1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef MKLDNN_H
#define MKLDNN_H
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/* All symbols shall be internal unless marked as MKLDNN_API */
#if defined _WIN32 || defined __CYGWIN__
# define MKLDNN_HELPER_DLL_IMPORT __declspec(dllimport)
# define MKLDNN_HELPER_DLL_EXPORT __declspec(dllexport)
#else
# if __GNUC__ >= 4
# define MKLDNN_HELPER_DLL_IMPORT __attribute__ ((visibility ("default")))
# define MKLDNN_HELPER_DLL_EXPORT __attribute__ ((visibility ("default")))
# else
# define MKLDNN_HELPER_DLL_IMPORT
# define MKLDNN_HELPER_DLL_EXPORT
# endif
#endif
#ifdef MKLDNN_DLL
# ifdef MKLDNN_DLL_EXPORTS
# define MKLDNN_API MKLDNN_HELPER_DLL_EXPORT
# else
# define MKLDNN_API MKLDNN_HELPER_DLL_IMPORT
# endif
#else
# define MKLDNN_API
#endif
#if defined (__GNUC__)
# define MKLDNN_DEPRECATED __attribute__((deprecated))
#elif defined(_MSC_VER)
# define MKLDNN_DEPRECATED __declspec(deprecated)
#else
# define MKLDNN_DEPRECATED
#endif
#include "mkldnn_types.h"
#include "mkldnn_version.h"
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
#ifdef __cplusplus
extern "C" {
#endif
/** @addtogroup c_api C API
* @{ */
/** @addtogroup c_api_primitive Primitive operations
* @{ */
/** @addtogroup c_api_primitive_common Common primitive operations
* @{ */
/** Creates a primitive descriptor @p iterator for given @p op_desc, @p attr,
* @p engine, and optionally a hint primitive descriptor from forward
* propagation (required for backward propagation). Pass @c NULL for forward
* propagation.
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_iterator_create(
mkldnn_primitive_desc_iterator_t *iterator,
const_mkldnn_op_desc_t op_desc, const_mkldnn_primitive_attr_t attr,
mkldnn_engine_t engine,
const_mkldnn_primitive_desc_t hint_forward_primitive_desc);
/** Iterates over primitive descriptors. Returns #mkldnn_iterator_ends if no
* more primitive descriptors are available. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_iterator_next(
mkldnn_primitive_desc_iterator_t iterator);
/** Fetches the current primitive descriptor.
*
* @note
* The user should delete the fetched primitive descriptor using
* mkldnn_primitive_desc_destroy() once it is no longer needed. */
mkldnn_primitive_desc_t MKLDNN_API mkldnn_primitive_desc_iterator_fetch(
const_mkldnn_primitive_desc_iterator_t iterator);
/** Deletes a primitive descriptor @p iterator */
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_iterator_destroy(
mkldnn_primitive_desc_iterator_t iterator);
/** Creates a @p primitive_desc using @p op_desc, @p attr, @p engine, and
* optionally a hint primitive descriptor from forward propagation. The call is
* equivalent to creating a primitive descriptor iterator, immediately fetching
* a primitive descriptor, and then destroying the iterator. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_create(
mkldnn_primitive_desc_t *primitive_desc,
const_mkldnn_op_desc_t op_desc, const_mkldnn_primitive_attr_t attr,
mkldnn_engine_t engine,
const_mkldnn_primitive_desc_t hint_forward_primitive_desc);
/** Makes a copy of a @p primitive_desc. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_clone(
mkldnn_primitive_desc_t *primitive_desc,
const_mkldnn_primitive_desc_t existing_primitive_desc);
/** Returns a constant reference to the attribute of a @p primitive_desc.
*
* @warning
* The user should not destroy the obtained @p attr.
*
* @warning
* The lifetime of an @p attr is the same as that of a @p primitive_desc,
* so it is illegal to use the @p attr once @p primitive_desc has been
* destroyed. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_get_attr(
const_mkldnn_primitive_desc_t primitive_desc,
const_mkldnn_primitive_attr_t *attr);
/** Deletes a @p primitive_desc. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_destroy(
mkldnn_primitive_desc_t primitive_desc);
/** Queries primitive descriptor
*
* One of the most typical use cases is to query a convolution primitive
* descriptor created with source, weights, and destination formats equal
* to #mkldnn_format_tag_any about the corresponding memory descriptors
* (@p what equals #mkldnn_query_src_md, #mkldnn_query_weights_md, and
* #mkldnn_query_dst_md respectively) to be able to prepare memory and
* create reorders if required.
*
* Another quite typical use case is to query an operation primitive
* descriptor for a workspace (@p what equals #mkldnn_query_workspace_md).
* The returned status #mkldnn_not_required indicates that a workspace is
* not required.
*
* A few other possibilities:
* - query an operation primitive descriptor for the underlying operation
* descriptor (#mkldnn_query_convolution_d, #mkldnn_query_eltwise_d,
* #mkldnn_query_rnn_d, etc.)
* - query an operation primitive descriptor for the implementation
* information string (#mkldnn_query_impl_info_str)
* - query an operation primitive descriptor for the number of inputs and
* outputs (#mkldnn_query_num_of_inputs_s32 and
* #mkldnn_query_num_of_outputs_s32 respectively)
*
* @sa mkldnn_query_t for more options
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_desc_query(
const_mkldnn_primitive_desc_t primitive_desc, mkldnn_query_t what,
int index, void *result);
/** Queries primitive descriptor for memory descriptor
*
* @returns NULL in case of any error.
*
* This is just a specialized version of mkldnn_primitive_desc_query
* used for convenience.
*/
const mkldnn_memory_desc_t MKLDNN_API *mkldnn_primitive_desc_query_md(
const_mkldnn_primitive_desc_t primitive_desc, mkldnn_query_t what,
int index);
/** Queries primitive descriptor for signed 32bit int
*
* @returns 0 in case of any error (in particular if the queried entity is
* not of type int32_t). Note that 0 might also be the actual returned
* value.
*
* This is just a specialized version of mkldnn_primitive_desc_query
* used for convenience.
*/
int MKLDNN_API mkldnn_primitive_desc_query_s32(
const_mkldnn_primitive_desc_t primitive_desc, mkldnn_query_t what,
int index);
/** Creates a @p primitive using a @p primitive_desc descriptor. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_create(
mkldnn_primitive_t *primitive,
const_mkldnn_primitive_desc_t primitive_desc);
/** Executes a @p primitive using a @p stream, and @p nargs arguments
* @p args. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_execute(
const_mkldnn_primitive_t primitive, mkldnn_stream_t stream,
int nargs, const mkldnn_exec_arg_t *args);
/** Retrieves a reference to the @p primitive_desc descriptor of given @p
* primitive.
*
* @warning
* The returned object must not be destroyed by the user. The @c const
* qualifier of the returned object prevents such attempts. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_get_primitive_desc(
const_mkldnn_primitive_t primitive,
const_mkldnn_primitive_desc_t *primitive_desc);
/** Deletes a @p primitive. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_destroy(
mkldnn_primitive_t primitive);
/** @} */
/** @addtogroup c_api_attributes Attributes
* An extension for controlling primitive behavior.
* @{ */
/** Creates an empty (default) @p attr attribute. All the parameters are set to
* default values.
*
* An empty attribute is used in primitive descriptor creation whenever it
* is not passed explicitly, e.g. in mkldnn_primitive_desc_create.
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_create(
mkldnn_primitive_attr_t *attr);
/** Makes a copy of an @p existing_attr. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_clone(
mkldnn_primitive_attr_t *attr,
const_mkldnn_primitive_attr_t existing_attr);
/** Deletes an @p attr. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_destroy(
mkldnn_primitive_attr_t attr);
/** Returns the scratchpad @p mode set in the attribute @p attr */
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_get_scratchpad_mode(
const_mkldnn_primitive_attr_t attr, mkldnn_scratchpad_mode_t *mode);
/** Sets scratchpad @p mode.
*
* The possible values are: #mkldnn_scratchpad_mode_library (default) and
* #mkldnn_scratchpad_mode_user. */
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_scratchpad_mode(
mkldnn_primitive_attr_t attr, mkldnn_scratchpad_mode_t mode);
/** Returns @p count, correspondence scale @p mask, and a pointer to a constant
* floating point array of output @p scales for given @p attr, previously set
* by mkldnn_primitive_attr_set_output_scales.
*
* @warning
* The @p scales array points to the internal @p attr field, so the user
* should not modify or destroy @p scales.
*
* @warning
* The lifetime of @p scales is the same as that of the @p attr to which it
* belongs, so it is illegal to use @p scales after @p attr is destroyed.
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_get_output_scales(
const_mkldnn_primitive_attr_t attr, mkldnn_dim_t *count, int *mask,
const float **scales);
/** Sets output @p scales for primitive operations. The number of elements @p
* count and correspondence scale @p mask are stored for future use.
*
* The @p mask argument defines the correspondence between the output tensor
* dimensions and the @p scales array. Set the i-th bit of @p mask to 1 to use a
* dedicated scaling factor for each slice of the output tensor over the i-th
* dimension. Set @p mask to 0 to use a common scaling factor for the whole
* output tensor.
*
* @note
* The dimension order is always native and does not depend on the actual
* layout used. Examples:
* - 2D dimensional data the order of dimensions is always: (n, c)
* - 4D dimensional data the order is always: (n, c, h, w)
* - 5D dimensional weights the order is always: (g, oc, ic, kh, kw)
*
* Example usage:
* @code
* int mb = 32, oc = 32, oh = 14, ow = 14; // convolution output params
* float scales[oc] = { ... }; // unique output scales per output channel
* int oc_dim = 1; // mb_dim = 0, channel_dim = 1, height_dim = 2, ...
*
* mkldnn_convolution_desc_t cd; // create & configure convolution op_desc
*
* mkldnn_primitive_attr_t attr;
* mkldnn_primitive_attr_create(&attr); // create default attributes
* mkldnn_primitive_attr_set_output_scales(attr, oc, 1 << oc_dim, scales);
*
* mkldnn_primitive_desc_t cpd;
* mkldnn_primitive_desc_create(&cpd, &cd, attr, NULL);
* @endcode
*
* @note
* There is no way to check that @p count corresponds to @p mask until an
* actual primitive descriptor is created, so it is the user's
* responsibility to set proper values. The following formula must hold:
*
* \f[count = \prod\limits_{d \in mask} output.dims[d]\f]
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_output_scales(
mkldnn_primitive_attr_t attr, mkldnn_dim_t count, int mask,
const float *scales);
/** Returns @p post_ops for given @p attr.
*
* @warning
* @p post_ops points to the internal @p attr field, so the user should not
* modify or destroy @p post_ops. Also, the lifetime of @p post_ops is the
* same as that of the @p attr it belongs to, so it is illegal to use @p
* post_ops after @p attr has been destroyed.
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_get_post_ops(
const_mkldnn_primitive_attr_t attr, const_mkldnn_post_ops_t *post_ops);
/** Sets configured @p post_ops to an attribute @p attr for future use (when
* primitive descriptor is being created).
*
* @note
* At this point in time, there is no way to check whether the primitive
* descriptor does or does not support a given sequence of post operations.
* Therefore the user should handle an error that might occur at the
* mkldnn_primitive_desc_create call.
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_post_ops(
mkldnn_primitive_attr_t attr, const_mkldnn_post_ops_t post_ops);
/** @addtogroup c_api_attributes_post_ops Sequence of post operations
* An extension for performing extra operations after a base operation.
* @{ */
/** Creates an empty sequence of post operations @p post_ops. */
mkldnn_status_t MKLDNN_API mkldnn_post_ops_create(mkldnn_post_ops_t *post_ops);
/** Deletes a @p post_ops sequence. */
mkldnn_status_t MKLDNN_API mkldnn_post_ops_destroy(mkldnn_post_ops_t post_ops);
/** Returns the @p length of post operations for given @p post_ops. */
int MKLDNN_API mkldnn_post_ops_len(const_mkldnn_post_ops_t post_ops);
/** Returns the type of post operation with index @p index in given
* @p post_ops. In case of error, returns #mkldnn_undefined_primitive. */
mkldnn_primitive_kind_t MKLDNN_API mkldnn_post_ops_get_kind(
const_mkldnn_post_ops_t post_ops, int index);
/** Appends accumulation (sum) post operation to the @p post_ops. Prior to
* accumulating the result, the previous value would be multiplied by @p scale.
*
* The kind of this post operation is #mkldnn_sum.
*
* This feature might improve performance for cases like residual learning
* blocks, where the result of convolution is accumulated to the previously
* computed activations. The parameter @p scale might be extreme for the
* integer-based computations when the result and previous activations have
* different logical scaling factors.
*
* In the simplest case when the accumulation is the only post operation, the
* computations would be:
* dst[] <- scale * dst[] + op(...) // instead of dst[] <- op(...)
*
* @note
* This post operation (as well as all the others) disregards the original
* layout of the destination; that is, the layout of the original
* destination is expected to be the same as the layout of the stored
* destination.
*/
mkldnn_status_t MKLDNN_API mkldnn_post_ops_append_sum(
mkldnn_post_ops_t post_ops, float scale);
/** Gets the parameters of the accumulation (sum) post operation with index
* @p index in the sequence of @p post_ops.
*
* @note
* If index @p index would not correspond to the accumulation post
* operation, the function returns #mkldnn_invalid_arguments.
*/
mkldnn_status_t MKLDNN_API mkldnn_post_ops_get_params_sum(
const_mkldnn_post_ops_t post_ops, int index, float *scale);
/** Appends eltwise post operation to the @p post_ops with given parameters
* @p kind, @p alpha, and @p beta (@sa mkldnn_eltwise_forward_desc_init and
* mkldnn_eltwise_desc_t).
*
* The kind of this post operation is #mkldnn_eltwise.
*
* In the simplest case when the eltwise is the only post operation, the
* computations would be:
* dst[] <- scale * eltwise_op ( op(...) ) // instead of dst[] <- op(...)
* where eltwise_op is configured with the given parameters.
*/
mkldnn_status_t MKLDNN_API mkldnn_post_ops_append_eltwise(
mkldnn_post_ops_t post_ops, float scale, mkldnn_alg_kind_t alg,
float alpha, float beta);
/** Gets the eltwise parameters of the post operation with index @p index in
* the sequence of @p post_ops.
*/
mkldnn_status_t MKLDNN_API mkldnn_post_ops_get_params_eltwise(
const_mkldnn_post_ops_t post_ops, int index, float *scale,
mkldnn_alg_kind_t *alg, float *alpha, float *beta);
/** @} */
/** @} */
/** @addtogroup c_api_memory Memory
* A primitive to describe and store data.
*
* The library supports various data types and formats. Memory hierarchy
* consists of three levels of abstraction:
* 1. **Memory descriptor** -- engine agnostic logical description of data
* (number of dimensions, dimensions themselves, and data type), and
* optionally the format/layout that describes the physical representation
* of data in memory. If the format is not known yet, one can pass
* #mkldnn_format_tag_any. This approach is used to allow compute-intensive
* primitives to specify the most appropriate format on their own with
* users required to reorder the data if the incoming format doesn't match
* the primitive's selection. Memory descriptor can be initialized with
* mkldnn_memory_desc_init_by_tag() or mkldnn_memory_desc_init_by_strides()
* functions, or by directly filling the mkldnn_memory_desc_t structure.
* The latter requires deep knowledge of how the physical data
* representation is mapped to the structure.
* The @ref understanding_memory_formats topic should shed some light on
* that.
* For the fully defined memory descriptors (i.e. where the format kind is
* not equal to #mkldnn_format_kind_any) a user can the size, using the
* mkldnn_memory_desc_get_size() function. As described in
* @ref understanding_memory_formats, the size of data sometimes cannot
* be computed as the product of dimensions times the size of the data
* type. So users are encouraged to use this function for better code
* portability.
* Two memory descriptors can be compared with mkldnn_memory_desc_equal().
* The comparison is especially useful when checking whether a primitive
* requires reorder from the user's data format to the primitive's format.
* 2. **Memory** -- an engine-specific object that handles the data and its
* description (a memory descriptor). For CPU enigne, the data handle is
* simply a pointer to @c void. The data handle can be queried using
* mkldnn_memory_get_data_handle() and set using
* mkldnn_memory_set_data_handle(). The latter function always sets the
* memory in the padding region to zero, which is the invariant maintained
* by all the primitives in Intel MKL-DNN.
* See @ref understanding_memory_formats for more details.
* A memory can be created using mkldnn_memory_create() function.
* A memory can also be queried for the underlying memory descriptor and
* engine using mkldnn_memory_get_memory_desc() and
* mkldnn_memory_get_engine() functions.
*
* Along with ordinary memory with all dimensions being positive, Intel
* MKL-DNN supports *zero-volume* memory with one or more dimensions set to
* zero. This is to support the NumPy\* convention.
* If a *zero-volume* memory is passed to a primitive, the primitive does
* not perform any computations on this memory. For example:
* - Convolution with `(0 batch, 3 input channels, 13 height, 13 width)`
* source and `(16 output channels, 3 inputs, channel, 3 height, 3 width)`
* weights would produce `(0 batch, 16 output channels, 11 height, 11 width)`
* destination (assuming strides are `1` and paddings are zero) and perform
* zero multiply-add operations.
* - Concatenation of three memories of shapes `(3, 4, 13, 13)`,
* `(3, 0, 13, 13)`, and `(3, 1, 13, 13)` along the second axis would produce
* the output of the shape `(3, 5, 13, 13)`, effectively ignoring the second
* input (however, if the user created a concatenation primitive descriptor
* with three inputs they should also provide all three memories to the
* concatenation primitive, including the one with zero second dimension).
* - However, Intel MKL-DNN would return an error when attempting to create a
* convolution with *zero-volume* memory passed for weights because such a
* convolution is not well-defined:
* ~~~
* dst(1, 16, 11, 11) <-- src(1, 0, 13, 13) (*) wei(16, 0, 3, 3)
* ~~~
* Should the values in the destination be zeroes or just not accessed at
* all? Moreover, backward pass w.r.t. weights in such cases is also not
* well-defined.
*
* Data handle of *zero-volume* memory is never accessed and hence can be
* unset (NULL in case of CPU engine).
*
* @sa @ref understanding_memory_formats
* @{ */
/** Initializes a @p memory_desc memory descriptor using @p ndims, @p dims, @p
* data_type, and @p strides.
*
* The @p strides might be NULL, which means the order of physical dimensions
* is the same as the order of logical ones.
*
* @note The logical order of dimensions is defined by a primitive that
* consumes the memory.
*/
mkldnn_status_t MKLDNN_API mkldnn_memory_desc_init_by_strides(
mkldnn_memory_desc_t *memory_desc, int ndims, const mkldnn_dims_t dims,
mkldnn_data_type_t data_type, const mkldnn_dims_t strides);
/** Initializes a @p memory_desc memory descriptor using @p ndims, @p dims, @p
* data_type, and format @p tag.
*
* @p tag can be #mkldnn_format_tag_any, which allows a primitive to define
* the appropriate memory format. In this case, the @p format_kind would be set
* to #mkldnn_format_kind_any */
mkldnn_status_t MKLDNN_API mkldnn_memory_desc_init_by_tag(
mkldnn_memory_desc_t *memory_desc, int ndims, const mkldnn_dims_t dims,
mkldnn_data_type_t data_type, mkldnn_format_tag_t tag);
/** Initializes a @p memory_desc for a given @p parent_memory_desc, with
* @p dims sizes and @p offsets. May fail if layout used does not allow
* obtain desired submemory. In this case consider using `extract` or `insert`
* primitive */
mkldnn_status_t MKLDNN_API mkldnn_memory_desc_init_submemory(
mkldnn_memory_desc_t *memory_desc,
const mkldnn_memory_desc_t *parent_memory_desc,
const mkldnn_dims_t dims, const mkldnn_dims_t offsets);
/** Compares two memory descriptors.
* @return 1 if the descriptors are the same.
* @return 0 if the descriptors are different.
*
* Use this function to identify whether a reorder is required between the
* two memories */
int MKLDNN_API mkldnn_memory_desc_equal(
const mkldnn_memory_desc_t *lhs,
const mkldnn_memory_desc_t *rhs);
/** Returns the size (in bytes) that is required for given @p memory_desc */
size_t MKLDNN_API mkldnn_memory_desc_get_size(
const mkldnn_memory_desc_t *memory_desc);
/** Creates a memory for given @p memory_desc and @p engine. Also sets handle
* to @p native_handle.
* The @p native_handle can:
* - point to the user allocated memory, i.e. valid handle. In this case the
* library doesn't own allocated memory.
* - be MKLDNN_NATIVE_HANDLE_ALLOCATE to ask the library to allocate and
* attach memory. In this case the library owns allocated memory.
* - be MKLDNN_NATIVE_HANDLE_NONE to create mkldnn_memory w/o attached memory.
*/
mkldnn_status_t MKLDNN_API mkldnn_memory_create(mkldnn_memory_t *memory,
const mkldnn_memory_desc_t *memory_desc, mkldnn_engine_t engine,
void *native_handle);
/** Returns a @p memory_desc associated with @p memory. */
mkldnn_status_t MKLDNN_API mkldnn_memory_get_memory_desc(
const_mkldnn_memory_t memory,
const mkldnn_memory_desc_t **memory_desc);
/** Returns an @p engine associated with @p memory. */
mkldnn_status_t MKLDNN_API mkldnn_memory_get_engine(
const_mkldnn_memory_t memory, mkldnn_engine_t *engine);
/** For a @p memory, returns the data @p handle.
*
* For the CPU engine, the data handle is a pointer to the actual data. */
mkldnn_status_t MKLDNN_API mkldnn_memory_get_data_handle(
const_mkldnn_memory_t memory, void **handle);
/** For a @p memory, sets the data @p handle. */
mkldnn_status_t MKLDNN_API mkldnn_memory_set_data_handle(
mkldnn_memory_t memory, void *handle);
/** Deletes a @p memory. */
mkldnn_status_t MKLDNN_API mkldnn_memory_destroy(mkldnn_memory_t memory);
/** @} */
/** @addtogroup c_api_reorder Reorder
* A primitive to copy data between memory formats.
* @{ */
/** Initializes a @p reorder_primitive_desc using the description of the source
* (@p src_engine and @p src_md) and destination (@p dst_engine and @p dst_md)
* memory, and an @p attr attribute.
*
* Inputs:
* - input (#mkldnn_query_src_md, 0)
*
* Outputs:
* - output (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_reorder_primitive_desc_create(
mkldnn_primitive_desc_t *reorder_primitive_desc,
mkldnn_engine_t src_engine, const mkldnn_memory_desc_t *src_md,
mkldnn_engine_t dst_engine, const mkldnn_memory_desc_t *dst_md,
const_mkldnn_primitive_attr_t attr);
/** @} */
/** @addtogroup c_api_concat Concat
* A primitive to concatenate data by arbitrary dimension.
* @{ */
/** Creates out-of-place @p concat_primitive_desc for concatenation of @p n
* inputs by @p concat_dimension with resulting @p output_desc memory
* descriptor. @p output_desc can be NULL or specified with the
* #mkldnn_format_kind_any format kind -- in this case, the appropriate memory
* format would be chosen automatically.
*
* Inputs:
* - input 0 (#mkldnn_query_src_md, 0)
* - input 1 (#mkldnn_query_src_md, 1)
* - ...
* - input @p n - 1 (#mkldnn_query_src_md, @p n - 1)
*
* Outputs:
* - output (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_concat_primitive_desc_create(
mkldnn_primitive_desc_t *concat_primitive_desc,
const mkldnn_memory_desc_t *dst_md,
int n, int concat_dimension,
const mkldnn_memory_desc_t *src_mds,
const_mkldnn_primitive_attr_t attr,
mkldnn_engine_t engine);
/** @} */
/** @addtogroup c_api_sum Sum
* A primitive to sum data.
* @{ */
/** Creates out-of-place @p sum_primitive_desc for sum of @p n
* inputs multiplied by scale with resulting @p output_desc memory
* descriptor. @p output_desc can be NULL or specified with the
* #mkldnn_format_kind_any format kind -- in this case, the appropriate memory
* format would be chosen automatically.
*
* Inputs:
* - src 0 (#mkldnn_query_src_md, 0)
* - src 1 (#mkldnn_query_src_md, 1)
* - ...
* - src @p n - 1 (#mkldnn_query_src_md, @p n - 1)
*
* Outputs:
* - output (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_sum_primitive_desc_create(
mkldnn_primitive_desc_t *sum_primitive_desc,
const mkldnn_memory_desc_t *dst_mds,
int n, const float *scales,
const mkldnn_memory_desc_t *src_mds,
const_mkldnn_primitive_attr_t attr,
mkldnn_engine_t engine);
/** @} */
/** @addtogroup c_api_convolution Convolution
* A primitive to compute convolution using different algorithms.
*
* \f[dst[n][oc][oh][ow] =
* \sum_{kw=0}^{KW}\sum_{kh=0}^{KH}\sum_{ic=0}^{IC}
* src[n][ic][oh \cdot s_h - p_l[0] + kh][ow \cdot s_w - p_r[1] + kw]
* \cdot weights[g][oc][ic][kh][kw]
* + bias[g][oc],\f]
*
* where size of output spatial domain is given by
* \f$ OH = \left\lfloor{\frac{IH - KH + p_l[0] + p_r[0]}{s_h}}
* \right\rfloor + 1\f$,
* \f$ OW = \left\lfloor{\frac{IW - KW + p_l[1] + p_r[1]}{s_w}}
* \right\rfloor + 1\f$,
*
* and summation is carried over input channels \f$ic\f$ in
* group \f$g\f$, and \f$s_h, s_w\f$ are @p strides and
* \f$p_l, p_r\f$ are @p padding_l and @p padding_r.
* @{ */
/** Initializes a convolution descriptor @p conv_desc for forward propagation
* using @p prop_kind (possible values are #mkldnn_forward_training and
* #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides, @p
* padding_l, @p padding_r, and @p padding_kind. In order to create a
* convolution without bias, @p bias_desc should either be @c NULL or point to
* a descriptor with memory format kind equal to #mkldnn_format_kind_undef.
*
* @note If @p padding_r is @c NULL, the padding is supposed to be symmetric.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
* - bias (#mkldnn_query_weights_md, 1), if created with bias
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_convolution_forward_desc_init(
mkldnn_convolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind,
mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *bias_desc,
const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r,
mkldnn_padding_kind_t padding_kind);
/** Initializes a dilated convolution descriptor @p conv_desc for forward
* propagation using @p prop_kind (possible values are #mkldnn_forward_training
* and #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides,
* @p dilates, @p padding_l, @p padding_r, and @p padding_kind.
* In order to create a dilated convolution without bias, @p bias_desc
* should either be @c NULL or point to a descriptor with memory format kind
* equals #mkldnn_format_kind_undef.
*
* @note If @p padding_r is @c NULL, the padding is supposed to be symmetric.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
* - bias (#mkldnn_query_weights_md, 1), if created with bias
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_dilated_convolution_forward_desc_init(
mkldnn_convolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind,
mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *bias_desc,
const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** Initializes a convolution descriptor @p conv_desc for backward propagation
* with respect to data using @p alg_kind, memory descriptors, @p strides, @p
* padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_convolution_backward_data_desc_init(
mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *diff_src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r,
mkldnn_padding_kind_t padding_kind);
/** Initializes a dilated convolution descriptor @p conv_desc for backward
* propagation with respect to data using @p alg_kind, memory descriptors, @p
* strides, @p dilates @p padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_dilated_convolution_backward_data_desc_init(
mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *diff_src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** Initializes a convolution descriptor @p conv_desc for backward propagation
* with respect to weights using @p alg_kind, memory descriptors, @p strides,
* @p padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_weights (#mkldnn_query_diff_weights_md, 0)
* - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias
*/
mkldnn_status_t MKLDNN_API mkldnn_convolution_backward_weights_desc_init(
mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *diff_weights_desc,
const mkldnn_memory_desc_t *diff_bias_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r,
mkldnn_padding_kind_t padding_kind);
/** Initializes a convolution descriptor @p conv_desc for backward propagation
* with respect to weights using @p alg_kind, memory descriptors, @p strides,
* @p dilates @p padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_weights (#mkldnn_query_diff_weights_md, 0)
* - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias
*/
mkldnn_status_t MKLDNN_API
mkldnn_dilated_convolution_backward_weights_desc_init(
mkldnn_convolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *diff_weights_desc,
const mkldnn_memory_desc_t *diff_bias_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** @} */
/** @addtogroup c_api_deconvolution Deconvolution
* A primitive to compute deconvolution using different algorithms.
*
* @{ */
/** Initializes a deconvolution descriptor @p deconv_desc for forward
* propagation using @p prop_kind (possible values are #mkldnn_forward_training
* and #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides,
* @p padding_l, @p padding_r, and @p padding_kind. In order to create a
* deconvolution without bias, @p bias_desc should either be @c NULL or point to
* a descriptor with memory format kind equals #mkldnn_format_kind_undef.
*
* @note If @p padding_r is @c NULL, the padding is supposed to be symmetric.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
* - bias (#mkldnn_query_weights_md, 1), if created with bias
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_deconvolution_forward_desc_init(
mkldnn_deconvolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind,
mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *bias_desc,
const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r,
mkldnn_padding_kind_t padding_kind);
/** Initializes a dilated deconvolution descriptor @p deconv_desc for forward
* propagation using @p prop_kind (possible values are #mkldnn_forward_training
* and #mkldnn_forward_inference), @p alg_kind, memory descriptors, @p strides,
* @p dilates, @p padding_l, @p padding_r, and @p padding_kind. In order to
* create a dilated deconvolution without bias, @p bias_desc should either be
* @c NULL or point to a descriptor with memory format kind equal
* #mkldnn_format_kind_undef.
*
* @note If @p padding_r is @c NULL, the padding is supposed to be symmetric.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
* - bias (#mkldnn_query_weights_md, 1), if created with bias
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_dilated_deconvolution_forward_desc_init(
mkldnn_deconvolution_desc_t *conv_desc, mkldnn_prop_kind_t prop_kind,
mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *bias_desc,
const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** Initializes a deconvolution descriptor @p conv_desc for backward propagation
* with respect to data using @p alg_kind, memory descriptors, @p strides, @p
* padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_deconvolution_backward_data_desc_init(
mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *diff_src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r,
mkldnn_padding_kind_t padding_kind);
/** Initializes a dilated deconvolution descriptor @p conv_desc for backward
* propagation with respect to data using @p alg_kind, memory descriptors, @p
* strides, @p dilates, @p padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_dilated_deconvolution_backward_data_desc_init(
mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *diff_src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** Initializes a deconvolution descriptor @p conv_desc for backward propagation
* with respect to weights using @p alg_kind, memory descriptors, @p strides,
* @p padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_weights (#mkldnn_query_diff_weights_md, 0)
* - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias
*/
mkldnn_status_t MKLDNN_API mkldnn_deconvolution_backward_weights_desc_init(
mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *diff_weights_desc,
const mkldnn_memory_desc_t *diff_bias_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r,
mkldnn_padding_kind_t padding_kind);
/** Initializes a dilated deconvolution descriptor @p conv_desc for backward
* propagation with respect to weights using @p alg_kind, memory descriptors,
* @p strides, @p dilates, @p padding_l, @p padding_r, and @p padding_kind.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_weights (#mkldnn_query_diff_weights_md, 0)
* - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias
*/
mkldnn_status_t MKLDNN_API mkldnn_dilated_deconvolution_backward_weights_desc_init(
mkldnn_deconvolution_desc_t *conv_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *diff_weights_desc,
const mkldnn_memory_desc_t *diff_bias_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t dilates, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** @} */
/** @addtogroup c_api_shuffle Shuffle
* A primitive to shuffle data along the axis.
* @{ */
/** Initializes a @p shuffle_desc for forward propagation using @p prop_kind,
* memory descriptor @p data_desc, @p axis, and @p group_size.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*
*/
mkldnn_status_t MKLDNN_API mkldnn_shuffle_forward_desc_init(
mkldnn_shuffle_desc_t *shuffle_desc, mkldnn_prop_kind_t prop_kind,
const mkldnn_memory_desc_t *data_desc, int axis,
mkldnn_dim_t group_size);
/** Initializes a @p shuffle_desc for backward propagation using memory
* descriptor @p diff_data_desc, @p axis, and @p group_size.
*
*
* Inputs:
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*
*/
mkldnn_status_t MKLDNN_API mkldnn_shuffle_backward_desc_init(
mkldnn_shuffle_desc_t *shuffle_desc,
const mkldnn_memory_desc_t *diff_data_desc, int axis,
mkldnn_dim_t group_size);
/** @} */
/** @addtogroup c_api_eltwise Eltwise
* A primitive to compute element-wise operations like parametric rectifier
* linear unit (ReLU).
*
* Both forward and backward passes support in-place operation; that is, src
* and dst point to the same memory for forward pass, and diff_dst and diff_src
* point to the same memory for backward pass.
*
* @warning Because the original src is required for backward pass, in-place
* forward pass in general cannot be applied during training. However, for some
* kinds of element-wise operations (namely ReLU with alpha parameter equals 0),
* dst and src can be interchangeable for the backward pass, which enables
* performing in-place forward even for training.
*
* @{ */
/** Initializes an @p eltwise_desc for forward propagation using @p prop_kind
* (possible values are #mkldnn_forward_training and #mkldnn_forward_inference),
* @p alg_kind algorithm, memory descriptor @p data_desc, @p alpha, and
* @p beta parameters.
*
* @sa mkldnn_eltwise_desc_t for details.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_eltwise_forward_desc_init(
mkldnn_eltwise_desc_t *eltwise_desc, mkldnn_prop_kind_t prop_kind,
mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *data_desc,
float alpha, float beta);
/** Initializes an @p eltwise_desc for backward propagation using @p alg_kind
* algorithm memory descriptors @p diff_data_desc and @p data_desc, and the
* @p alpha and @p beta parameters.
*
* @sa mkldnn_eltwise_desc_t for details.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_eltwise_backward_desc_init(
mkldnn_eltwise_desc_t *eltwise_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *diff_data_desc,
const mkldnn_memory_desc_t *data_desc, float alpha, float beta);
/** @} */
/** @addtogroup c_api_softmax Softmax
* A primitive to perform softmax.
*
* \f[dst[u][c][in] =
* \frac{\exp(src[ou][c][in]) - \max\limits_{c}(src[ou][c][in])}
* {\sum\limits_{c}\{\exp(src[ou][c][in])
* - \max\limits_{c}(src[ou][c][in])\}},\f]
*
* where \f$ou, iu\f$ are outer and inner sizes repectively, defined
* by @p data_desc.dims and @p softmax_axis.
* @{ */
/** Initializes a @p softmax_desc for forward propagation using @p prop_kind
* (possible values are #mkldnn_forward_training and #mkldnn_forward_inference)
* and memory descriptor @p data_desc.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_softmax_forward_desc_init(
mkldnn_softmax_desc_t *softmax_desc, mkldnn_prop_kind_t prop_kind,
const mkldnn_memory_desc_t *data_desc, int softmax_axis);
/** Initializes a @p softmax_desc for backward propagation using memory
* descriptors @p diff_desc and @p data_desc.
*
* Inputs:
* - dst (#mkldnn_query_dst_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_softmax_backward_desc_init(
mkldnn_softmax_desc_t *softmax_desc,
const mkldnn_memory_desc_t *diff_desc,
const mkldnn_memory_desc_t *data_desc, int softmax_axis);
/** @} */
/** @addtogroup c_api_pooling Pooling
* A primitive to perform max or average pooling.
*
* Max pooling:
* \f[dst[n][oc][oh][ow] =
* \max\limits_{kw,kh}
* (src[n][ic][oh \cdot s_h - p_l[0] + kh][ow \cdot s_w - p_r[1] + kw]),\f]
*
* Average pooling:
* \f[dst[n][oc][oh][ow] =
* \frac{1}{KW \cdot KH}\sum\limits_{kw,kh}
* src[n][ic][oh \cdot s_h - p_l[0] + kh][ow \cdot s_w - p_r[1] + kw],\f]
*
* where \f$p_l, p_r\f$ are @p padding_l and @p padding_r respectively, and
* output spatial dimensions are calculated similarly to how they are done in
* convolution.
*
* During training, max pooling requires a workspace on forward
* (#mkldnn_forward_training) and backward (#mkldnn_backward) passes to
* save indices where maximum was found. The workspace layout is opaque, and
* the indices cannot be restored from it. However, one can use backward
* pooling to perform up-sampling (used in some detection topologies).
*
* @{ */
/** Initializes a pooling descriptor @p pool_desc for forward propagation using
* @p prop_kind (possible values are #mkldnn_forward_training and
* #mkldnn_forward_inference), @p alg_kind, memory descriptors, and pooling
* parameters in the spatial domain: @p strides, @p kernel sizes, @p padding_l,
* @p padding_r, and @p padding_kind.
*
* @note If @p padding_r is @c NULL, the padding is supposed to be symmetric.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
* - workspace (#mkldnn_query_workspace_md, 0),
* if @p alg_kind = #mkldnn_pooling_max and
* @p prop_kind = #mkldnn_forward_training
*/
mkldnn_status_t MKLDNN_API mkldnn_pooling_forward_desc_init(
mkldnn_pooling_desc_t *pool_desc, mkldnn_prop_kind_t prop_kind,
mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t kernel, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** Initializes a pooling descriptor @p pool_desc for backward propagation
* using @p alg_kind, memory descriptors, and pooling parameters in the spatial
* domain: @p strides, @p kernel sizes, @p padding_l, @p padding_r, and @p
* padding_kind.
*
* @note If @p padding_r is @c NULL, the padding is supposed to be symmetric.
*
* Inputs:
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - workspace (#mkldnn_query_workspace_md, 0),
* if @p alg_kind = #mkldnn_pooling_max
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_pooling_backward_desc_init(
mkldnn_pooling_desc_t *pool_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *diff_src_desc,
const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides,
const mkldnn_dims_t kernel, const mkldnn_dims_t padding_l,
const mkldnn_dims_t padding_r, mkldnn_padding_kind_t padding_kind);
/** @} */
/** @addtogroup c_api_lrn LRN
* A primitive to perform local response normalization (LRN) across or within
* channels.
*
* LRN accross channels:
* \f[dst[n][c][h][w] = \left\{k + \frac{\alpha}{n_{l}}
* \sum\limits_{i=-(n_{l}-1)/2}^{(n_{l}+1)/2}
* (src[n][c+i][h][w])^2\right\}^{-\beta}
* src[n][c][h][w],\f]
*
* LRN within channels:
* \f[dst[n][c][h][w] = \left\{k + \frac{\alpha}{n_{l}}
* \sum\limits_{i=-(n_{l}-1)/2}^{(n_{l}+1)/2}
* (src[n][c][h+i][w+i])^2\right\}^{-\beta}
* src[n][c][h][w],\f]
*
* where \f$n_{l}\f$ is the @p local_size.
*
* During training, LRN might or might not require a workspace on forward
* (#mkldnn_forward_training) and backward (#mkldnn_backward) passes. The
* behavior is implementation specific. Optimized implementations typically
* require a workspace and use it to save some intermediate results from the
* forward pass that accelerate computations on the backward pass.
*
* To check whether a workspace is required, query the LRN primitive descriptor
* for the workspace (#mkldnn_query_workspace_md). Success indicates that the
* workspace is required and its description will be returned.
* @sa mkldnn_primitive_desc_query and mkldnn_primitive_desc_query_pd
*
* @{ */
/** Initializes an @p lrn_desc for forward propagation using @p prop_kind
* (possible values are #mkldnn_forward_training and #mkldnn_forward_inference),
* @p alg_kind, memory descriptor @p data_desc, and regularization
* parameters @p local_size, @p alpha, @p beta, and @p k.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
* - workspace (#mkldnn_query_workspace_md, 0),
* if the underlying implementation requires
*/
mkldnn_status_t MKLDNN_API mkldnn_lrn_forward_desc_init(
mkldnn_lrn_desc_t *lrn_desc, mkldnn_prop_kind_t prop_kind,
mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *data_desc,
mkldnn_dim_t local_size, float alpha, float beta, float k);
/** Initializes an @p lrn_desc for backward propagation using @p alg_kind,
* memory descriptors @p data_desc and @p diff_data_desc, and regularization
* parameters @p local_size, @p alpha, @p beta, and @p k.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - workspace (#mkldnn_query_workspace_md, 0),
* if the underlying implementation requires
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_lrn_backward_desc_init(
mkldnn_lrn_desc_t *lrn_desc, mkldnn_alg_kind_t alg_kind,
const mkldnn_memory_desc_t *diff_data_desc,
const mkldnn_memory_desc_t *data_desc, mkldnn_dim_t local_size,
float alpha, float beta, float k);
/** @} */
/** @addtogroup c_api_batch_normalization Batch Normalization
* A primitive to perform batch normalization.
*
* \f[dst[n][c][h][w] = \gamma[c] \frac{src[n][c][h][w] - \mu[c]}
* {\sqrt{\sigma[c] + eps}} + \beta[c],\f]
*
* where \f$\gamma[c], \beta[c]\f$ are weights and bias for a channel and,
*
* \f$\mu[c] = \frac{1}{NHW} \sum\limits_{whn} src[n][c][h][w]\f$,
* \f$\sigma[c] = \frac{1}{NHW} \sum\limits_{whn}
* (src[n][c][h][w] - \mu[c])^2\f$,
*
* and @c eps is a constant to improve numerical stability.
*
* Both forward and backward passes support in-place operation; that is, src
* and dst point to the same memory for forward pass, and diff_dst and diff_src
* point to the same memory for backward pass.
*
* Batch normalization supports different flavors controlled by
* mkldnn_batch_normalization_desc_t. For example, batch normalization can
* compute the mean and variance on its own or take them as inputs. It can
* either perform scaling and shifting using gamma and beta parameters or not.
* Optionally it can also perform a fused ReLU, which in case of training would
* also require a workspace.
*
* @sa mkldnn_batch_normalization_desc_t
* @{ */
/** Initializes a batch normalization descriptor @p bnrm_desc for forward
* propagation using @p prop_kind (possible values are
* #mkldnn_forward_training and #mkldnn_forward_inference), memory descriptor
* @p data_desc, normalization parameter @p epsilon, and @p flags set using bit
* flags of type mkldnn_batch_normalization_desc_t.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - mean (#mkldnn_query_src_md, 1),
* if #mkldnn_use_global_stats bit-flags is set in @p flags
* - variance (#mkldnn_query_src_md, 2),
* if #mkldnn_use_global_stats bit-flags is set in @p flags
* - scale_and_shift (#mkldnn_query_weights_md, 0),
* if #mkldnn_use_scaleshift bit-flags is set in @p flags
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
* - mean (#mkldnn_query_dst_md, 1),
* if #mkldnn_use_global_stats bit-flags is not set in @p flags
* @p prop_kind = #mkldnn_forward_training
* - variance (#mkldnn_query_dst_md, 2),
* if #mkldnn_use_global_stats bit-flags is not set in @p flags
* and @p prop_kind = #mkldnn_forward_training
* - workspace (#mkldnn_query_workspace_md, 0),
* if #mkldnn_fuse_bn_relu bit-flags is set in @p flags
* and @p prop_kind = #mkldnn_forward_training
*
* @note In-place operation is supported; that is, dst points to the same memory
* as src.
*
* @sa mkldnn_batch_normalization_desc_t
*/
mkldnn_status_t MKLDNN_API mkldnn_batch_normalization_forward_desc_init(
mkldnn_batch_normalization_desc_t *bnrm_desc,
mkldnn_prop_kind_t prop_kind, const mkldnn_memory_desc_t *data_desc,
float epsilon, unsigned flags);
/** Initializes a batch normalization descriptor @p bnrm_desc for backward
* propagation with respect to data and scale-shift parameters using memory
* descriptors @p data_desc and @p diff_data_desc, normalization parameter
* @p epsilon, and @p flags set using bit flags of type
* mkldnn_batch_normalization_desc_t.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - mean (#mkldnn_query_src_md, 1)
* - variance (#mkldnn_query_src_md, 2)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - scale_and_shift (#mkldnn_query_weights_md, 0),
* if #mkldnn_use_scaleshift bit-flags is set in @p flags
* - workspace (#mkldnn_query_workspace_md, 0),
* if #mkldnn_fuse_bn_relu bit-flags is set in @p flags
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
* - diff_scale_and_shift (#mkldnn_query_diff_weights_md, 0),
* if #mkldnn_use_scaleshift bit-flags is set in @p flags
* and @p prop_kind = #mkldnn_backward
*
* @note in-place operation is supported,
* i.e. diff_src points to the same memory as diff_dst.
*
* @sa mkldnn_batch_normalization_desc_t
*/
mkldnn_status_t MKLDNN_API mkldnn_batch_normalization_backward_desc_init(
mkldnn_batch_normalization_desc_t *bnrm_desc,
mkldnn_prop_kind_t prop_kind,
const mkldnn_memory_desc_t *diff_data_desc,
const mkldnn_memory_desc_t *data_desc,
float epsilon, unsigned flags);
/** @} */
/** @addtogroup c_api_inner_product Inner product
* A primitive to compute an inner product.
*
* Inner product layer is also known as fully connected layer.
* With spatial dimension:
*
* \f[dst[n][oc] = \sum\limits_{ic, kh, kw}
* src[n][ic][kh][kw] \cdot weights[oc][ic][kh][kw]
* + bias[oc]\f]
* @{ */
/** Initializes an inner product descriptor @p ip_desc for forward propagation
* using @p prop_kind (possible values are #mkldnn_forward_training and
* #mkldnn_forward_inference) and memory descriptors. In order to create an
* inner product without bias, @p bias_desc should be either @c NULL or a
* pointer to a descriptor with memory format kind equals
* #mkldnn_format_kind_undef.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
* - bias (#mkldnn_query_weights_md, 1), if created with bias
*
* Outputs:
* - dst (#mkldnn_query_dst_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_inner_product_forward_desc_init(
mkldnn_inner_product_desc_t *ip_desc, mkldnn_prop_kind_t prop_kind,
const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *bias_desc,
const mkldnn_memory_desc_t *dst_desc);
/** Initializes an inner product descriptor @p ip_desc for backward propagation
* with respect to data using memory descriptors.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
* - weights (#mkldnn_query_weights_md, 0)
*
* Outputs:
* - diff_src (#mkldnn_query_diff_src_md, 0)
*/
mkldnn_status_t MKLDNN_API mkldnn_inner_product_backward_data_desc_init(
mkldnn_inner_product_desc_t *ip_desc,
const mkldnn_memory_desc_t *diff_src_desc,
const mkldnn_memory_desc_t *weights_desc,
const mkldnn_memory_desc_t *diff_dst_desc);
/** Initializes an inner product descriptor @p ip_desc for backward propagation
* with respect to weights using memory descriptors.
*
* @note Memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src (#mkldnn_query_src_md, 0)
* - diff_dst (#mkldnn_query_diff_dst_md, 0)
*
* Outputs:
* - diff_weights (#mkldnn_query_diff_weights_md, 0)
* - diff_bias (#mkldnn_query_diff_weights_md, 1), if created with bias
*/
mkldnn_status_t MKLDNN_API mkldnn_inner_product_backward_weights_desc_init(
mkldnn_inner_product_desc_t *ip_desc,
const mkldnn_memory_desc_t *src_desc,
const mkldnn_memory_desc_t *diff_weights_desc,
const mkldnn_memory_desc_t *diff_bias_desc,
const mkldnn_memory_desc_t *diff_dst_desc);
/** @} */
/** @addtogroup c_api_rnn RNN
* A primitive to compute the common recurrent layer.
* @todo add additional description for the group
* @{ */
/**
* Initializes a recurrent cell descriptor @p rnn_cell_desc
* using @p rnn_cell_desc, @p kind (possible values are
* #mkldnn_vanilla_rnn, #mkldnn_vanilla_lstm, #mkldnn_vanilla_gru, and
* #mkldnn_gru_linear_before_reset),
* @p f (possible values are #mkldnn_eltwise_relu and
* #mkldnn_eltwise_tanh), @p flags, @p alpha, and @p clipping.
*/
mkldnn_status_t MKLDNN_API mkldnn_rnn_cell_desc_init(
mkldnn_rnn_cell_desc_t *rnn_cell_desc,
mkldnn_alg_kind_t kind, mkldnn_alg_kind_t f,
unsigned int flags, float alpha, float clipping);
/** Returns the number of gates of a particular @p rnn_cell_desc. */
int MKLDNN_API mkldnn_rnn_cell_get_gates_count(
const mkldnn_rnn_cell_desc_t *rnn_cell_desc);
/** Returns the number of states of a particular @p rnn_cell_desc. */
int MKLDNN_API mkldnn_rnn_cell_get_states_count(
const mkldnn_rnn_cell_desc_t *rnn_cell_desc);
/** Sets quantization @p scale and @p shift for RNN data tensors.
* For performance reasons, low precision configuration of RNN primitive
* expects input activations to have unsigned int8 data type. Scale and shift
* used to quantize floating point data to unsigned integer must be passed to
* RNN primitive using attributes.
* Example usage:
* @code
* // rnn parameters
* int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32;
* // activations quantization parameters
* float scale = ..., shift = ..;
*
* mkldnn_primitive_attr_t rnn_attr;
* // create default attributes
* mkldnn_primitive_attr_create(&rnn_attr);
*
* // set scale and shift for int8 quantization of activation
* mkldnn_primitive_attr_set_rnn_data_qparams(rnn_attr, scale, shift);
*
* // create & configure rnn op_desc
* mkldnn_rnn_desc_t rnn_d;
* mkldnn_primitive_desc_t rnn_pd;
* mkldnn_primitive_desc_create(&rnn_pd, &rnn_d, attr, engine, NULL);
* @endcode
* @note
* Quantization scale and shift are common for src_layer, src_iter,
* dst_iter and dst_layer.
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_rnn_data_qparams(
mkldnn_primitive_attr_t attr, const float scale, const float shift);
/** Sets quantization scales @p weights_scales for RNN weights tensors.
* Low precision configuration of RNN primitive expects input weights to have
* signed int8 data type. Scales used to quantize floating point data
* to signed integer must be passed to RNN primitive using attributes.
* The @p mask argument defines correspondence between output tensor dimensions
* and the @p weights_scales array. Set i-th bit of @p mask to 1 to use
* dedicated scaling factor for each slice of the output tensor over i-th
* dimension. Set @p mask to 0 to use common scaling factor for the whole output
* tensor. Example usage:
* @code
* // rnn parameters
* int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32;
* // unique output scales per output channel
* float weights_scales[dic * n_gates] = { ... };
* // mask that specifies last two dimensions of ldigo format
* int mask = 0x3;
*
* mkldnn_primitive_attr_t attr;
* // create default attributes
* mkldnn_primitive_attr_create(&attr);
*
* // set output channel-wise weights scales
* mkldnn_primitive_attr_set_rnn_weights_qparams(attr, dic * n_gates, mask,
* weights_scales);
*
* // create & configure rnn op_desc
* mkldnn_rnn_desc_t rnn_d;
* mkldnn_primitive_desc_t rnn_pd;
* mkldnn_primitive_desc_create(&rnn_pd, &rnn_d, attr, engine, NULL);
* @endcode
* @note
* The dimension order is always native and does not depend on the actual
* layout used. For example, 5 dimensional weights always have
* (l, d, i, g, o) logical dimension ordering.
* @note
* Quantization sales are common for weights_layer and weights_iteration
* @note
* There is no way to check that @p count corresponds to @p mask until an
* actual primitive descriptor is created, so it is user's responsibility
* to set proper values. The following formula must be held:
*
* \f[count = \prod\limits_{d \in mask} output.dims[d]\f]
*/
mkldnn_status_t MKLDNN_API mkldnn_primitive_attr_set_rnn_weights_qparams (
mkldnn_primitive_attr_t attr, mkldnn_dim_t count, int mask,
const float *weights_scales);
/** Initializes a rnn descriptor @p rnn_desc for forward propagation
* using @p prop_kind, @p rnn_cell_desc, @p direction, and memory descriptors.
* @note If @p prop_kind equals #mkldnn_forward_training, you must query a
* workspace memory descriptor before creating the primitive.
*
* @p src_iter_desc, @p bias_desc, and @p dst_iter_desc are allowed to either be
* @c NULL or point to a zero memory descriptor, which would indicate that the
* RNN primitive should not use them.
*
* @note All memory descriptors except @p src_iter_desc are allowed to be
* initialized with #mkldnn_format_kind_any value of @p format_kind.
*
* Inputs:
* - src_layer (#mkldnn_query_src_md, 0)
* - src_iter (#mkldnn_query_src_md, 1), if used
* - weights_layer (#mkldnn_query_weights_md, 0)
* - weights_iter (#mkldnn_query_weights_md, 1)
* - bias (#mkldnn_query_weights_md, 2), if used
*
* Outputs:
* - dst_layer (#mkldnn_query_dst_md, 0)
* - dst_iter (#mkldnn_query_dst_md, 1), if used
* - workspace (#mkldnn_query_workspace_md, 0),
* if @p prop_kind equals #mkldnn_forward_training
*/
mkldnn_status_t MKLDNN_API mkldnn_rnn_forward_desc_init(
mkldnn_rnn_desc_t *rnn_desc, mkldnn_prop_kind_t prop_kind,
const mkldnn_rnn_cell_desc_t *rnn_cell_desc,
const mkldnn_rnn_direction_t direction,
const mkldnn_memory_desc_t *src_layer_desc,
const mkldnn_memory_desc_t *src_iter_desc,
const mkldnn_memory_desc_t *weights_layer_desc,
const mkldnn_memory_desc_t *weights_iter_desc,
const mkldnn_memory_desc_t *bias_desc,
const mkldnn_memory_desc_t *dst_layer_desc,
const mkldnn_memory_desc_t *dst_iter_desc);
/** Initializes a rnn descriptor @p rnn_desc for backward propagation
* using @p prop_kind, @p rnn_cell_desc, @p direction, and memory descriptors.
*
* @note All memory descriptors are allowed to be initialized with
* #mkldnn_format_kind_any value of @p format_kind.
*
* @p src_iter_desc (simultaneously with @p diff_src_iter_desc),
* @p bias_desc (simultaneously with @p diff_bias_desc), and
* @p dst_iter_desc (simultaneously with @p diff_src_iter_desc) are allowed to
* either be @c NULL or point to a zero memory descriptor, which would indicate
* that the RNN primitive should not use them.
*
* Inputs:
* - src_layer (#mkldnn_query_src_md, 0)
* - src_iter (#mkldnn_query_src_md, 1), if used
* - weights_layer (#mkldnn_query_weights_md, 0)
* - weights_iter (#mkldnn_query_weights_md, 1)
* - bias (#mkldnn_query_weights_md, 2), if used
* - dst_layer (#mkldnn_query_dst_md, 0)
* - dst_iter (#mkldnn_query_dst_md, 1), if used
* - diff_dst_layer (#mkldnn_query_diff_dst_md, 0)
* - diff_dst_iter (#mkldnn_query_diff_dst_md, 1), if used
* - workspace (#mkldnn_query_workspace_md, 0)
*
* Outputs:
* - diff_src_layer (#mkldnn_query_diff_src_md, 0)
* - diff_src_iter (#mkldnn_query_diff_src_md, 1), if used
* - diff_weights_layer (#mkldnn_query_diff_weights_md, 0)
* - diff_weights_iter (#mkldnn_query_diff_weights_md, 1)
* - diff_bias (#mkldnn_query_diff_weights_md, 2), if used
*/
mkldnn_status_t MKLDNN_API mkldnn_rnn_backward_desc_init(
mkldnn_rnn_desc_t *rnn_desc, mkldnn_prop_kind_t prop_kind,
const mkldnn_rnn_cell_desc_t *rnn_cell_desc,
const mkldnn_rnn_direction_t direction,
const mkldnn_memory_desc_t *src_layer_desc,
const mkldnn_memory_desc_t *src_iter_desc,
const mkldnn_memory_desc_t *weights_layer_desc,
const mkldnn_memory_desc_t *weights_iter_desc,
const mkldnn_memory_desc_t *bias_desc,
const mkldnn_memory_desc_t *dst_layer_desc,
const mkldnn_memory_desc_t *dst_iter_desc,
const mkldnn_memory_desc_t *diff_src_layer_desc,
const mkldnn_memory_desc_t *diff_src_iter_desc,
const mkldnn_memory_desc_t *diff_weights_layer_desc,
const mkldnn_memory_desc_t *diff_weights_iter_desc,
const mkldnn_memory_desc_t *diff_bias_desc,
const mkldnn_memory_desc_t *diff_dst_layer,
const mkldnn_memory_desc_t *diff_dst_iter_desc);
/** @} */
/** @} */
/** @addtogroup c_api_engine Engine operations
* @{ */
/** Returns the number of engines of a particular @p kind. */
size_t MKLDNN_API mkldnn_engine_get_count(mkldnn_engine_kind_t kind);
/** Creates an @p engine of particular @p kind and @p index. */
mkldnn_status_t MKLDNN_API mkldnn_engine_create(mkldnn_engine_t *engine,
mkldnn_engine_kind_t kind, size_t index);
/** Returns the kind of an @p engine. */
mkldnn_status_t MKLDNN_API mkldnn_engine_get_kind(mkldnn_engine_t engine,
mkldnn_engine_kind_t *kind);
/** Destroys an @p engine. */
mkldnn_status_t MKLDNN_API mkldnn_engine_destroy(mkldnn_engine_t engine);
/** @} */
/** @addtogroup c_api_stream Execution stream operations
* @{ */
/** Creates an execution @p stream for @p engine and with @p flags. */
mkldnn_status_t MKLDNN_API mkldnn_stream_create(mkldnn_stream_t *stream,
mkldnn_engine_t engine, unsigned flags);
/** Destroys an execution @p stream. */
mkldnn_status_t MKLDNN_API mkldnn_stream_destroy(mkldnn_stream_t stream);
/** @} */
/** @addtogroup c_api_service Service functions
* @{ */
/** Sets verbosity level (print information to stdout).
* Possible levels are:
* - 0 -- no verbose output (default)
* - 1 -- primitive information at execution
* - 2 -- primitive information at creation and execution
*
* @note
* Dumping information might affect performance.
* This setting overrides the MKLDNN_VERBOSE environment variable. */
mkldnn_status_t MKLDNN_API mkldnn_set_verbose(int level);
/** Enables or disables dumping of JIT-generated code.
* The enable parameter can be:
* - 0 -- disable
* - any other value -- enable
*
* @note
* This setting overrides the MKLDNN_JIT_DUMP environment variable. */
mkldnn_status_t MKLDNN_API mkldnn_set_jit_dump(int enable);
/** Gets library version information.
* Version information includes:
* - major -- major version number
* - minor -- minor version number
* - patch -- patch release number
* - hash -- git commit hash */
const mkldnn_version_t MKLDNN_API *mkldnn_version();
/** @} */
/** @addtogroup c_api_blas BLAS functions
* A subset of Basic Linear ALgebra (BLAS) functions to perform
* matrix-matrix multiplication.
* @{ */
/** SGEMM performs a matrix-matrix multiplication operation defined as
*
* C := alpha*op( A )*op( B ) + beta*C
*
* where
* - op( X ) is one of op( X ) = X or op( X ) = X**T,
* - alpha and beta are scalars,
* - A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix
* and C an m by n matrix.
*
* The matrices are assumed to be stored in column-major order (the elements
* in a matrix columns are contiguous in memory).
*
* @note
* The API is different from the standard BLAS routine
* because it returns mkldnn_status_t for error handling.
* XERBLA is not supported: no error message will be printed
* in case of incorrect parameters. */
mkldnn_status_t MKLDNN_API mkldnn_sgemm(
const char *transa, const char *transb,
const mkldnn_dim_t *M, const mkldnn_dim_t *N, const mkldnn_dim_t *K,
const float *alpha, const float *A, const mkldnn_dim_t *lda,
const float *B, const mkldnn_dim_t *ldb,
const float *beta, float *C, const mkldnn_dim_t *ldc);
/** gemm_s8u8s32 and gemm_s8s8s32 perform a matrix-matrix multiplication
* operation and add the result to a scalar-matrix product. For the final
* result, a vector is added to each row or column of the output matrix.
* The operation is defined as:
*
* C := alpha*(op(A) + A_offset) * (op(B) + B_offset) + beta*C + C_offset
*
* where
* - op( X ) = X or op( X ) = X**T,
* - A_offset is an m-by-k matrix with every element equal to the value oa,
* - B_offset is an k-by-n matrix with every element equal to the value ob,
* - C_offset is an m-by-n matrix defined by the oc array, size len:
* - if offsetc = F: len must be at least 1
* - if offsetc = C: len must be at least max(1, m)
* - if offsetc = R: len must be at least max(1, n)
* - alpha and beta are scalars, and A, B and C are matrices, with op( A )
* an m-by-k matrix, op( B ) a k-by-n matrix and C an m-by-n matrix.
*
* The matrices are assumed to be stored in column-major order (the elements
* in a matrix columns are contiguous in memory).
*
* @note
* The API is different compared with the standard BLAS routine
* because it returns mkldnn_status_t for error handling.
* XERBLA is not supported: no error message will be printed
* in case of incorrect parameters. */
mkldnn_status_t MKLDNN_API mkldnn_gemm_s8u8s32(
const char *transa, const char *transb, const char *offsetc,
const mkldnn_dim_t *M, const mkldnn_dim_t *N, const mkldnn_dim_t *K,
const float *alpha,
const int8_t *A, const mkldnn_dim_t *lda, const int8_t *ao,
const uint8_t *B, const mkldnn_dim_t *ldb, const int8_t *bo,
const float *beta,
int32_t *c, const mkldnn_dim_t *ldc, const int32_t *co);
mkldnn_status_t MKLDNN_API mkldnn_gemm_s8s8s32(
const char *transa, const char *transb, const char *offsetc,
const mkldnn_dim_t *M, const mkldnn_dim_t *N, const mkldnn_dim_t *K,
const float *alpha,
const int8_t *A, const mkldnn_dim_t *lda, const int8_t *ao,
const int8_t *B, const mkldnn_dim_t *ldb, const int8_t *bo,
const float *beta,
int32_t *c, const mkldnn_dim_t *ldc, const int32_t *co);
/** @} */
/** @} */
#ifdef __cplusplus
}
#endif
#endif
|