1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef CONVOLUTION_PD_HPP
#define CONVOLUTION_PD_HPP
#include "mkldnn.h"
#include "c_types_map.hpp"
#include "primitive_desc.hpp"
#include "utils.hpp"
namespace mkldnn {
namespace impl {
status_t conv_desc_init(convolution_desc_t *conv_desc,
prop_kind_t prop_kind, alg_kind_t alg_kind,
const memory_desc_t *src_desc, const memory_desc_t *weights_desc,
const memory_desc_t *bias_desc, const memory_desc_t *dst_desc,
const dims_t strides, const dims_t dilates,
const dims_t padding_l, const dims_t padding_r,
padding_kind_t padding_kind);
memory_desc_t *conv_prop_invariant_src_d(convolution_desc_t *desc);
memory_desc_t *conv_prop_invariant_wei_d(convolution_desc_t *desc);
memory_desc_t *conv_prop_invariant_bia_d(convolution_desc_t *desc);
memory_desc_t *conv_prop_invariant_dst_d(convolution_desc_t *desc);
const memory_desc_t *conv_prop_invariant_src_d(const convolution_desc_t *desc);
const memory_desc_t *conv_prop_invariant_wei_d(const convolution_desc_t *desc);
const memory_desc_t *conv_prop_invariant_bia_d(const convolution_desc_t *desc);
const memory_desc_t *conv_prop_invariant_dst_d(const convolution_desc_t *desc);
struct convolution_fwd_pd_t;
struct convolution_pd_t: public primitive_desc_t {
static constexpr auto base_pkind = primitive_kind::convolution;
convolution_pd_t(engine_t *engine,
const convolution_desc_t *adesc,
const primitive_attr_t *attr,
const convolution_fwd_pd_t *hint_fwd_pd)
: primitive_desc_t(engine, attr, base_pkind)
, desc_(*adesc)
, hint_fwd_pd_(hint_fwd_pd)
{}
const convolution_desc_t *desc() const { return &desc_; }
virtual const op_desc_t *op_desc() const override
{ return reinterpret_cast<const op_desc_t *>(this->desc()); }
virtual void init_info() override { impl::init_info(this, this->info_); }
virtual status_t query(query_t what, int idx, void *result) const override {
switch (what) {
case pkind_traits<base_pkind>::query_d:
*(const convolution_desc_t**)result = desc(); break;
default: return primitive_desc_t::query(what, idx, result);
}
return status::success;
}
/* common conv aux functions */
dim_t MB() const { return _src_md()->dims[0]; }
dim_t IC() const { return _src_md()->dims[1]; }
dim_t OC() const { return _dst_md()->dims[1]; }
dim_t G() const { return with_groups() ? _wei_md()->dims[0] : 1; }
dim_t ID() const { return ndims() >= 5 ? _src_md()->dims[ndims() - 3] : 1; }
dim_t IH() const { return ndims() >= 4 ? _src_md()->dims[ndims() - 2] : 1; }
dim_t IW() const { return _src_md()->dims[ndims() - 1]; }
dim_t OD() const { return ndims() >= 5 ? _dst_md()->dims[ndims() - 3] : 1; }
dim_t OH() const { return ndims() >= 4 ? _dst_md()->dims[ndims() - 2] : 1; }
dim_t OW() const { return _dst_md()->dims[ndims() - 1]; }
dim_t KD() const { return ndims() >= 5 ? _wei_md()->dims[ndims() + with_groups() - 3] : 1; }
dim_t KH() const { return ndims() >= 4 ? _wei_md()->dims[ndims() + with_groups() - 2] : 1; }
dim_t KW() const { return _wei_md()->dims[ndims() + with_groups() - 1]; }
dim_t KSD() const { return ndims() >= 5 ? desc_.strides[ndims() - 5] : 1; }
dim_t KSH() const { return ndims() >= 4 ? desc_.strides[ndims() - 4] : 1; }
dim_t KSW() const { return desc_.strides[ndims() - 3]; }
dim_t KDD() const { return ndims() >= 5 ? desc_.dilates[ndims() - 5] : 0; }
dim_t KDH() const { return ndims() >= 4 ? desc_.dilates[ndims() - 4] : 1; }
dim_t KDW() const { return desc_.dilates[ndims() - 3]; }
dim_t padFront() const { return ndims() >= 5 ? desc_.padding[0][ndims() - 5] : 0; }
dim_t padBack() const { return ndims() >= 5 ? desc_.padding[1][ndims() - 5] : 0; }
dim_t padT() const { return ndims() >= 4 ? desc_.padding[0][ndims() - 4] : 0; }
dim_t padB() const { return ndims() >= 4 ? desc_.padding[1][ndims() - 4] : 0; }
dim_t padL() const { return desc_.padding[0][ndims() - 3]; }
dim_t padR() const { return desc_.padding[1][ndims() - 3]; }
int ndims() const { return _src_md()->ndims; }
bool with_bias() const { return !memory_desc_wrapper(*_bia_md()).is_zero(); }
bool with_groups() const { return _wei_md()->ndims == ndims() + 1; }
bool is_fwd() const {
return utils::one_of(desc_.prop_kind, prop_kind::forward_training,
prop_kind::forward_inference);
}
bool has_zero_dim_memory() const {
const auto s_d = memory_desc_wrapper(*_src_md());
const auto d_d = memory_desc_wrapper(*_dst_md());
return s_d.has_zero_dim() || d_d.has_zero_dim();
}
protected:
convolution_desc_t desc_;
const convolution_fwd_pd_t *hint_fwd_pd_;
bool set_default_formats_common_template(
memory_desc_t &src_md, format_tag_t src_tag,
memory_desc_t &wei_md, format_tag_t wei_tag,
memory_desc_t &dst_md, format_tag_t dst_tag,
memory_desc_t &bia_md) {
using namespace format_tag;
# define IS_OK(f) \
do { if ((f) != status::success) return false; } while(0)
if (src_md.format_kind == format_kind::any
&& !utils::one_of(src_tag, any, undef))
IS_OK(memory_desc_init_by_tag(src_md, src_tag));
if (dst_md.format_kind == format_kind::any
&& !utils::one_of(dst_tag, any, undef))
IS_OK(memory_desc_init_by_tag(dst_md, dst_tag));
if (wei_md.format_kind == format_kind::any
&& !utils::one_of(wei_tag, any, undef))
IS_OK(memory_desc_init_by_tag(wei_md, wei_tag));
if (with_bias() && bia_md.format_kind == format_kind::any)
IS_OK(memory_desc_init_by_tag(bia_md, x));
# undef IS_OK
return true;
}
bool set_default_alg_kind(alg_kind_t alg_kind) {
assert(utils::one_of(alg_kind, alg_kind::convolution_direct,
alg_kind::convolution_winograd));
if (desc_.alg_kind == alg_kind::convolution_auto)
desc_.alg_kind = alg_kind;
return desc_.alg_kind == alg_kind;
}
bool expect_data_types(data_type_t src_dt, data_type_t wei_dt,
data_type_t bia_dt, data_type_t dst_dt, data_type_t acc_dt) const {
bool ok = true
&& (src_dt == data_type::undef || _src_md()->data_type == src_dt)
&& (wei_dt == data_type::undef || _wei_md()->data_type == wei_dt)
&& (dst_dt == data_type::undef || _dst_md()->data_type == dst_dt)
&& (acc_dt == data_type::undef || desc_.accum_data_type == acc_dt);
if (with_bias() && bia_dt != data_type::undef)
ok = ok && _bia_md()->data_type == bia_dt;
return ok;
}
private:
const memory_desc_t *_src_md() const { return conv_prop_invariant_src_d(&desc_); }
const memory_desc_t *_wei_md() const { return conv_prop_invariant_wei_d(&desc_); }
const memory_desc_t *_bia_md() const { return conv_prop_invariant_bia_d(&desc_); }
const memory_desc_t *_dst_md() const { return conv_prop_invariant_dst_d(&desc_); }
};
struct convolution_fwd_pd_t: public convolution_pd_t {
typedef convolution_fwd_pd_t base_class;
typedef convolution_fwd_pd_t hint_class;
convolution_fwd_pd_t(engine_t *engine,
const convolution_desc_t *adesc,
const primitive_attr_t *attr,
const convolution_fwd_pd_t *hint_fwd_pd)
: convolution_pd_t(engine, adesc, attr, hint_fwd_pd)
, src_md_(desc_.src_desc)
, weights_md_(desc_.weights_desc)
, bias_md_(desc_.bias_desc)
, dst_md_(desc_.dst_desc)
{}
virtual arg_usage_t arg_usage(primitive_arg_index_t arg) const override {
if (utils::one_of(arg, MKLDNN_ARG_SRC, MKLDNN_ARG_WEIGHTS))
return arg_usage_t::input;
if (arg == MKLDNN_ARG_BIAS && with_bias())
return arg_usage_t::input;
if (arg == MKLDNN_ARG_DST)
return arg_usage_t::output;
return primitive_desc_t::arg_usage(arg);
}
virtual const memory_desc_t *src_md(int index = 0) const override
{ return index == 0 ? &src_md_ : nullptr; }
virtual const memory_desc_t *dst_md(int index = 0) const override
{ return index == 0 ? &dst_md_ : nullptr; }
virtual const memory_desc_t *weights_md(int index = 0) const override {
if (index == 0) return &weights_md_;
if (index == 1 && with_bias()) return &bias_md_;
return nullptr;
}
virtual int n_inputs() const override { return 2 + with_bias(); }
virtual int n_outputs() const override { return 1; }
protected:
memory_desc_t src_md_;
memory_desc_t weights_md_;
memory_desc_t bias_md_;
memory_desc_t dst_md_;
bool set_default_formats_common(format_tag_t src_tag,
format_tag_t wei_tag, format_tag_t dst_tag) {
return set_default_formats_common_template(src_md_, src_tag,
weights_md_, wei_tag, dst_md_, dst_tag, bias_md_);
}
};
struct convolution_bwd_data_pd_t: public convolution_pd_t {
typedef convolution_bwd_data_pd_t base_class;
typedef convolution_fwd_pd_t hint_class;
convolution_bwd_data_pd_t(engine_t *engine,
const convolution_desc_t *adesc,
const primitive_attr_t *attr,
const convolution_fwd_pd_t *hint_fwd_pd)
: convolution_pd_t(engine, adesc, attr, hint_fwd_pd)
, diff_src_md_(desc_.diff_src_desc)
, weights_md_(desc_.weights_desc)
, bias_md_(desc_.bias_desc)
, diff_dst_md_(desc_.diff_dst_desc)
{}
virtual arg_usage_t arg_usage(primitive_arg_index_t arg) const override {
if (utils::one_of(arg, MKLDNN_ARG_WEIGHTS, MKLDNN_ARG_DIFF_DST))
return arg_usage_t::input;
if (arg == MKLDNN_ARG_DIFF_SRC)
return arg_usage_t::output;
return primitive_desc_t::arg_usage(arg);
}
virtual const memory_desc_t *diff_src_md(int index = 0) const override
{ return index == 0 ? &diff_src_md_ : nullptr; }
virtual const memory_desc_t *diff_dst_md(int index = 0) const override
{ return index == 0 ? &diff_dst_md_ : nullptr; }
virtual const memory_desc_t *weights_md(int index = 0) const override {
if (index == 0) return &weights_md_;
if (index == 1 && with_bias()) return &bias_md_;
return nullptr;
}
virtual int n_inputs() const override { return 2 + with_bias(); }
virtual int n_outputs() const override { return 1; }
virtual bool support_bias() const { return false; }
protected:
memory_desc_t diff_src_md_;
memory_desc_t weights_md_;
memory_desc_t bias_md_;
memory_desc_t diff_dst_md_;
bool set_default_formats_common(format_tag_t diff_src_tag,
format_tag_t wei_tag, format_tag_t diff_dst_tag) {
return set_default_formats_common_template(diff_src_md_, diff_src_tag,
weights_md_, wei_tag, diff_dst_md_, diff_dst_tag, bias_md_);
}
};
struct convolution_bwd_weights_pd_t: public convolution_pd_t {
typedef convolution_bwd_weights_pd_t base_class;
typedef convolution_fwd_pd_t hint_class;
convolution_bwd_weights_pd_t(engine_t *engine,
const convolution_desc_t *adesc,
const primitive_attr_t *attr,
const convolution_fwd_pd_t *hint_fwd_pd)
: convolution_pd_t(engine, adesc, attr, hint_fwd_pd)
, src_md_(desc_.src_desc)
, diff_weights_md_(desc_.diff_weights_desc)
, diff_bias_md_(desc_.diff_bias_desc)
, diff_dst_md_(desc_.diff_dst_desc)
{}
virtual arg_usage_t arg_usage(primitive_arg_index_t arg) const override {
if (utils::one_of(arg, MKLDNN_ARG_SRC, MKLDNN_ARG_DIFF_DST))
return arg_usage_t::input;
if (arg == MKLDNN_ARG_DIFF_WEIGHTS)
return arg_usage_t::output;
if (arg == MKLDNN_ARG_DIFF_BIAS && with_bias())
return arg_usage_t::output;
return primitive_desc_t::arg_usage(arg);
}
virtual const memory_desc_t *src_md(int index = 0) const override
{ return index == 0 ? &src_md_ : nullptr; }
virtual const memory_desc_t *diff_dst_md(int index = 0) const override
{ return index == 0 ? &diff_dst_md_ : nullptr; }
virtual const memory_desc_t *diff_weights_md(int index = 0) const override {
if (index == 0) return &diff_weights_md_;
if (index == 1 && with_bias()) return &diff_bias_md_;
return nullptr;
}
virtual int n_inputs() const override { return 2; }
virtual int n_outputs() const override { return 1 + with_bias(); }
protected:
memory_desc_t src_md_;
memory_desc_t diff_weights_md_;
memory_desc_t diff_bias_md_;
memory_desc_t diff_dst_md_;
bool set_default_formats_common(format_tag_t src_tag,
format_tag_t diff_wei_tag, format_tag_t diff_dst_tag) {
return set_default_formats_common_template(src_md_, src_tag,
diff_weights_md_, diff_wei_tag, diff_dst_md_, diff_dst_tag,
diff_bias_md_);
}
};
}
}
#endif
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|