1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "mkldnn_types.h"
#include "c_types_map.hpp"
#include "type_helpers.hpp"
#include "mkldnn_thread.hpp"
#include "utils.hpp"
#include "cpu_isa_traits.hpp"
#include "gemm_convolution_utils.hpp"
#include "jit_generator.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace mkldnn::impl::status;
using namespace mkldnn::impl::utils;
using namespace prop_kind;
using namespace data_type;
namespace jit_gemm_convolution_utils {
void im2col_3d(const jit_gemm_conv_conf_t &jcp, const float *im, float *col,
int od)
{
const size_t OHW = jcp.oh * jcp.ow;
const size_t im_step = jcp.ih * jcp.iw * jcp.id;
const size_t col_step = jcp.ks * OHW;
parallel_nd(jcp.ic, [&](int ic) {
const float *__restrict im_loc = im + ic * im_step;
float *__restrict col_loc = col + ic * col_step;
int id = od * jcp.stride_d - jcp.f_pad;
for (int kd = 0; kd < jcp.kd; ++kd) {
float *__restrict col_ = col_loc + kd * jcp.kh * jcp.kw * OHW;
if (id < 0 || id >= jcp.id) {
int ih_ = -jcp.t_pad;
for (int kh = 0; kh < jcp.kh; ++kh) {
int ih = ih_;
for (int oh = 0; oh < jcp.oh; ++oh) {
if (ih < 0 || ih >= jcp.ih) {
ih += jcp.stride_h;
continue;
}
int iw_ = -jcp.l_pad;
for (int kw = 0; kw < jcp.kw; ++kw) {
int iw = iw_;
for (int ow = 0; ow < jcp.ow; ++ow) {
if (iw < 0 || iw >= jcp.iw) {
iw += jcp.stride_w;
continue;
}
const size_t col_idx = kw * OHW + oh * jcp.ow
+ ow;
col_[col_idx] = 0;
iw += jcp.stride_w;
}
iw_ += (1 + jcp.dilate_w);
}
ih += jcp.stride_h;
}
ih_ += (1 + jcp.dilate_h);
col_ += jcp.kw * OHW;
}
} else {
const float *__restrict im_ = im_loc + id * jcp.ih * jcp.iw;
int ih_ = -jcp.t_pad;
for (int kh = 0; kh < jcp.kh; ++kh) {
int ih = ih_;
for (int oh = 0; oh < jcp.oh; ++oh) {
if (ih < 0 || ih >= jcp.ih) {
ih += jcp.stride_h;
continue;
}
int iw_ = -jcp.l_pad;
for (int kw = 0; kw < jcp.kw; ++kw) {
int iw = iw_;
for (int ow = 0; ow < jcp.ow; ++ow) {
if (iw < 0 || iw >= jcp.iw) {
iw += jcp.stride_w;
continue;
}
const size_t col_idx = kw * OHW + oh * jcp.ow
+ ow;
const size_t im_idx = ih * jcp.iw + iw;
col_[col_idx] = im_[im_idx];
iw += jcp.stride_w;
}
iw_ += (1 + jcp.dilate_w);
}
ih += jcp.stride_h;
}
ih_ += (1 + jcp.dilate_h);
col_ += jcp.kw * OHW;
}
}
id += (1 + jcp.dilate_d);
}
});
}
/* col[ic][kh][kw][oh][ow] <-- im2col(im[ic][ih][iw]) */
void im2col(const jit_gemm_conv_conf_t &jcp, const float *__restrict im,
float *__restrict col, int hs, int hb, int ws, int wb) {
const size_t im_step = jcp.is;
const size_t col_step = jcp.ks * hb * wb;
if (jcp.stride_w == 1) {
// Generated code is more optimized for stride_w == 1
// because innermost loop is by width
auto ker = [&](int ic, int kh, int kw, int oh) {
const float *__restrict im_ = im + ic * im_step;
float *__restrict col_
= col + ic * col_step + ((kh * jcp.kw + kw) * hb + oh) * wb;
const int ih = (oh + hs) * jcp.stride_h - jcp.t_pad
+ kh * (1 + jcp.dilate_h);
if (ih < 0 || ih >= jcp.ih) {
for (int ow = 0; ow < wb; ++ow)
col_[ow] = 0.f;
} else {
for (int ow = 0; ow < wb; ++ow) {
const int iw = ow + ws - jcp.l_pad + kw * (1 + jcp.dilate_w);
if (iw < 0 || iw >= jcp.iw)
col_[ow] = 0.f;
else {
const size_t im_idx = ih * jcp.iw + iw;
col_[ow] = im_[im_idx];
}
}
}
};
if (jcp.outer_threading) {
for (int ic = 0; ic < jcp.ic; ic++)
for (int kh = 0; kh < jcp.kh; kh++)
for (int kw = 0; kw < jcp.kw; kw++)
for (int oh = 0; oh < hb; oh++)
ker(ic, kh, kw, oh);
}
else {
parallel_nd(jcp.ic, jcp.kh, jcp.kw, hb, ker);
}
} else if (jcp.ic == 1) {
parallel_nd(jcp.kh, hb, [&](int kh, int oh) {
const int ih = (oh + hs) * jcp.stride_h - jcp.t_pad
+ kh * (1 + jcp.dilate_h);
if (ih < 0 || ih >= jcp.ih)
for (int kw = 0; kw < jcp.kw; ++kw) {
for (int ow = 0; ow < wb; ++ow) {
const size_t col_idx
= ((kh * jcp.kw + kw) * hb + oh) * wb + ow;
col[col_idx] = 0;
}
}
else
for (int kw = 0; kw < jcp.kw; ++kw) {
for (int ow = 0; ow < wb; ++ow) {
const int iw = (ow + ws) * jcp.stride_w - jcp.l_pad
+ kw * (1 + jcp.dilate_w);
const size_t col_idx
= ((kh * jcp.kw + kw) * hb + oh) * wb + ow;
const size_t im_idx = ih * jcp.iw + iw;
if (iw < 0 || iw >= jcp.iw)
col[col_idx] = 0;
else
col[col_idx] = im[im_idx];
}
}
});
} else {
parallel_nd(jcp.ic, jcp.kh, jcp.kw, hb,
[&](int ic, int kh, int kw, int oh) {
const float *__restrict im_ = im + ic * im_step;
float *__restrict col_ = col + ic * col_step
+ ((kh * jcp.kw + kw) * hb + oh) * wb;
const int ih = (oh + hs) * jcp.stride_h - jcp.t_pad
+ kh * (1 + jcp.dilate_h);
if (ih < 0 || ih >= jcp.ih) {
for (int ow = 0; ow < wb; ++ow)
col_[ow] = 0.f;
} else {
for (int ow = 0; ow < wb; ++ow) {
const int iw = (ow + ws) * jcp.stride_w - jcp.l_pad
+ kw * (1 + jcp.dilate_w);
const size_t im_idx = ih * jcp.iw + iw;
if (iw < 0 || iw >= jcp.iw)
col_[ow] = 0.f;
else
col_[ow] = im_[im_idx];
}
}
});
}
}
inline int limit(int low, int upper, int value) {
return nstl::max(low, nstl::min(upper, value));
}
/* col[kh][kw][ic][oh][ow] <-- im2col_u8(im[ih][iw][ic]) */
template <typename T>
void im2col_u8(const jit_gemm_conv_conf_t &jcp, const T *__restrict im,
T *__restrict imtr, uint8_t *__restrict col, int hs, int hb, int ws,
int wb) {
uint8_t shift = jcp.signed_input ? 128 : 0;
const int dh = 1 + jcp.dilate_h;
const int dw = 1 + jcp.dilate_w;
const int sh = jcp.stride_h;
const int sw = jcp.stride_w;
const int im_iw_stride = jcp.ic * jcp.ngroups;
const int im_ih_stride = jcp.iw * im_iw_stride;
const int tp = jcp.t_pad;
const int lp = jcp.l_pad;
if (jcp.outer_threading && sh == 1 && sw == 1 && dh == 1 && dw == 1) {
/* im[ih][iw][ic] --> imtr[ic][ih][iw] --> col[kh][kw][ic][oh][ow] */
const int hp = hs - tp;
const int wp = ws - lp;
const int ih_start = limit(0, jcp.ih, hp);
const int ih_end = limit(0, jcp.ih, hp + hb + jcp.kh);
const int iw_start = limit(0, jcp.iw, wp);
const int iw_end = limit(0, jcp.iw, wp + wb + jcp.kw);
const int ihb = ih_end - ih_start;
const int iwb = iw_end - iw_start;
const int imtr_ic_stride = ihb * iwb;
const ptrdiff_t imtr_idx_shift = ih_start * iwb + iw_start;
for (int ic = 0; ic < jcp.ic; ic++) {
const ptrdiff_t imtr_idx_ic = ic * imtr_ic_stride - imtr_idx_shift;
for (int ih = ih_start; ih < ih_end; ih++) {
const ptrdiff_t im_idx_ih = ic + ih * im_ih_stride;
const ptrdiff_t imtr_idx_ih = imtr_idx_ic + ih * iwb;
for (int iw = iw_start; iw < iw_end; iw++)
imtr[imtr_idx_ih + iw] = im[im_idx_ih + iw * im_iw_stride];
}
}
const int col_ic_str = hb * wb;
const int col_kw_stride = jcp.ic * col_ic_str;
const int col_kh_stride = jcp.kw * col_kw_stride;
const int oh_init = ih_start - hp;
const int ow_init = iw_start - wp;
for (int kh = 0; kh < jcp.kh; kh++) {
const ptrdiff_t col_idx_kh = kh * col_kh_stride;
const int oh_kh = oh_init - kh;
const int oh_start = limit(0, hb, oh_kh);
const int oh_end = limit(0, hb, oh_kh + ihb);
for (int kw = 0; kw < jcp.kw; kw++) {
const ptrdiff_t col_idx_kw
= col_idx_kh + kw * jcp.ic * col_ic_str;
const int ow_kw = ow_init - kw;
const int imtr_shift = oh_kh * iwb + ow_kw;
const int ow_start = limit(0, wb, ow_kw);
const int ow_end = limit(0, wb, ow_kw + iwb);
for (int ic = 0; ic < jcp.ic; ic++) {
const ptrdiff_t col_idx_ic = col_idx_kw + ic * col_ic_str;
const int imtr_idx_ic = ic * imtr_ic_stride - imtr_shift;
for (int oh = 0; oh < oh_start; oh++) {
const ptrdiff_t col_idx_oh = col_idx_ic + oh * wb;
for (int ow = 0; ow < wb; ++ow)
col[col_idx_oh + ow] = shift;
}
for (int oh = oh_start; oh < oh_end; oh++) {
const ptrdiff_t col_idx_oh = col_idx_ic + oh * wb;
const ptrdiff_t imtr_idx_oh = imtr_idx_ic + oh * iwb;
for (int ow = 0; ow < ow_start; ++ow)
col[col_idx_oh + ow] = shift;
for (int ow = ow_start; ow < ow_end; ++ow)
col[col_idx_oh + ow]
= imtr[imtr_idx_oh + ow] + shift;
for (int ow = ow_end; ow < wb; ++ow)
col[col_idx_oh + ow] = shift;
}
for (int oh = oh_end; oh < hb; oh++) {
const ptrdiff_t col_idx_oh = col_idx_ic + oh * wb;
for (int ow = 0; ow < wb; ++ow)
col[col_idx_oh + ow] = shift;
}
}
}
}
} else {
parallel_nd(jcp.kh, jcp.kw, jcp.ic, hb,
[&](int kh, int kw, int ic, int oh) {
const int hp = tp - kh * dh;
const int ih = (oh + hs) * sh - hp;
const ptrdiff_t col_idx_base
= (((kh * jcp.kw + kw) * jcp.ic + ic) * hb + oh) * wb;
if (ih < 0 || ih >= jcp.ih)
for (int ow = 0; ow < wb; ow++)
col[col_idx_base + ow] = shift;
else {
const int wp = lp - kw * dw;
const int ow_start = limit(0, wb, div_up(wp, sw) - ws);
const int ow_end
= limit(0, wb, div_up(jcp.iw + wp, sw) - ws);
for (int ow = 0; ow < ow_start; ow++)
col[col_idx_base + ow] = shift;
const int iw_base = ws * sw - wp;
const ptrdiff_t im_idx_base = ih * im_ih_stride + ic;
for (int ow = ow_start; ow < ow_end; ow++) {
const int iw = iw_base + ow * sw;
const ptrdiff_t im_idx
= im_idx_base + iw * im_iw_stride;
col[col_idx_base + ow] = im[im_idx] + shift;
}
for (int ow = ow_end; ow < wb; ow++)
col[col_idx_base + ow] = shift;
}
});
}
}
template void im2col_u8<int8_t>(const jit_gemm_conv_conf_t &jcp,
const int8_t *__restrict im, int8_t *__restrict imtr,
uint8_t *__restrict col, int hs, int hb, int ws, int wb);
template void im2col_u8<uint8_t>(const jit_gemm_conv_conf_t &jcp,
const uint8_t *__restrict im, uint8_t *__restrict imtr,
uint8_t *__restrict col, int hs, int hb, int ws, int wb);
/* im[ih][iw][ic] <-- col2im_s32(col[oh][ow][kh][kw][ic]) */
void col2im_s32(const jit_gemm_conv_conf_t &jcp, const int32_t *__restrict col,
int32_t *__restrict im)
{
parallel(0, [&](const int ithr, const int nthr) {
int h_nthr = nstl::min(jcp.ih, nthr);
int w_nthr = nstl::min(jcp.iw, nthr / h_nthr);
int h_ithr = 1, h_s = 0, h_e = 0, w_ithr = 1, w_s = 0, w_e = 0;
if (ithr < h_nthr * w_nthr) {
h_ithr = ithr / w_nthr;
w_ithr = ithr % w_nthr;
balance211(jcp.ih, h_nthr, h_ithr, h_s, h_e);
balance211(jcp.iw, w_nthr, w_ithr, w_s, w_e);
} else {
h_ithr = w_ithr = -ithr;
h_s = h_e = w_s = w_e = -1;
}
for (int ih = h_s; ih < h_e; ++ih) {
for (int iw = w_s; iw < w_e; ++iw) {
PRAGMA_OMP_SIMD()
for (int ic = 0; ic < jcp.ic; ++ic) {
im[(ih * jcp.iw + iw) * jcp.ic + ic] = 0;
}
}
}
// TODO: reduce region: [0.. oh] --> [h_s * sh .. h_e * sh]
for (int oh = 0; oh < jcp.oh; ++oh) {
for (int ow = 0; ow < jcp.ow; ++ow) {
for (int kh = 0; kh < jcp.kh; ++kh) {
const int ih = oh * jcp.stride_h
- jcp.t_pad + kh * (1 + jcp.dilate_h);
if (ih < h_s || ih >= h_e) continue;
for (int kw = 0; kw < jcp.kw; ++kw) {
const int iw = ow * jcp.stride_w
- jcp.l_pad + kw * (1 + jcp.dilate_w);
if (iw < w_s || iw >= w_e) continue;
const size_t col_idx = (((oh * jcp.ow + ow) * jcp.kh
+ kh) * jcp.kw + kw) * jcp.ic;
const size_t im_idx
= (ih * jcp.iw + iw) * jcp.ic;
PRAGMA_OMP_SIMD()
for (int ic = 0; ic < jcp.ic; ++ic) {
im[im_idx + ic] += col[col_idx + ic];
}
}
}
}
}
});
}
void col2im_3d(const jit_gemm_conv_conf_t &jcp, const float *col, float *im,
int od)
{
parallel_nd(jcp.ic, [&](int ic) {
const float *__restrict col_ = col + (size_t)ic * jcp.ks * jcp.os;
float *__restrict im_ic = im + (size_t)ic * jcp.ih * jcp.iw * jcp.id;
int id = od * jcp.stride_d - jcp.f_pad;
for (int kd = 0; kd < jcp.kd; ++kd) {
if (id < 0 || id >= jcp.id) {
col_ += jcp.kh * jcp.kw * jcp.os;
id += (1 + jcp.dilate_d);
continue;
}
float *__restrict im_ = im_ic + id * jcp.ih * jcp.iw;
for (int oh = 0; oh < jcp.oh; ++oh) {
for (int kh = 0; kh < jcp.kh; ++kh) {
const int ih = oh * jcp.stride_h - jcp.t_pad
+ kh * (1 + jcp.dilate_h);
if (ih < 0 || ih >= jcp.ih) continue;
for (int ow = 0; ow < jcp.ow; ++ow) {
for (int kw = 0; kw < jcp.kw; ++kw) {
const int iw = ow * jcp.stride_w - jcp.l_pad
+ kw * (1 + jcp.dilate_w);
if (iw < 0 || iw >= jcp.iw) continue;
const size_t col_idx = ((kh*jcp.kw + kw)*jcp.oh+oh)*jcp.ow+ow;
const size_t im_idx = ih*jcp.iw + iw;
im_[im_idx] += col_[col_idx];
}}
}}
col_ += jcp.kh * jcp.kw * jcp.os;
id += (1 + jcp.dilate_d);
}
});
}
void col2im(const jit_gemm_conv_conf_t &jcp, const float *col, float *im) {
const size_t col_step = jcp.ks * jcp.os;
const size_t im_step = jcp.ih * jcp.iw;
const int iS = jcp.ih * jcp.iw;
parallel_nd(jcp.ic, [&](int ic) {
float *__restrict im_ = im + ic * im_step;
const float *__restrict col_ = col + ic * col_step;
PRAGMA_OMP_SIMD()
for (int is = 0; is < iS; ++is) im_[is] = 0.;
for (int kh = 0; kh < jcp.kh; ++kh) {
for (int oh = 0; oh < jcp.oh; ++oh) {
const int ih =
oh * jcp.stride_h - jcp.t_pad + kh * (1 + jcp.dilate_h);
if (ih < 0 || ih >= jcp.ih) continue;
for (int kw = 0; kw < jcp.kw; ++kw) {
for (int ow = 0; ow < jcp.ow; ++ow) {
const int iw =
ow * jcp.stride_w - jcp.l_pad + kw * (1 + jcp.dilate_w);
if (iw < 0 || iw >= jcp.iw) continue;
const size_t col_idx = ((kh*jcp.kw + kw)*jcp.oh+oh)*jcp.ow+ow;
const size_t im_idx = ih*jcp.iw + iw;
im_[im_idx] += col_[col_idx];
}
}
}
}
});
}
status_t init_conf(jit_gemm_conv_conf_t &jcp,
memory_tracking::registrar_t &scratchpad, const convolution_desc_t &cd,
const memory_desc_wrapper &src_d, const memory_desc_wrapper &weights_d,
const memory_desc_wrapper &dst_d, int max_threads) {
const bool with_groups = weights_d.ndims() == src_d.ndims() + 1;
const int ndims = src_d.ndims();
const int is_1d = ndims == 3;
const int is_3d = ndims == 5;
jcp.prop_kind = cd.prop_kind;
jcp.ngroups = with_groups ? weights_d.dims()[0] : 1;
jcp.mb = src_d.dims()[0];
jcp.oc = dst_d.dims()[1] / jcp.ngroups;
jcp.ic = src_d.dims()[1] / jcp.ngroups;
jcp.id = is_3d ? src_d.dims()[2] : 1;
jcp.ih = is_1d ? 1 : src_d.dims()[ndims - 2];
jcp.iw = src_d.dims()[ndims - 1];
jcp.od = is_3d ? dst_d.dims()[2] : 1;
jcp.oh = is_1d ? 1 : dst_d.dims()[ndims - 2];
jcp.ow = dst_d.dims()[ndims - 1];
jcp.kd = is_3d ? weights_d.dims()[with_groups + 2] : 1;
jcp.kh = is_1d ? 1 : weights_d.dims()[with_groups + ndims - 2];
jcp.kw = weights_d.dims()[with_groups + ndims - 1];
jcp.f_pad = is_3d ? cd.padding[0][0] : 0;
jcp.t_pad = is_1d ? 0 : cd.padding[0][ndims - 4];
jcp.l_pad = cd.padding[0][ndims - 3];
jcp.stride_d = is_3d ? cd.strides[0] : 1;
jcp.stride_h = is_1d ? 1 : cd.strides[ndims - 4];
jcp.stride_w = cd.strides[ndims - 3];
jcp.dilate_d = is_3d ? cd.dilates[0] : 0;
jcp.dilate_h = is_1d ? 0 : cd.dilates[ndims - 4];
jcp.dilate_w = cd.dilates[ndims - 3];
jcp.with_bias = cd.bias_desc.format_kind != format_kind::undef
|| cd.diff_bias_desc.format_kind != format_kind::undef;
jcp.is = jcp.ih * jcp.iw;
jcp.os = jcp.oh * jcp.ow;
jcp.ks = jcp.kh * jcp.kw * jcp.kd;
jcp.signed_input = src_d.data_type() == data_type::s8;
jcp.im2col_sz = !everyone_is(true,
jcp.ow == jcp.iw, jcp.oh == jcp.ih, jcp.od == jcp.id,
jcp.stride_w == 1, jcp.stride_h == 1, jcp.stride_d == 1,
jcp.ks == 1, !jcp.signed_input)
? (ptrdiff_t)jcp.ic * jcp.ks * jcp.os : 0;
jcp.outer_threading = false;
bool is_int8_conv = utils::one_of(src_d.data_type(), s32, s8, u8)
&& weights_d.data_type() == s8;
const int vlen = mayiuse(avx512_common)
? cpu_isa_traits<avx512_common>::vlen
: mayiuse(avx)
? cpu_isa_traits<avx>::vlen
: mayiuse(sse42) ? cpu_isa_traits<sse42>::vlen : 4;
const int simd_w = vlen / (is_int8_conv ? 1 : 4);
const bool is_bwd_d = jcp.prop_kind == backward_data;
const bool is_bwd_w = jcp.prop_kind == backward_weights;
const bool is_fwd = !is_bwd_d && !is_bwd_w;
jcp.oh_block = is_fwd ? jcp.oh : jcp.ih;
jcp.ow_block = is_fwd ? jcp.ow : jcp.iw;
using namespace memory_tracking::names;
bool is_depthwise = jcp.ic == 1 && jcp.oc == 1 && jcp.ngroups != 1;
// TODO: maybe mitigate blocking restriction
const int wei_size = jcp.oc * jcp.ic * jcp.kh * jcp.kw;
const int L2 = get_cache_size(2, true)
/ (is_int8_conv ? sizeof(int8_t) : sizeof(float));
bool is_blocking_applicable = true
&& is_fwd && jcp.im2col_sz
&& jcp.id == 1 && jcp.od == 1
&& jcp.dilate_h == 0 && jcp.dilate_w == 0
&& !is_depthwise
&& wei_size < L2/2;
if (is_blocking_applicable) {
// looking for oh and ow blocking
int h_block{ jcp.oh_block }, w_block{ jcp.ow_block };
const int ic = jcp.ic;
const int oc = jcp.oc;
const int iw = jcp.iw;
const int ow = jcp.ow;
const int oh = jcp.oh;
const int os = oh * ow;
// 1. cache requirement
int row_size = ic * ow * jcp.ks + 2 * (ic * iw + oc * ow);
if (is_int8_conv) {
// Heuristic rule: gemm needed a lot of memory for internal usage
row_size *= 5;
// memory for accumulators
row_size += oc * ow * sizeof(uint32_t);
// memory for transposition
row_size += ic * iw;
}
h_block = nstl::max(1, nstl::min(oh, div_up(L2, row_size)));
if (h_block == 1) {
int col_size = ic * jcp.ks + 2 * (ic + oc);
if (is_int8_conv) {
col_size *= 5;
col_size += oc * sizeof(uint32_t);
col_size += ic;
}
w_block = nstl::max(1, nstl::min(ow, div_up(L2, col_size)));
}
// 2. threading requirement
if (h_block != oh)
h_block = nstl::max(1, rnd_dn(h_block, 4));
if (w_block != ow)
w_block = nstl::max(1, rnd_dn(w_block, simd_w));
float thr_eff = 0.f;
float thr_eff_treshold = 0.9f;
if (w_block == ow) {
do {
int nb_h = div_up(oh, h_block);
size_t work = jcp.ngroups * jcp.mb * jcp.od * nb_h;
float disb = (float)oh / rnd_up(oh, h_block);
thr_eff = (float)work / rnd_up(work, max_threads);
thr_eff = (thr_eff + disb) / 2.f;
if (thr_eff >= thr_eff_treshold)
break;
h_block = rnd_dn(h_block - 4, 4);
} while (h_block > 0);
}
if (thr_eff < thr_eff_treshold) // we didn't find suitable h_block
{
h_block = 1;
int nb_h = oh;
do {
int nb_w = div_up(ow, w_block);
size_t work_amount = jcp.ngroups * jcp.mb * nb_h * nb_w;
float disb = (float)ow / rnd_up(ow, w_block);
thr_eff = (float)work_amount / rnd_up(work_amount, max_threads);
thr_eff = (thr_eff + disb) / 2.f;
if (thr_eff > thr_eff_treshold)
break;
w_block = rnd_dn(w_block - simd_w, simd_w);
} while (w_block > 0);
}
h_block = nstl::max(1, h_block);
w_block = nstl::max(1, w_block);
const size_t inner_work = div_up(os, simd_w) * div_up(oc, simd_w);
const float inner_thr_eff
= (float)inner_work / rnd_up(inner_work, max_threads);
if (thr_eff >= inner_thr_eff / 2 && h_block > 0 && w_block > 0) {
jcp.oh_block = h_block;
jcp.ow_block = w_block;
jcp.outer_threading = true;
}
// updating jcp.im2col_sz
if (jcp.oh_block != 1)
jcp.ow_block = ow;
jcp.im2col_sz = (ptrdiff_t)ic * jcp.ks * jcp.oh_block * jcp.ow_block;
}
// For threading selection in bwd_d we do:
// 1. Rough estimation of efficiency for inner and outer threading.
// 2. Gemm size estimation in assumption that it does not work
// so effectively for small sizes.
// 64K - this is heuristic gemm size per thread threshold.
const int gemm_thrld = 64 * 1024;
if (is_int8_conv) {
if (is_fwd) {
if (!jcp.outer_threading) {
bool is_depthwise = jcp.ic == 1 && jcp.oc == 1 && jcp.ngroups != 1;
const size_t outer_work = jcp.ngroups * jcp.mb;
const float outer_thr_eff
= (float)outer_work / rnd_up(outer_work, max_threads);
const size_t inner_work
= div_up(jcp.is, simd_w) * div_up(jcp.ic, simd_w);
const float inner_thr_eff
= (float)inner_work / rnd_up(inner_work, max_threads);
jcp.outer_threading = (is_depthwise
|| (jcp.is / max_threads < 64 && jcp.mb != 1))
&& (outer_thr_eff / inner_thr_eff >= 1.f
|| (jcp.os * jcp.ic * jcp.oc) / max_threads < gemm_thrld);
}
jcp.nthr = jcp.outer_threading ? max_threads : 1;
scratchpad.book(key_conv_gemm_col,
sizeof(int8_t) * jcp.nthr * jcp.im2col_sz);
scratchpad.book(key_conv_int_dat_in_acc_dt,
sizeof(int32_t) * jcp.nthr * jcp.oh_block * jcp.ow_block * jcp.oc);
scratchpad.book(key_conv_gemm_imtr,
sizeof(int8_t) * jcp.nthr * jcp.is * jcp.ic);
} else if (is_bwd_d) {
bool is_depthwise = jcp.ic == 1 && jcp.oc == 1 && jcp.ngroups != 1;
const size_t outer_work = jcp.ngroups * jcp.mb;
const float outer_thr_eff
= (float)outer_work / rnd_up(outer_work, max_threads);
const size_t inner_work
= div_up(jcp.is, simd_w) * div_up(jcp.ic, simd_w);
const float inner_thr_eff
= (float)inner_work / rnd_up(inner_work, max_threads);
jcp.outer_threading = (is_depthwise
|| (jcp.is / max_threads < 64 && jcp.mb != 1))
&& (outer_thr_eff / inner_thr_eff >= 1.f
|| (jcp.is * jcp.ic * jcp.oc) / max_threads < gemm_thrld);
jcp.nthr = jcp.outer_threading ? max_threads : 1;
scratchpad.book(key_conv_gemm_col,
sizeof(int32_t) * jcp.nthr * jcp.im2col_sz);
scratchpad.book(key_conv_int_dat_in_acc_dt,
sizeof(int32_t) * jcp.nthr * jcp.is * jcp.ic);
} else if (is_bwd_w) {
assert(!"unimplemented prop_kind");
return status::unimplemented;
}
} else {
if (is_fwd) {
if (!jcp.outer_threading) {
const size_t outer_work_amount = jcp.ngroups * jcp.mb * jcp.od;
const float outer_thr_eff = (float)outer_work_amount
/ rnd_up(outer_work_amount, max_threads);
const size_t inner_work_amount
= div_up(jcp.os, simd_w) * div_up(jcp.oc, simd_w);
const float inner_thr_eff = (float)inner_work_amount
/ rnd_up(inner_work_amount, max_threads);
jcp.outer_threading = jcp.os / max_threads < 512
&& IMPLICATION(jcp.od == 1, jcp.mb != 1 || jcp.ngroups > 2)
&& (outer_thr_eff / inner_thr_eff >= 1.f
|| (jcp.os * jcp.ic * jcp.oc) / max_threads < gemm_thrld);
}
} else if (is_bwd_d) {
const size_t outer_work_amount = jcp.ngroups * jcp.mb;
const float outer_thr_eff = (float)outer_work_amount
/ rnd_up(outer_work_amount, max_threads);
const size_t inner_work
= div_up(jcp.is, simd_w) * div_up(jcp.ic, simd_w);
const float inner_thr_eff = (float)inner_work
/ rnd_up(inner_work, max_threads);
jcp.outer_threading = (jcp.os / max_threads < 512 || jcp.ks < 64)
&& (jcp.mb != 1 || jcp.ngroups > 2)
&& (outer_thr_eff / inner_thr_eff >= 1.f
|| (jcp.is * jcp.ic * jcp.oc) / max_threads < gemm_thrld);
} else if (is_bwd_w)
jcp.outer_threading = jcp.os / max_threads < 256
&& (jcp.mb != 1 || jcp.ngroups > 2);
jcp.nthr = jcp.outer_threading ? max_threads : 1;
scratchpad.book(key_conv_gemm_col,
sizeof(float) * jcp.nthr * jcp.im2col_sz);
if (is_bwd_w) {
jcp.need_wei_reduction = mkldnn_thr_syncable()
? jcp.mb != 1 && jcp.nthr != 1 : false;
scratchpad.book(key_conv_wei_reduction,
sizeof(float) * jcp.nthr * jcp.ngroups * weights_d.size());
}
}
return status::success;
}
void bwd_weights_balance(int ithr, int nthr, int ngroups, int mb, int &ithr_g,
int &nthr_g, int &ithr_mb, int &nthr_mb) {
nthr_g = nstl::min(ngroups, nthr);
nthr_mb = nstl::min(mb, nthr / nthr_g);
if (ithr / nthr_mb >= ngroups) {
ithr_g = ithr_mb = -1;
} else {
ithr_g = ithr / nthr_mb;
ithr_mb = ithr % nthr_mb;
}
}
void bwd_weights_reduction_par(int ithr, int nthr,
const jit_gemm_conv_conf_t &jcp, const float *weights_reduce_ws,
float *weights) {
const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks;
size_t weights_start{0}, weights_end{0};
balance211(weights_g_size, nthr, ithr, weights_start, weights_end);
for (int i = 0; i < nthr; ++i) {
const float *ws_i = weights_reduce_ws + i * weights_g_size;
for (size_t s = weights_start; s < weights_end; ++s)
weights[s] = (i == 0 ? 0 : weights[s]) + ws_i[s];
}
}
};
}
}
}
|