1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include "mkldnn.h"
#include "c_types_map.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
using namespace mkldnn::impl;
using namespace mkldnn::impl::utils;
using namespace mkldnn::impl::status;
using namespace mkldnn::impl::prop_kind;
using namespace mkldnn::impl::alg_kind;
using namespace mkldnn::impl::types;
namespace {
status_t bnrm_desc_init(batch_normalization_desc_t *bnrm_desc,
prop_kind_t prop_kind, const memory_desc_t *data_desc,
const memory_desc_t *diff_data_desc, float epsilon, unsigned flags) {
bool args_ok = true
&& !any_null(bnrm_desc, data_desc)
&& one_of(prop_kind, forward_training, forward_inference,
backward_data, backward)
&& IMPLICATION(prop_kind & backward, diff_data_desc != nullptr);
if (!args_ok) return invalid_arguments;
auto bd = batch_normalization_desc_t();
bd.primitive_kind = primitive_kind::batch_normalization;
bd.prop_kind = prop_kind;
bd.data_desc = *data_desc;
bd.diff_data_desc = zero_md();
if ( one_of(bd.prop_kind,backward_data, backward) )
bd.diff_data_desc = *diff_data_desc;
dims_t scaleshift_dims = { 2, data_desc->dims[1] };
mkldnn_memory_desc_init_by_tag(&bd.data_scaleshift_desc, 2,
scaleshift_dims, data_type::f32, mkldnn_nc);
bd.diff_data_scaleshift_desc = zero_md();
if (bd.prop_kind == backward) {
bd.diff_data_scaleshift_desc = bd.data_scaleshift_desc;
}
dims_t stats_dims = { data_desc->dims[1] };
mkldnn_memory_desc_init_by_tag(&bd.mean_desc, 1, stats_dims,
data_type::f32, mkldnn_x);
bd.variance_desc = bd.mean_desc;
bd.batch_norm_epsilon = epsilon;
unsigned bnorm_flags =
mkldnn_use_global_stats | mkldnn_use_scaleshift | mkldnn_fuse_bn_relu;
if ((~bnorm_flags & flags) != 0) return invalid_arguments;
bd.flags = flags;
bool consistency = true
&& utils::one_of(bd.data_desc.ndims, 2, 4, 5);
if (bd.prop_kind == backward_data)
consistency = consistency
&& utils::one_of(bd.diff_data_desc.ndims, 2, 4, 5)
&& array_cmp(bd.diff_data_desc.dims, bd.data_desc.dims,
bd.diff_data_desc.ndims);
if (!consistency) return invalid_arguments;
*bnrm_desc = bd;
return success;
}
}
status_t mkldnn_batch_normalization_forward_desc_init(
batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind,
const memory_desc_t *data_desc, float epsilon, unsigned flags) {
if (!one_of(prop_kind, forward_training, forward_inference))
return invalid_arguments;
return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, nullptr,
epsilon, flags);
}
status_t mkldnn_batch_normalization_backward_desc_init(
batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind,
const memory_desc_t *diff_data_desc, const memory_desc_t *data_desc,
float epsilon, unsigned flags) {
if (!one_of(prop_kind, backward, backward_data))
return invalid_arguments;
return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, diff_data_desc,
epsilon, flags);
}
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|