summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/core/autoencoder.cpp
blob: 8ae2421fa6b4efd67466d78fde5a166c9f5f4029 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// ======================================================================== //
// Copyright 2009-2019 Intel Corporation                                    //
//                                                                          //
// Licensed under the Apache License, Version 2.0 (the "License");          //
// you may not use this file except in compliance with the License.         //
// You may obtain a copy of the License at                                  //
//                                                                          //
//     http://www.apache.org/licenses/LICENSE-2.0                           //
//                                                                          //
// Unless required by applicable law or agreed to in writing, software      //
// distributed under the License is distributed on an "AS IS" BASIS,        //
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
// See the License for the specific language governing permissions and      //
// limitations under the License.                                           //
// ======================================================================== //

#include "autoencoder.h"

namespace oidn {

  // --------------------------------------------------------------------------
  // AutoencoderFilter
  // --------------------------------------------------------------------------

  AutoencoderFilter::AutoencoderFilter(const Ref<Device>& device)
    : Filter(device)
  {
  }

  void AutoencoderFilter::setImage(const std::string& name, const Image& data)
  {
    if (name == "color")
      color = data;
    else if (name == "albedo")
      albedo = data;
    else if (name == "normal")
      normal = data;
    else if (name == "output")
      output = data;

    dirty = true;
  }

  void AutoencoderFilter::set1i(const std::string& name, int value)
  {
    if (name == "hdr")
      hdr = value;
    else if (name == "srgb")
      srgb = value;
    else if (name == "maxMemoryMB")
      maxMemoryMB = value;

    dirty = true;
  }

  int AutoencoderFilter::get1i(const std::string& name)
  {
    if (name == "hdr")
      return hdr;
    else if (name == "srgb")
      return srgb;
    else if (name == "maxMemoryMB")
      return maxMemoryMB;
    else if (name == "alignment")
      return alignment;
    else if (name == "overlap")
      return overlap;
    else
      throw Exception(Error::InvalidArgument, "invalid parameter");
  }

  void AutoencoderFilter::set1f(const std::string& name, float value)
  {
    if (name == "hdrScale")
      hdrScale = value;

    dirty = true;
  }

  float AutoencoderFilter::get1f(const std::string& name)
  {
    if (name == "hdrScale")
      return hdrScale;
    else
      throw Exception(Error::InvalidArgument, "invalid parameter");
  }

  void AutoencoderFilter::commit()
  {
    if (!dirty)
      return;

    {
      if (mayiuse(avx512_common))
        net = buildNet<16>();
      else
        net = buildNet<8>();
    }

    dirty = false;
  }

  void AutoencoderFilter::execute()
  {
    if (dirty)
      throw Exception(Error::InvalidOperation, "changes to the filter are not committed");

    if (!net)
      return;

    {
      Progress progress;
      progress.func = progressFunc;
      progress.userPtr = progressUserPtr;
      progress.taskCount = tileCountH * tileCountW;

      // Iterate over the tiles
      int tileIndex = 0;

      for (int i = 0; i < tileCountH; ++i)
      {
        const int h = i * (tileH - 2*overlap); // input tile position (including overlap)
        const int overlapBeginH = i > 0            ? overlap : 0; // overlap on the top
        const int overlapEndH   = i < tileCountH-1 ? overlap : 0; // overlap on the bottom
        const int tileH1 = min(H - h, tileH); // input tile size (including overlap)
        const int tileH2 = tileH1 - overlapBeginH - overlapEndH; // output tile size
        const int alignOffsetH = tileH - roundUp(tileH1, alignment); // align to the bottom in the tile buffer

        for (int j = 0; j < tileCountW; ++j)
        {
          const int w = j * (tileW - 2*overlap); // input tile position (including overlap)
          const int overlapBeginW = j > 0            ? overlap : 0; // overlap on the left
          const int overlapEndW   = j < tileCountW-1 ? overlap : 0; // overlap on the right
          const int tileW1 = min(W - w, tileW); // input tile size (including overlap)
          const int tileW2 = tileW1 - overlapBeginW - overlapEndW; // output tile size
          const int alignOffsetW = tileW - roundUp(tileW1, alignment); // align to the right in the tile buffer

          // Set the input tile
          inputReorder->setTile(h, w,
                                alignOffsetH, alignOffsetW,
                                tileH1, tileW1);

          // Set the output tile
          outputReorder->setTile(alignOffsetH + overlapBeginH, alignOffsetW + overlapBeginW,
                                 h + overlapBeginH, w + overlapBeginW,
                                 tileH2, tileW2);

          //printf("Tile: %d %d -> %d %d\n", w+overlapBeginW, h+overlapBeginH, w+overlapBeginW+tileW2, h+overlapBeginH+tileH2);

          // Denoise the tile
          net->execute(progress, tileIndex);

          // Next tile
          tileIndex++;
        }
      }
    }
  }

  void AutoencoderFilter::computeTileSize()
  {
    const int minTileSize = 3*overlap;
    const int estimatedBytesPerPixel = mayiuse(avx512_common) ? estimatedBytesPerPixel16 : estimatedBytesPerPixel8;
    const int64_t maxTilePixels = (int64_t(maxMemoryMB)*1024*1024 - estimatedBytesBase) / estimatedBytesPerPixel;

    tileCountH = 1;
    tileCountW = 1;
    tileH = roundUp(H, alignment);
    tileW = roundUp(W, alignment);

    // Divide the image into tiles until the tile size gets below the threshold
    while (int64_t(tileH) * tileW > maxTilePixels)
    {
      if (tileH > minTileSize && tileH > tileW)
      {
        tileCountH++;
        tileH = max(roundUp(ceilDiv(H - 2*overlap, tileCountH), alignment) + 2*overlap, minTileSize);
      }
      else if (tileW > minTileSize)
      {
        tileCountW++;
        tileW = max(roundUp(ceilDiv(W - 2*overlap, tileCountW), alignment) + 2*overlap, minTileSize);
      }
      else
        break;
    }

    // Compute the final number of tiles
    tileCountH = (H > tileH) ? ceilDiv(H - 2*overlap, tileH - 2*overlap) : 1;
    tileCountW = (W > tileW) ? ceilDiv(W - 2*overlap, tileW - 2*overlap) : 1;

    if (device->isVerbose(2))
    {
      std::cout << "Tile size : " << tileW << "x" << tileH << std::endl;
      std::cout << "Tile count: " << tileCountW << "x" << tileCountH << std::endl;
    }
  }

  template<int K>
  std::shared_ptr<Executable> AutoencoderFilter::buildNet()
  {
    H = color.height;
    W = color.width;

    // Configure the network
    int inputC;
    void* weightPtr;

    if (srgb && hdr)
      throw Exception(Error::InvalidOperation, "srgb and hdr modes cannot be enabled at the same time");

    if (color && !albedo && !normal && weightData.hdr)
    {
      inputC = 3;
      weightPtr = hdr ? weightData.hdr : weightData.ldr;
    }
    else if (color && albedo && !normal && weightData.hdr_alb)
    {
      inputC = 6;
      weightPtr = hdr ? weightData.hdr_alb : weightData.ldr_alb;
    }
    else if (color && albedo && normal && weightData.hdr_alb_nrm)
    {
      inputC = 9;
      weightPtr = hdr ? weightData.hdr_alb_nrm : weightData.ldr_alb_nrm;
    }
    else
    {
      throw Exception(Error::InvalidOperation, "unsupported combination of input features");
    }

    if (!output)
      throw Exception(Error::InvalidOperation, "output image not specified");

    if ((color.format != Format::Float3)
        || (albedo && albedo.format != Format::Float3)
        || (normal && normal.format != Format::Float3)
        || (output.format != Format::Float3))
      throw Exception(Error::InvalidOperation, "unsupported image format");

    if ((albedo && (albedo.width != W || albedo.height != H))
        || (normal && (normal.width != W || normal.height != H))
        || (output.width != W || output.height != H))
      throw Exception(Error::InvalidOperation, "image size mismatch");

    // Compute the tile size
    computeTileSize();

    // If the image size is zero, there is nothing else to do
    if (H <= 0 || W <= 0)
      return nullptr;

    // Parse the weights
    const auto weightMap = parseTensors(weightPtr);

    // Create the network
    std::shared_ptr<Network<K>> net = std::make_shared<Network<K>>(device, weightMap);

    // Compute the tensor sizes
    const auto inputDims        = memory::dims({1, inputC, tileH, tileW});
    const auto inputReorderDims = net->getInputReorderDims(inputDims, alignment);   //-> concat0

    const auto conv1Dims     = net->getConvDims("conv1", inputReorderDims);         //-> temp0
    const auto conv1bDims    = net->getConvDims("conv1b", conv1Dims);               //-> temp1
    const auto pool1Dims     = net->getPoolDims(conv1bDims);                        //-> concat1
    const auto conv2Dims     = net->getConvDims("conv2", pool1Dims);                //-> temp0
    const auto pool2Dims     = net->getPoolDims(conv2Dims);                         //-> concat2
    const auto conv3Dims     = net->getConvDims("conv3", pool2Dims);                //-> temp0
    const auto pool3Dims     = net->getPoolDims(conv3Dims);                         //-> concat3
    const auto conv4Dims     = net->getConvDims("conv4", pool3Dims);                //-> temp0
    const auto pool4Dims     = net->getPoolDims(conv4Dims);                         //-> concat4
    const auto conv5Dims     = net->getConvDims("conv5", pool4Dims);                //-> temp0
    const auto pool5Dims     = net->getPoolDims(conv5Dims);                         //-> temp1
    const auto upsample4Dims = net->getUpsampleDims(pool5Dims);                     //-> concat4
    const auto concat4Dims   = net->getConcatDims(upsample4Dims, pool4Dims);
    const auto conv6Dims     = net->getConvDims("conv6", concat4Dims);              //-> temp0
    const auto conv6bDims    = net->getConvDims("conv6b", conv6Dims);               //-> temp1
    const auto upsample3Dims = net->getUpsampleDims(conv6bDims);                    //-> concat3
    const auto concat3Dims   = net->getConcatDims(upsample3Dims, pool3Dims);
    const auto conv7Dims     = net->getConvDims("conv7", concat3Dims);              //-> temp0
    const auto conv7bDims    = net->getConvDims("conv7b", conv7Dims);               //-> temp1
    const auto upsample2Dims = net->getUpsampleDims(conv7bDims);                    //-> concat2
    const auto concat2Dims   = net->getConcatDims(upsample2Dims, pool2Dims);
    const auto conv8Dims     = net->getConvDims("conv8", concat2Dims);              //-> temp0
    const auto conv8bDims    = net->getConvDims("conv8b", conv8Dims);               //-> temp1
    const auto upsample1Dims = net->getUpsampleDims(conv8bDims);                    //-> concat1
    const auto concat1Dims   = net->getConcatDims(upsample1Dims, pool1Dims);
    const auto conv9Dims     = net->getConvDims("conv9", concat1Dims);              //-> temp0
    const auto conv9bDims    = net->getConvDims("conv9b", conv9Dims);               //-> temp1
    const auto upsample0Dims = net->getUpsampleDims(conv9bDims);                    //-> concat0
    const auto concat0Dims   = net->getConcatDims(upsample0Dims, inputReorderDims);
    const auto conv10Dims    = net->getConvDims("conv10", concat0Dims);             //-> temp0
    const auto conv10bDims   = net->getConvDims("conv10b", conv10Dims);             //-> temp1
    const auto conv11Dims    = net->getConvDims("conv11", conv10bDims);             //-> temp0

    const auto outputDims = memory::dims({1, 3, tileH, tileW});

    // Allocate two temporary ping-pong buffers to decrease memory usage
    const auto temp0Dims = getMaxTensorDims({
      conv1Dims,
      conv2Dims,
      conv3Dims,
      conv4Dims,
      conv5Dims,
      conv6Dims,
      conv7Dims,
      conv8Dims,
      conv9Dims,
      conv10Dims,
      conv11Dims
    });

    const auto temp1Dims = getMaxTensorDims({
      conv1bDims,
      pool5Dims,
      conv6bDims,
      conv7bDims,
      conv8bDims,
      conv9bDims,
      conv10bDims,
    });

    auto temp0 = net->allocTensor(temp0Dims);
    auto temp1 = net->allocTensor(temp1Dims);

    // Allocate enough memory to hold the concat outputs. Then use the first
    // half to hold the previous conv output and the second half to hold the
    // pool/orig image output. This works because everything is C dimension
    // outermost, padded to K floats, and all the concats are on the C dimension.
    auto concat0Dst = net->allocTensor(concat0Dims);
    auto concat1Dst = net->allocTensor(concat1Dims);
    auto concat2Dst = net->allocTensor(concat2Dims);
    auto concat3Dst = net->allocTensor(concat3Dims);
    auto concat4Dst = net->allocTensor(concat4Dims);

    // Transfer function
    std::shared_ptr<TransferFunction> transferFunc = makeTransferFunc();

    // Autoexposure
    if (auto tf = std::dynamic_pointer_cast<HDRTransferFunction>(transferFunc))
    {
      if (isnan(hdrScale))
        net->addAutoexposure(color, tf);
      else
        tf->setExposure(hdrScale);
    }

    // Input reorder
    auto inputReorderDst = net->castTensor(inputReorderDims, concat0Dst, upsample0Dims);
    inputReorder = net->addInputReorder(color, albedo, normal,
                                        transferFunc,
                                        alignment, inputReorderDst);

    // conv1
    auto conv1 = net->addConv("conv1", inputReorder->getDst(), temp0);

    // conv1b
    auto conv1b = net->addConv("conv1b", conv1->getDst(), temp1);

    // pool1
    // Adjust pointer for pool1 to eliminate concat1
    auto pool1Dst = net->castTensor(pool1Dims, concat1Dst, upsample1Dims);
    auto pool1 = net->addPool(conv1b->getDst(), pool1Dst);

    // conv2
    auto conv2 = net->addConv("conv2", pool1->getDst(), temp0);

    // pool2
    // Adjust pointer for pool2 to eliminate concat2
    auto pool2Dst = net->castTensor(pool2Dims, concat2Dst, upsample2Dims);
    auto pool2 = net->addPool(conv2->getDst(), pool2Dst);

    // conv3
    auto conv3 = net->addConv("conv3", pool2->getDst(), temp0);

    // pool3
    // Adjust pointer for pool3 to eliminate concat3
    auto pool3Dst = net->castTensor(pool3Dims, concat3Dst, upsample3Dims);
    auto pool3 = net->addPool(conv3->getDst(), pool3Dst);

    // conv4
    auto conv4 = net->addConv("conv4", pool3->getDst(), temp0);

    // pool4
    // Adjust pointer for pool4 to eliminate concat4
    auto pool4Dst = net->castTensor(pool4Dims, concat4Dst, upsample4Dims);
    auto pool4 = net->addPool(conv4->getDst(), pool4Dst);

    // conv5
    auto conv5 = net->addConv("conv5", pool4->getDst(), temp0);

    // pool5
    auto pool5 = net->addPool(conv5->getDst(), temp1);

    // upsample4
    auto upsample4Dst = net->castTensor(upsample4Dims, concat4Dst);
    auto upsample4 = net->addUpsample(pool5->getDst(), upsample4Dst);

    // conv6
    auto conv6 = net->addConv("conv6", concat4Dst, temp0);

    // conv6b
    auto conv6b = net->addConv("conv6b", conv6->getDst(), temp1);

    // upsample3
    auto upsample3Dst = net->castTensor(upsample3Dims, concat3Dst);
    auto upsample3 = net->addUpsample(conv6b->getDst(), upsample3Dst);

    // conv7
    auto conv7 = net->addConv("conv7", concat3Dst, temp0);

    // conv7b
    auto conv7b = net->addConv("conv7b", conv7->getDst(), temp1);

    // upsample2
    auto upsample2Dst = net->castTensor(upsample2Dims, concat2Dst);
    auto upsample2 = net->addUpsample(conv7b->getDst(), upsample2Dst);

    // conv8
    auto conv8 = net->addConv("conv8", concat2Dst, temp0);

    // conv8b
    auto conv8b = net->addConv("conv8b", conv8->getDst(), temp1);

    // upsample1
    auto upsample1Dst = net->castTensor(upsample1Dims, concat1Dst);
    auto upsample1 = net->addUpsample(conv8b->getDst(), upsample1Dst);

    // conv9
    auto conv9 = net->addConv("conv9", concat1Dst, temp0);

    // conv9b
    auto conv9b = net->addConv("conv9b", conv9->getDst(), temp1);

    // upsample0
    auto upsample0Dst = net->castTensor(upsample0Dims, concat0Dst);
    auto upsample0 = net->addUpsample(conv9b->getDst(), upsample0Dst);

    // conv10
    auto conv10 = net->addConv("conv10", concat0Dst, temp0);

    // conv10b
    auto conv10b = net->addConv("conv10b", conv10->getDst(), temp1);

    // conv11
    auto conv11 = net->addConv("conv11", conv10b->getDst(), temp0, false /* no relu */);

    // Output reorder
    outputReorder = net->addOutputReorder(conv11->getDst(), transferFunc, output);

    net->finalize();
    return net;
  }

  std::shared_ptr<TransferFunction> AutoencoderFilter::makeTransferFunc()
  {
    if (hdr)
      return std::make_shared<PQXTransferFunction>();
    else if (srgb)
      return std::make_shared<LinearTransferFunction>();
    else
      return std::make_shared<GammaTransferFunction>();
  }

// Godot doesn't need Raytracing filters. Removing them saves space in the weights files.
#if 0
  // --------------------------------------------------------------------------
  // RTFilter
  // --------------------------------------------------------------------------

  namespace weights
  {
    // LDR
    extern unsigned char rt_ldr[];         // color
    extern unsigned char rt_ldr_alb[];     // color, albedo
    extern unsigned char rt_ldr_alb_nrm[]; // color, albedo, normal

    // HDR
    extern unsigned char rt_hdr[];         // color
    extern unsigned char rt_hdr_alb[];     // color, albedo
    extern unsigned char rt_hdr_alb_nrm[]; // color, albedo, normal
  }

  RTFilter::RTFilter(const Ref<Device>& device)
    : AutoencoderFilter(device)
  {
    weightData.ldr         = weights::rt_ldr;
    weightData.ldr_alb     = weights::rt_ldr_alb;
    weightData.ldr_alb_nrm = weights::rt_ldr_alb_nrm;
    weightData.hdr         = weights::rt_hdr;
    weightData.hdr_alb     = weights::rt_hdr_alb;
    weightData.hdr_alb_nrm = weights::rt_hdr_alb_nrm;
  }
#endif

  // --------------------------------------------------------------------------
  // RTLightmapFilter
  // --------------------------------------------------------------------------

  namespace weights
  {
    // HDR
    extern unsigned char rtlightmap_hdr[]; // color
  }

  RTLightmapFilter::RTLightmapFilter(const Ref<Device>& device)
    : AutoencoderFilter(device)
  {
    weightData.hdr = weights::rtlightmap_hdr;

    hdr = true;
  }

  std::shared_ptr<TransferFunction> RTLightmapFilter::makeTransferFunc()
  {
    return std::make_shared<LogTransferFunction>();
  }

} // namespace oidn