blob: 6c87f377bc054f9188a7c0a92463580047f7bb05 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
// ======================================================================== //
// Copyright 2009-2019 Intel Corporation //
// //
// Licensed under the Apache License, Version 2.0 (the "License"); //
// you may not use this file except in compliance with the License. //
// You may obtain a copy of the License at //
// //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
// Unless required by applicable law or agreed to in writing, software //
// distributed under the License is distributed on an "AS IS" BASIS, //
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
// See the License for the specific language governing permissions and //
// limitations under the License. //
// ======================================================================== //
#pragma once
#include "common/platform.h"
#include "mkl-dnn/include/mkldnn.hpp"
#include "mkl-dnn/include/mkldnn_debug.h"
#include "mkl-dnn/src/common/mkldnn_thread.hpp"
#include "mkl-dnn/src/common/type_helpers.hpp"
#include "mkl-dnn/src/cpu/jit_generator.hpp"
#include "common/ref.h"
#include "common/exception.h"
#include "common/thread.h"
#include "math.h"
namespace oidn {
using namespace mkldnn;
using namespace mkldnn::impl::cpu;
using mkldnn::impl::parallel_nd;
using mkldnn::impl::memory_desc_matches_tag;
inline size_t getFormatBytes(Format format)
{
switch (format)
{
case Format::Undefined: return 1;
case Format::Float: return sizeof(float);
case Format::Float2: return sizeof(float)*2;
case Format::Float3: return sizeof(float)*3;
case Format::Float4: return sizeof(float)*4;
}
assert(0);
return 0;
}
inline memory::dims getTensorDims(const std::shared_ptr<memory>& mem)
{
const mkldnn_memory_desc_t& desc = mem->get_desc().data;
return memory::dims(&desc.dims[0], &desc.dims[desc.ndims]);
}
inline memory::data_type getTensorType(const std::shared_ptr<memory>& mem)
{
const mkldnn_memory_desc_t& desc = mem->get_desc().data;
return memory::data_type(desc.data_type);
}
// Returns the number of values in a tensor
inline size_t getTensorSize(const memory::dims& dims)
{
size_t res = 1;
for (int i = 0; i < (int)dims.size(); ++i)
res *= dims[i];
return res;
}
inline memory::dims getMaxTensorDims(const std::vector<memory::dims>& dims)
{
memory::dims result;
size_t maxSize = 0;
for (const auto& d : dims)
{
const size_t size = getTensorSize(d);
if (size > maxSize)
{
result = d;
maxSize = size;
}
}
return result;
}
inline size_t getTensorSize(const std::shared_ptr<memory>& mem)
{
return getTensorSize(getTensorDims(mem));
}
template<int K>
inline int getPadded(int dim)
{
return (dim + (K-1)) & ~(K-1);
}
template<int K>
inline memory::dims getPadded_nchw(const memory::dims& dims)
{
assert(dims.size() == 4);
memory::dims padDims = dims;
padDims[1] = getPadded<K>(dims[1]); // pad C
return padDims;
}
template<int K>
struct BlockedFormat;
template<>
struct BlockedFormat<8>
{
static constexpr memory::format_tag nChwKc = memory::format_tag::nChw8c;
static constexpr memory::format_tag OIhwKiKo = memory::format_tag::OIhw8i8o;
};
template<>
struct BlockedFormat<16>
{
static constexpr memory::format_tag nChwKc = memory::format_tag::nChw16c;
static constexpr memory::format_tag OIhwKiKo = memory::format_tag::OIhw16i16o;
};
} // namespace oidn
|