CTX_IN_MEM(const wei_data_t *, MKLDNN_ARG_WEIGHTS);
auto bia_base = CTX_IN_MEM(const char *, MKLDNN_ARG_BIAS);
auto diff_src_base = CTX_OUT_MEM(diff_src_data_t *, MKLDNN_ARG_DIFF_SRC);
auto scratchpad = this->scratchpad(ctx);
const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
parallel(jcp.nthr, [&](const int ithr, const int nthr) {
execute_backward_data_thr(ithr, nthr, diff_dst_base, wei_base,
bia_base, diff_src_base, scratchpad);
});
}
template <data_type_t dst_type>
void _gemm_u8s8s32x_convolution_bwd_data_t<dst_type>::
execute_backward_data_thr(const int ithr, const int nthr,
const diff_dst_data_t *diff_dst_base, const wei_data_t *wei_base,
const char *bia_base, diff_src_data_t *diff_src_base,
const memory_tracking::grantor_t &scratchpad) const
{
const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_;
const auto diff_dst_md = memory_desc_wrapper(pd()->diff_dst_md());
const size_t diff_dst_mb_stride = diff_dst_md.blk_off(1);
const size_t diff_dst_g_stride = diff_dst_md.blk_off(0, 1) * jcp.oc;
const auto wei_md = memory_desc_wrapper(pd()->weights_md(0));
const size_t wei_g_stride = pd()->with_groups() ? wei_md.blk_off(1) : 0;
const auto diff_src_md = memory_desc_wrapper(pd()->diff_src_md());
const size_t diff_src_mb_stride = diff_src_md.blk_off(1);
const size_t diff_src_g_stride = diff_src_md.blk_off(0, 1) * jcp.ic;
const size_t diff_src_os_stride = diff_src_md.blk_off(0, 0, 0, 1);
/* scale_idx_mult = 1 for per_oc scales and 0, otherwise */
const int scale_idx_mult = pd()->attr()->output_scales_.mask_ == (1 << 1);
const float *scales = pd()->attr()->output_scales_.scales_;
const size_t work_amount = jcp.ngroups * jcp.mb;
auto col = scratchpad.get<acc_data_t>(key_conv_gemm_col)
+ (ptrdiff_t)ithr * jcp.im2col_sz;
auto acc = scratchpad.get<acc_data_t>(key_conv_int_dat_in_acc_dt)
+ (ptrdiff_t)ithr * jcp.is * jcp.ic;
int n{0}, g{0};
size_t start = 0, end = 0;
balance211(work_amount, nthr, ithr, start, end);
nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups);
for (size_t iwork = start; iwork < end; ++iwork) {
const diff_dst_data_t *diff_dst = diff_dst_base
+ n * diff_dst_mb_stride + g * diff_dst_g_stride;
const wei_data_t *wei = wei_base + g * wei_g_stride;
diff_src_data_t *diff_src = diff_src_base + n * diff_src_mb_stride
+ g * diff_src_g_stride;
const int M = jcp.ks * jcp.ic;
const int N = jcp.os;
const int K = jcp.oc;
const int8_t off_a = 0, off_b = 0;
const int32_t off_c = 0;
const float onef = 1.0, zerof = 0.0;
const int LD = K * jcp.ngroups;
gemm_s8x8s32("T", "N", "F", &M, &N, &K, &onef,
wei, &LD, &off_a, diff_dst, &LD, &off_b,
&zerof, jcp.im2col_sz ? col : acc, &M, &off_c);
if (jcp.im2col_sz)
jit_gemm_convolution_utils::col2im_s32(jcp, col, acc);
parallel_nd(jcp.is, jcp.ic, [&](int is, int ic) {
float d = (float)acc[is * jcp.ic + ic];
if (jcp.with_bias)
d += get_bias(bia_base, g * jcp.ic + ic,
pd()->desc()->bias_desc.data_type);
d *= scales[(g * jcp.ic + ic) * scale_idx_mult];
const size_t diff_src_off = is * diff_src_os_stride + ic;
diff_src[diff_src_off] =
qz_a1b0<float, diff_src_data_t>()(d);
});
nd_iterator_step(n, jcp.mb, g, jcp.ngroups);
}
}
using namespace data_type;
template struct _gemm_x8s8s32x_convolution_fwd_t<u8, f32>;
template struct _gemm_x8s8s32x_convolution_fwd_t<u8, s32>;
template struct _gemm_x8s8s32x_convolution_fwd_t<u8, s8>;
template struct _gemm_x8s8s32x_convolution_fwd_t<u8, u8>;
template struct _gemm_x8s8s32x_convolution_fwd_t<s8, f32>;
template struct _gemm_x8s8s32x_convolution_fwd_t<s8, s32>;
template struct _gemm_x8s8s32x_convolution_fwd_t<s8, s8>;
template struct _gemm_x8s8s32x_convolution_fwd_t<s8, u8>;
template struct _gemm_u8s8s32x_convolution_bwd_data_t<f32>;
template struct _gemm_u8s8s32x_convolution_bwd_data_t<s32>;
template struct _gemm_u8s8s32x_convolution_bwd_data_t<s8>;
template struct _gemm_u8s8s32x_convolution_bwd_data_t<u8>;
}
}
}
|