1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include "mkldnn_traits.hpp"
#include "mkldnn_thread.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
#include "cpu_memory.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace mkldnn::impl;
using namespace mkldnn::impl::data_type;
using namespace mkldnn::impl::status;
using namespace mkldnn::impl::format_tag;
enum blk_kind_t { a, b, c, ab, ba, bc, cb };
template <data_type_t dt, blk_kind_t blk_kind, int blksize>
void typed_zero_pad_blk(
const memory_desc_wrapper &m_d, typename prec_traits<dt>::type *data) {
using data_t = typename prec_traits<dt>::type;
const auto &dims = m_d.dims();
const auto &pdims = m_d.padded_dims();
const auto &blk = m_d.blocking_desc();
auto dim_is_blocked = [&](int dim) {
for (int i = 0; i < blk.inner_nblks; i++)
if (blk.inner_idxs[i] == dim)
return true;
return false;
};
bool A_blocked = dim_is_blocked(0), B_blocked = dim_is_blocked(1),
C_blocked = dim_is_blocked(2);
assert(blk.inner_nblks < 4);
assert((A_blocked || B_blocked || C_blocked) || (A_blocked && B_blocked)
|| (C_blocked && B_blocked));
const int a_tail_s = A_blocked ? dims[0] % blksize : 0;
const int b_tail_s = B_blocked ? dims[1] % blksize : 0;
const int c_tail_s = C_blocked ? dims[2] % blksize : 0;
assert(a_tail_s || b_tail_s || c_tail_s);
const int A = A_blocked ? pdims[0] / blksize : dims[0];
const int B = B_blocked ? pdims[1] / blksize : dims[1];
const int C = C_blocked ? pdims[2] / blksize : dims[2];
const int D = m_d.ndims() > 3 ? dims[3] : 1;
const int E = m_d.ndims() > 4 ? dims[4] : 1;
const int F = m_d.ndims() > 5 ? dims[5] : 1;
const int inner_blk = blk.inner_nblks == 3 ? blk.inner_blks[2] : 1;
auto zeroize_tail = [&](data_t *d, const int tail_s) {
for (int b = tail_s; b < blksize; ++b)
d[b] = 0;
};
auto zeroize_tail_inner = [&](data_t *d, const int tail_s) {
for (int b1 = 0; b1 < blksize; ++b1)
for (int b2 = tail_s; b2 < blksize; ++b2)
d[(b1 / inner_blk) * blksize * inner_blk + inner_blk * b2
+ b1 % inner_blk]
= 0;
};
auto zeroize_tail_outer = [&](data_t *d, const int tail_s) {
for (int b1 = tail_s; b1 < blksize; ++b1)
for (int b2 = 0; b2 < blksize; ++b2)
d[(b1 / inner_blk) * blksize * inner_blk + inner_blk * b2
+ b1 % inner_blk]
= 0;
};
if (c_tail_s) {
parallel_nd(A, B, D, E, F, [&](int a, int b, int d, int e, int f) {
auto x = &data[m_d.blk_off(a, b, C - 1, d, e, f)];
if (blk_kind == c)
zeroize_tail(x, c_tail_s);
else if (blk_kind == bc)
zeroize_tail_inner(x, c_tail_s);
else if (blk_kind == cb)
zeroize_tail_outer(x, c_tail_s);
});
}
if (b_tail_s) {
parallel_nd(A, C, D, E, F, [&](int a, int c, int d, int e, int f) {
auto x = &data[m_d.blk_off(a, B - 1, c, d, e, f)];
if (blk_kind == b)
zeroize_tail(x, b_tail_s);
else if (blk_kind == ab || blk_kind == cb)
zeroize_tail_inner(x, b_tail_s);
else if (blk_kind == ba || blk_kind == bc)
zeroize_tail_outer(x, b_tail_s);
});
}
if (a_tail_s) {
parallel_nd(B, C, D, E, F, [&](int b, int c, int d, int e, int f) {
auto x = &data[m_d.blk_off(A - 1, b, c, d, e, f)];
if (blk_kind == a)
zeroize_tail(x, a_tail_s);
else if (blk_kind == ba)
zeroize_tail_inner(x, a_tail_s);
else if (blk_kind == ab)
zeroize_tail_outer(x, a_tail_s);
});
}
}
/*
* all
*/
template <data_type_t dt>
void typed_zero_pad_generic_blocked(
const memory_desc_wrapper &m_d, typename prec_traits<dt>::type *data) {
const int ndims = m_d.ndims();
const auto &dims = m_d.dims();
const auto &pdims = m_d.padded_dims();
const ptrdiff_t nelems = (ptrdiff_t)m_d.nelems(true);
/* [D_0] .. [D_k][D_k+1] .. [D_ndim - 1]
* | \ /
* | ---------------------
* has contiguous
* padding
*
* step <-- D_k+1 * ... * D_ndims-1
* step_dim <-- k
*/
ptrdiff_t step = 1;
int step_dim = ndims - 1;
for (; step_dim >= 0; --step_dim) {
if (dims[step_dim] != pdims[step_dim])
break;
step *= dims[step_dim];
}
assert(step_dim >= 0 && "no zero padding is required");
if (step_dim < 0)
return;
parallel_nd(nelems / step, [&](ptrdiff_t e1) {
bool need_zero = false;
ptrdiff_t idx = e1;
for (int d = step_dim; d >= 0; --d) {
if (idx % pdims[d] >= dims[d]) {
need_zero = true;
break;
}
idx /= pdims[d];
}
if (need_zero) {
for (ptrdiff_t e0 = 0; e0 < step; ++e0)
data[m_d.off_l(e1 * step + e0, true)] = 0;
}
});
}
template <data_type_t dt>
status_t cpu_memory_t::typed_zero_pad() const {
const memory_desc_wrapper mdw(md());
if (mdw.format_kind() != format_kind::blocked)
return unimplemented;
if (mdw.nelems(false) == mdw.nelems(true))
return success;
auto *data = (typename prec_traits<dt>::type *)data_;
auto blk = mdw.blocking_desc();
auto get_blksize = [&](int ind) {
int blksize = 1;
for (int i = 0; i < blk.inner_nblks; i++) {
if (blk.inner_idxs[i] == ind)
blksize *= blk.inner_blks[i];
}
return blksize;
};
const int blksize = get_blksize(blk.inner_idxs[0]);
# define CASE(blksize_, blk_kind) \
do { \
if (blksize == blksize_) { \
typed_zero_pad_blk<dt, blk_kind, blksize_>(mdw, data); \
return success; \
} \
} while(0)
switch (blk.inner_nblks) {
case 1:
if (blk.inner_idxs[0] == 0) {
CASE(4, a);
CASE(8, a);
CASE(16, a);
} else if (blk.inner_idxs[0] == 1) {
CASE(4, b);
CASE(8, b);
CASE(16, b);
}
break;
case 2:
case 3:
if (!IMPLICATION(blk.inner_nblks == 3,
blk.inner_idxs[0] == blk.inner_idxs[2]))
break;
if (blk.inner_idxs[0] == 0 && blk.inner_idxs[1] == 1) {
CASE(4, ab);
CASE(8, ab);
CASE(16, ab);
} else if (blk.inner_idxs[0] == 1 && blk.inner_idxs[1] == 0) {
CASE(4, ba);
CASE(8, ba);
CASE(16, ba);
}
if (blk.inner_idxs[0] == 1 && blk.inner_idxs[1] == 2) {
CASE(4, bc);
CASE(8, bc);
CASE(16, bc);
} else if (blk.inner_idxs[0] == 2 && blk.inner_idxs[1] == 1) {
CASE(4, cb);
CASE(8, cb);
CASE(16, cb);
}
break;
default: break;
}
# undef CASE
// the last line of defence
typed_zero_pad_generic_blocked<dt>(mdw, data);
return success;
}
status_t cpu_memory_t::zero_pad() const {
memory_desc_wrapper mdw(md());
const bool skip_zeroing = false
|| data_ == nullptr
|| mdw.is_zero()
|| !mdw.is_blocking_desc();
if (skip_zeroing) return success;
switch (mdw.data_type()) {
case f32: return typed_zero_pad<f32>();
case s32: return typed_zero_pad<s32>();
case s8: return typed_zero_pad<s8>();
case u8: return typed_zero_pad<u8>();
default: assert(!"memory is undefined"); return unimplemented;
}
return unimplemented;
}
}
}
}
|