summaryrefslogtreecommitdiff
path: root/thirdparty/misc/stb_vorbis.c
blob: b0d79b1724ff6b3bbfdc124b90abfaeba236c4fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
// Ogg Vorbis audio decoder - v1.19 - public domain
// http://nothings.org/stb_vorbis/
//
// Original version written by Sean Barrett in 2007.
//
// Originally sponsored by RAD Game Tools. Seeking implementation
// sponsored by Phillip Bennefall, Marc Andersen, Aaron Baker,
// Elias Software, Aras Pranckevicius, and Sean Barrett.
//
// LICENSE
//
//   See end of file for license information.
//
// Limitations:
//
//   - floor 0 not supported (used in old ogg vorbis files pre-2004)
//   - lossless sample-truncation at beginning ignored
//   - cannot concatenate multiple vorbis streams
//   - sample positions are 32-bit, limiting seekable 192Khz
//       files to around 6 hours (Ogg supports 64-bit)
//
// Feature contributors:
//    Dougall Johnson (sample-exact seeking)
//
// Bugfix/warning contributors:
//    Terje Mathisen     Niklas Frykholm     Andy Hill
//    Casey Muratori     John Bolton         Gargaj
//    Laurent Gomila     Marc LeBlanc        Ronny Chevalier
//    Bernhard Wodo      Evan Balster        github:alxprd
//    Tom Beaumont       Ingo Leitgeb        Nicolas Guillemot
//    Phillip Bennefall  Rohit               Thiago Goulart
//    github:manxorist   saga musix          github:infatum
//    Timur Gagiev       Maxwell Koo         Peter Waller
//    github:audinowho   Dougall Johnson
//
// Partial history:
//    1.19    - 2020-02-05 - warnings
//    1.18    - 2020-02-02 - fix seek bugs; parse header comments; misc warnings etc.
//    1.17    - 2019-07-08 - fix CVE-2019-13217..CVE-2019-13223 (by ForAllSecure)
//    1.16    - 2019-03-04 - fix warnings
//    1.15    - 2019-02-07 - explicit failure if Ogg Skeleton data is found
//    1.14    - 2018-02-11 - delete bogus dealloca usage
//    1.13    - 2018-01-29 - fix truncation of last frame (hopefully)
//    1.12    - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files
//    1.11    - 2017-07-23 - fix MinGW compilation
//    1.10    - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory
//    1.09    - 2016-04-04 - back out 'truncation of last frame' fix from previous version
//    1.08    - 2016-04-02 - warnings; setup memory leaks; truncation of last frame
//    1.07    - 2015-01-16 - fixes for crashes on invalid files; warning fixes; const
//    1.06    - 2015-08-31 - full, correct support for seeking API (Dougall Johnson)
//                           some crash fixes when out of memory or with corrupt files
//                           fix some inappropriately signed shifts
//    1.05    - 2015-04-19 - don't define __forceinline if it's redundant
//    1.04    - 2014-08-27 - fix missing const-correct case in API
//    1.03    - 2014-08-07 - warning fixes
//    1.02    - 2014-07-09 - declare qsort comparison as explicitly _cdecl in Windows
//    1.01    - 2014-06-18 - fix stb_vorbis_get_samples_float (interleaved was correct)
//    1.0     - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in >2-channel;
//                           (API change) report sample rate for decode-full-file funcs
//
// See end of file for full version history.


//////////////////////////////////////////////////////////////////////////////
//
//  HEADER BEGINS HERE
//

#ifndef STB_VORBIS_INCLUDE_STB_VORBIS_H
#define STB_VORBIS_INCLUDE_STB_VORBIS_H

#if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO)
#define STB_VORBIS_NO_STDIO 1
#endif

#ifndef STB_VORBIS_NO_STDIO
#include <stdio.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

///////////   THREAD SAFETY

// Individual stb_vorbis* handles are not thread-safe; you cannot decode from
// them from multiple threads at the same time. However, you can have multiple
// stb_vorbis* handles and decode from them independently in multiple thrads.


///////////   MEMORY ALLOCATION

// normally stb_vorbis uses malloc() to allocate memory at startup,
// and alloca() to allocate temporary memory during a frame on the
// stack. (Memory consumption will depend on the amount of setup
// data in the file and how you set the compile flags for speed
// vs. size. In my test files the maximal-size usage is ~150KB.)
//
// You can modify the wrapper functions in the source (setup_malloc,
// setup_temp_malloc, temp_malloc) to change this behavior, or you
// can use a simpler allocation model: you pass in a buffer from
// which stb_vorbis will allocate _all_ its memory (including the
// temp memory). "open" may fail with a VORBIS_outofmem if you
// do not pass in enough data; there is no way to determine how
// much you do need except to succeed (at which point you can
// query get_info to find the exact amount required. yes I know
// this is lame).
//
// If you pass in a non-NULL buffer of the type below, allocation
// will occur from it as described above. Otherwise just pass NULL
// to use malloc()/alloca()

typedef struct
{
   char *alloc_buffer;
   int   alloc_buffer_length_in_bytes;
} stb_vorbis_alloc;


///////////   FUNCTIONS USEABLE WITH ALL INPUT MODES

typedef struct stb_vorbis stb_vorbis;

typedef struct
{
   unsigned int sample_rate;
   int channels;

   unsigned int setup_memory_required;
   unsigned int setup_temp_memory_required;
   unsigned int temp_memory_required;

   int max_frame_size;
} stb_vorbis_info;

typedef struct
{
   char *vendor;

   int comment_list_length;
   char **comment_list;
} stb_vorbis_comment;

// get general information about the file
extern stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f);

// get ogg comments
extern stb_vorbis_comment stb_vorbis_get_comment(stb_vorbis *f);

// get the last error detected (clears it, too)
extern int stb_vorbis_get_error(stb_vorbis *f);

// close an ogg vorbis file and free all memory in use
extern void stb_vorbis_close(stb_vorbis *f);

// this function returns the offset (in samples) from the beginning of the
// file that will be returned by the next decode, if it is known, or -1
// otherwise. after a flush_pushdata() call, this may take a while before
// it becomes valid again.
// NOT WORKING YET after a seek with PULLDATA API
extern int stb_vorbis_get_sample_offset(stb_vorbis *f);

// returns the current seek point within the file, or offset from the beginning
// of the memory buffer. In pushdata mode it returns 0.
extern unsigned int stb_vorbis_get_file_offset(stb_vorbis *f);

///////////   PUSHDATA API

#ifndef STB_VORBIS_NO_PUSHDATA_API

// this API allows you to get blocks of data from any source and hand
// them to stb_vorbis. you have to buffer them; stb_vorbis will tell
// you how much it used, and you have to give it the rest next time;
// and stb_vorbis may not have enough data to work with and you will
// need to give it the same data again PLUS more. Note that the Vorbis
// specification does not bound the size of an individual frame.

extern stb_vorbis *stb_vorbis_open_pushdata(
         const unsigned char * datablock, int datablock_length_in_bytes,
         int *datablock_memory_consumed_in_bytes,
         int *error,
         const stb_vorbis_alloc *alloc_buffer);
// create a vorbis decoder by passing in the initial data block containing
//    the ogg&vorbis headers (you don't need to do parse them, just provide
//    the first N bytes of the file--you're told if it's not enough, see below)
// on success, returns an stb_vorbis *, does not set error, returns the amount of
//    data parsed/consumed on this call in *datablock_memory_consumed_in_bytes;
// on failure, returns NULL on error and sets *error, does not change *datablock_memory_consumed
// if returns NULL and *error is VORBIS_need_more_data, then the input block was
//       incomplete and you need to pass in a larger block from the start of the file

extern int stb_vorbis_decode_frame_pushdata(
         stb_vorbis *f,
         const unsigned char *datablock, int datablock_length_in_bytes,
         int *channels,             // place to write number of float * buffers
         float ***output,           // place to write float ** array of float * buffers
         int *samples               // place to write number of output samples
     );
// decode a frame of audio sample data if possible from the passed-in data block
//
// return value: number of bytes we used from datablock
//
// possible cases:
//     0 bytes used, 0 samples output (need more data)
//     N bytes used, 0 samples output (resynching the stream, keep going)
//     N bytes used, M samples output (one frame of data)
// note that after opening a file, you will ALWAYS get one N-bytes,0-sample
// frame, because Vorbis always "discards" the first frame.
//
// Note that on resynch, stb_vorbis will rarely consume all of the buffer,
// instead only datablock_length_in_bytes-3 or less. This is because it wants
// to avoid missing parts of a page header if they cross a datablock boundary,
// without writing state-machiney code to record a partial detection.
//
// The number of channels returned are stored in *channels (which can be
// NULL--it is always the same as the number of channels reported by
// get_info). *output will contain an array of float* buffers, one per
// channel. In other words, (*output)[0][0] contains the first sample from
// the first channel, and (*output)[1][0] contains the first sample from
// the second channel.

extern void stb_vorbis_flush_pushdata(stb_vorbis *f);
// inform stb_vorbis that your next datablock will not be contiguous with
// previous ones (e.g. you've seeked in the data); future attempts to decode
// frames will cause stb_vorbis to resynchronize (as noted above), and
// once it sees a valid Ogg page (typically 4-8KB, as large as 64KB), it
// will begin decoding the _next_ frame.
//
// if you want to seek using pushdata, you need to seek in your file, then
// call stb_vorbis_flush_pushdata(), then start calling decoding, then once
// decoding is returning you data, call stb_vorbis_get_sample_offset, and
// if you don't like the result, seek your file again and repeat.
#endif


//////////   PULLING INPUT API

#ifndef STB_VORBIS_NO_PULLDATA_API
// This API assumes stb_vorbis is allowed to pull data from a source--
// either a block of memory containing the _entire_ vorbis stream, or a
// FILE * that you or it create, or possibly some other reading mechanism
// if you go modify the source to replace the FILE * case with some kind
// of callback to your code. (But if you don't support seeking, you may
// just want to go ahead and use pushdata.)

#if !defined(STB_VORBIS_NO_STDIO) && !defined(STB_VORBIS_NO_INTEGER_CONVERSION)
extern int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output);
#endif
#if !defined(STB_VORBIS_NO_INTEGER_CONVERSION)
extern int stb_vorbis_decode_memory(const unsigned char *mem, int len, int *channels, int *sample_rate, short **output);
#endif
// decode an entire file and output the data interleaved into a malloc()ed
// buffer stored in *output. The return value is the number of samples
// decoded, or -1 if the file could not be opened or was not an ogg vorbis file.
// When you're done with it, just free() the pointer returned in *output.

extern stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len,
                                  int *error, const stb_vorbis_alloc *alloc_buffer);
// create an ogg vorbis decoder from an ogg vorbis stream in memory (note
// this must be the entire stream!). on failure, returns NULL and sets *error

#ifndef STB_VORBIS_NO_STDIO
extern stb_vorbis * stb_vorbis_open_filename(const char *filename,
                                  int *error, const stb_vorbis_alloc *alloc_buffer);
// create an ogg vorbis decoder from a filename via fopen(). on failure,
// returns NULL and sets *error (possibly to VORBIS_file_open_failure).

extern stb_vorbis * stb_vorbis_open_file(FILE *f, int close_handle_on_close,
                                  int *error, const stb_vorbis_alloc *alloc_buffer);
// create an ogg vorbis decoder from an open FILE *, looking for a stream at
// the _current_ seek point (ftell). on failure, returns NULL and sets *error.
// note that stb_vorbis must "own" this stream; if you seek it in between
// calls to stb_vorbis, it will become confused. Moreover, if you attempt to
// perform stb_vorbis_seek_*() operations on this file, it will assume it
// owns the _entire_ rest of the file after the start point. Use the next
// function, stb_vorbis_open_file_section(), to limit it.

extern stb_vorbis * stb_vorbis_open_file_section(FILE *f, int close_handle_on_close,
                int *error, const stb_vorbis_alloc *alloc_buffer, unsigned int len);
// create an ogg vorbis decoder from an open FILE *, looking for a stream at
// the _current_ seek point (ftell); the stream will be of length 'len' bytes.
// on failure, returns NULL and sets *error. note that stb_vorbis must "own"
// this stream; if you seek it in between calls to stb_vorbis, it will become
// confused.
#endif

extern int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number);
extern int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number);
// these functions seek in the Vorbis file to (approximately) 'sample_number'.
// after calling seek_frame(), the next call to get_frame_*() will include
// the specified sample. after calling stb_vorbis_seek(), the next call to
// stb_vorbis_get_samples_* will start with the specified sample. If you
// do not need to seek to EXACTLY the target sample when using get_samples_*,
// you can also use seek_frame().

extern int stb_vorbis_seek_start(stb_vorbis *f);
// this function is equivalent to stb_vorbis_seek(f,0)

extern unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f);
extern float        stb_vorbis_stream_length_in_seconds(stb_vorbis *f);
// these functions return the total length of the vorbis stream

extern int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output);
// decode the next frame and return the number of samples. the number of
// channels returned are stored in *channels (which can be NULL--it is always
// the same as the number of channels reported by get_info). *output will
// contain an array of float* buffers, one per channel. These outputs will
// be overwritten on the next call to stb_vorbis_get_frame_*.
//
// You generally should not intermix calls to stb_vorbis_get_frame_*()
// and stb_vorbis_get_samples_*(), since the latter calls the former.

#ifndef STB_VORBIS_NO_INTEGER_CONVERSION
extern int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts);
extern int stb_vorbis_get_frame_short            (stb_vorbis *f, int num_c, short **buffer, int num_samples);
#endif
// decode the next frame and return the number of *samples* per channel.
// Note that for interleaved data, you pass in the number of shorts (the
// size of your array), but the return value is the number of samples per
// channel, not the total number of samples.
//
// The data is coerced to the number of channels you request according to the
// channel coercion rules (see below). You must pass in the size of your
// buffer(s) so that stb_vorbis will not overwrite the end of the buffer.
// The maximum buffer size needed can be gotten from get_info(); however,
// the Vorbis I specification implies an absolute maximum of 4096 samples
// per channel.

// Channel coercion rules:
//    Let M be the number of channels requested, and N the number of channels present,
//    and Cn be the nth channel; let stereo L be the sum of all L and center channels,
//    and stereo R be the sum of all R and center channels (channel assignment from the
//    vorbis spec).
//        M    N       output
//        1    k      sum(Ck) for all k
//        2    *      stereo L, stereo R
//        k    l      k > l, the first l channels, then 0s
//        k    l      k <= l, the first k channels
//    Note that this is not _good_ surround etc. mixing at all! It's just so
//    you get something useful.

extern int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats);
extern int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples);
// gets num_samples samples, not necessarily on a frame boundary--this requires
// buffering so you have to supply the buffers. DOES NOT APPLY THE COERCION RULES.
// Returns the number of samples stored per channel; it may be less than requested
// at the end of the file. If there are no more samples in the file, returns 0.

#ifndef STB_VORBIS_NO_INTEGER_CONVERSION
extern int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts);
extern int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int num_samples);
#endif
// gets num_samples samples, not necessarily on a frame boundary--this requires
// buffering so you have to supply the buffers. Applies the coercion rules above
// to produce 'channels' channels. Returns the number of samples stored per channel;
// it may be less than requested at the end of the file. If there are no more
// samples in the file, returns 0.

#endif

////////   ERROR CODES

enum STBVorbisError
{
   VORBIS__no_error,

   VORBIS_need_more_data=1,             // not a real error

   VORBIS_invalid_api_mixing,           // can't mix API modes
   VORBIS_outofmem,                     // not enough memory
   VORBIS_feature_not_supported,        // uses floor 0
   VORBIS_too_many_channels,            // STB_VORBIS_MAX_CHANNELS is too small
   VORBIS_file_open_failure,            // fopen() failed
   VORBIS_seek_without_length,          // can't seek in unknown-length file

   VORBIS_unexpected_eof=10,            // file is truncated?
   VORBIS_seek_invalid,                 // seek past EOF

   // decoding errors (corrupt/invalid stream) -- you probably
   // don't care about the exact details of these

   // vorbis errors:
   VORBIS_invalid_setup=20,
   VORBIS_invalid_stream,

   // ogg errors:
   VORBIS_missing_capture_pattern=30,
   VORBIS_invalid_stream_structure_version,
   VORBIS_continued_packet_flag_invalid,
   VORBIS_incorrect_stream_serial_number,
   VORBIS_invalid_first_page,
   VORBIS_bad_packet_type,
   VORBIS_cant_find_last_page,
   VORBIS_seek_failed,
   VORBIS_ogg_skeleton_not_supported
};


#ifdef __cplusplus
}
#endif

#endif // STB_VORBIS_INCLUDE_STB_VORBIS_H
//
//  HEADER ENDS HERE
//
//////////////////////////////////////////////////////////////////////////////

#ifndef STB_VORBIS_HEADER_ONLY

// global configuration settings (e.g. set these in the project/makefile),
// or just set them in this file at the top (although ideally the first few
// should be visible when the header file is compiled too, although it's not
// crucial)

// STB_VORBIS_NO_PUSHDATA_API
//     does not compile the code for the various stb_vorbis_*_pushdata()
//     functions
// #define STB_VORBIS_NO_PUSHDATA_API

// STB_VORBIS_NO_PULLDATA_API
//     does not compile the code for the non-pushdata APIs
// #define STB_VORBIS_NO_PULLDATA_API

// STB_VORBIS_NO_STDIO
//     does not compile the code for the APIs that use FILE *s internally
//     or externally (implied by STB_VORBIS_NO_PULLDATA_API)
// #define STB_VORBIS_NO_STDIO

// STB_VORBIS_NO_INTEGER_CONVERSION
//     does not compile the code for converting audio sample data from
//     float to integer (implied by STB_VORBIS_NO_PULLDATA_API)
// #define STB_VORBIS_NO_INTEGER_CONVERSION

// STB_VORBIS_NO_FAST_SCALED_FLOAT
//      does not use a fast float-to-int trick to accelerate float-to-int on
//      most platforms which requires endianness be defined correctly.
//#define STB_VORBIS_NO_FAST_SCALED_FLOAT


// STB_VORBIS_MAX_CHANNELS [number]
//     globally define this to the maximum number of channels you need.
//     The spec does not put a restriction on channels except that
//     the count is stored in a byte, so 255 is the hard limit.
//     Reducing this saves about 16 bytes per value, so using 16 saves
//     (255-16)*16 or around 4KB. Plus anything other memory usage
//     I forgot to account for. Can probably go as low as 8 (7.1 audio),
//     6 (5.1 audio), or 2 (stereo only).
#ifndef STB_VORBIS_MAX_CHANNELS
#define STB_VORBIS_MAX_CHANNELS    16  // enough for anyone?
#endif

// STB_VORBIS_PUSHDATA_CRC_COUNT [number]
//     after a flush_pushdata(), stb_vorbis begins scanning for the
//     next valid page, without backtracking. when it finds something
//     that looks like a page, it streams through it and verifies its
//     CRC32. Should that validation fail, it keeps scanning. But it's
//     possible that _while_ streaming through to check the CRC32 of
//     one candidate page, it sees another candidate page. This #define
//     determines how many "overlapping" candidate pages it can search
//     at once. Note that "real" pages are typically ~4KB to ~8KB, whereas
//     garbage pages could be as big as 64KB, but probably average ~16KB.
//     So don't hose ourselves by scanning an apparent 64KB page and
//     missing a ton of real ones in the interim; so minimum of 2
#ifndef STB_VORBIS_PUSHDATA_CRC_COUNT
#define STB_VORBIS_PUSHDATA_CRC_COUNT  4
#endif

// STB_VORBIS_FAST_HUFFMAN_LENGTH [number]
//     sets the log size of the huffman-acceleration table.  Maximum
//     supported value is 24. with larger numbers, more decodings are O(1),
//     but the table size is larger so worse cache missing, so you'll have
//     to probe (and try multiple ogg vorbis files) to find the sweet spot.
#ifndef STB_VORBIS_FAST_HUFFMAN_LENGTH
#define STB_VORBIS_FAST_HUFFMAN_LENGTH   10
#endif

// STB_VORBIS_FAST_BINARY_LENGTH [number]
//     sets the log size of the binary-search acceleration table. this
//     is used in similar fashion to the fast-huffman size to set initial
//     parameters for the binary search

// STB_VORBIS_FAST_HUFFMAN_INT
//     The fast huffman tables are much more efficient if they can be
//     stored as 16-bit results instead of 32-bit results. This restricts
//     the codebooks to having only 65535 possible outcomes, though.
//     (At least, accelerated by the huffman table.)
#ifndef STB_VORBIS_FAST_HUFFMAN_INT
#define STB_VORBIS_FAST_HUFFMAN_SHORT
#endif

// STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH
//     If the 'fast huffman' search doesn't succeed, then stb_vorbis falls
//     back on binary searching for the correct one. This requires storing
//     extra tables with the huffman codes in sorted order. Defining this
//     symbol trades off space for speed by forcing a linear search in the
//     non-fast case, except for "sparse" codebooks.
// #define STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH

// STB_VORBIS_DIVIDES_IN_RESIDUE
//     stb_vorbis precomputes the result of the scalar residue decoding
//     that would otherwise require a divide per chunk. you can trade off
//     space for time by defining this symbol.
// #define STB_VORBIS_DIVIDES_IN_RESIDUE

// STB_VORBIS_DIVIDES_IN_CODEBOOK
//     vorbis VQ codebooks can be encoded two ways: with every case explicitly
//     stored, or with all elements being chosen from a small range of values,
//     and all values possible in all elements. By default, stb_vorbis expands
//     this latter kind out to look like the former kind for ease of decoding,
//     because otherwise an integer divide-per-vector-element is required to
//     unpack the index. If you define STB_VORBIS_DIVIDES_IN_CODEBOOK, you can
//     trade off storage for speed.
//#define STB_VORBIS_DIVIDES_IN_CODEBOOK

#ifdef STB_VORBIS_CODEBOOK_SHORTS
#error "STB_VORBIS_CODEBOOK_SHORTS is no longer supported as it produced incorrect results for some input formats"
#endif

// STB_VORBIS_DIVIDE_TABLE
//     this replaces small integer divides in the floor decode loop with
//     table lookups. made less than 1% difference, so disabled by default.

// STB_VORBIS_NO_INLINE_DECODE
//     disables the inlining of the scalar codebook fast-huffman decode.
//     might save a little codespace; useful for debugging
// #define STB_VORBIS_NO_INLINE_DECODE

// STB_VORBIS_NO_DEFER_FLOOR
//     Normally we only decode the floor without synthesizing the actual
//     full curve. We can instead synthesize the curve immediately. This
//     requires more memory and is very likely slower, so I don't think
//     you'd ever want to do it except for debugging.
// #define STB_VORBIS_NO_DEFER_FLOOR




//////////////////////////////////////////////////////////////////////////////

#ifdef STB_VORBIS_NO_PULLDATA_API
   #define STB_VORBIS_NO_INTEGER_CONVERSION
   #define STB_VORBIS_NO_STDIO
#endif

#if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO)
   #define STB_VORBIS_NO_STDIO 1
#endif

#ifndef STB_VORBIS_NO_INTEGER_CONVERSION
#ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT

   // only need endianness for fast-float-to-int, which we don't
   // use for pushdata

   #ifndef STB_VORBIS_BIG_ENDIAN
     #define STB_VORBIS_ENDIAN  0
   #else
     #define STB_VORBIS_ENDIAN  1
   #endif

#endif
#endif


#ifndef STB_VORBIS_NO_STDIO
#include <stdio.h>
#endif

#ifndef STB_VORBIS_NO_CRT
   #include <stdlib.h>
   #include <string.h>
   #include <assert.h>
   #include <math.h>

   // find definition of alloca if it's not in stdlib.h:
   #if defined(_MSC_VER) || defined(__MINGW32__)
      #include <malloc.h>
   #endif
   #if defined(__linux__) || defined(__linux) || defined(__EMSCRIPTEN__)
      #include <alloca.h>
   #endif
#else // STB_VORBIS_NO_CRT
   #define NULL 0
   #define malloc(s)   0
   #define free(s)     ((void) 0)
   #define realloc(s)  0
#endif // STB_VORBIS_NO_CRT

#include <limits.h>

#ifdef __MINGW32__
   // eff you mingw:
   //     "fixed":
   //         http://sourceforge.net/p/mingw-w64/mailman/message/32882927/
   //     "no that broke the build, reverted, who cares about C":
   //         http://sourceforge.net/p/mingw-w64/mailman/message/32890381/
   #ifdef __forceinline
   #undef __forceinline
   #endif
   #define __forceinline
   #define alloca __builtin_alloca
#elif !defined(_MSC_VER)
   #if __GNUC__
      #define __forceinline inline
   #else
      #define __forceinline
   #endif
#endif

#if STB_VORBIS_MAX_CHANNELS > 256
#error "Value of STB_VORBIS_MAX_CHANNELS outside of allowed range"
#endif

#if STB_VORBIS_FAST_HUFFMAN_LENGTH > 24
#error "Value of STB_VORBIS_FAST_HUFFMAN_LENGTH outside of allowed range"
#endif


#if 0
#include <crtdbg.h>
#define CHECK(f)   _CrtIsValidHeapPointer(f->channel_buffers[1])
#else
#define CHECK(f)   ((void) 0)
#endif

#define MAX_BLOCKSIZE_LOG  13   // from specification
#define MAX_BLOCKSIZE      (1 << MAX_BLOCKSIZE_LOG)


typedef unsigned char  uint8;
typedef   signed char   int8;
typedef unsigned short uint16;
typedef   signed short  int16;
typedef unsigned int   uint32;
typedef   signed int    int32;

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

typedef float codetype;

// @NOTE
//
// Some arrays below are tagged "//varies", which means it's actually
// a variable-sized piece of data, but rather than malloc I assume it's
// small enough it's better to just allocate it all together with the
// main thing
//
// Most of the variables are specified with the smallest size I could pack
// them into. It might give better performance to make them all full-sized
// integers. It should be safe to freely rearrange the structures or change
// the sizes larger--nothing relies on silently truncating etc., nor the
// order of variables.

#define FAST_HUFFMAN_TABLE_SIZE   (1 << STB_VORBIS_FAST_HUFFMAN_LENGTH)
#define FAST_HUFFMAN_TABLE_MASK   (FAST_HUFFMAN_TABLE_SIZE - 1)

typedef struct
{
   int dimensions, entries;
   uint8 *codeword_lengths;
   float  minimum_value;
   float  delta_value;
   uint8  value_bits;
   uint8  lookup_type;
   uint8  sequence_p;
   uint8  sparse;
   uint32 lookup_values;
   codetype *multiplicands;
   uint32 *codewords;
   #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT
    int16  fast_huffman[FAST_HUFFMAN_TABLE_SIZE];
   #else
    int32  fast_huffman[FAST_HUFFMAN_TABLE_SIZE];
   #endif
   uint32 *sorted_codewords;
   int    *sorted_values;
   int     sorted_entries;
} Codebook;

typedef struct
{
   uint8 order;
   uint16 rate;
   uint16 bark_map_size;
   uint8 amplitude_bits;
   uint8 amplitude_offset;
   uint8 number_of_books;
   uint8 book_list[16]; // varies
} Floor0;

typedef struct
{
   uint8 partitions;
   uint8 partition_class_list[32]; // varies
   uint8 class_dimensions[16]; // varies
   uint8 class_subclasses[16]; // varies
   uint8 class_masterbooks[16]; // varies
   int16 subclass_books[16][8]; // varies
   uint16 Xlist[31*8+2]; // varies
   uint8 sorted_order[31*8+2];
   uint8 neighbors[31*8+2][2];
   uint8 floor1_multiplier;
   uint8 rangebits;
   int values;
} Floor1;

typedef union
{
   Floor0 floor0;
   Floor1 floor1;
} Floor;

typedef struct
{
   uint32 begin, end;
   uint32 part_size;
   uint8 classifications;
   uint8 classbook;
   uint8 **classdata;
   int16 (*residue_books)[8];
} Residue;

typedef struct
{
   uint8 magnitude;
   uint8 angle;
   uint8 mux;
} MappingChannel;

typedef struct
{
   uint16 coupling_steps;
   MappingChannel *chan;
   uint8  submaps;
   uint8  submap_floor[15]; // varies
   uint8  submap_residue[15]; // varies
} Mapping;

typedef struct
{
   uint8 blockflag;
   uint8 mapping;
   uint16 windowtype;
   uint16 transformtype;
} Mode;

typedef struct
{
   uint32  goal_crc;    // expected crc if match
   int     bytes_left;  // bytes left in packet
   uint32  crc_so_far;  // running crc
   int     bytes_done;  // bytes processed in _current_ chunk
   uint32  sample_loc;  // granule pos encoded in page
} CRCscan;

typedef struct
{
   uint32 page_start, page_end;
   uint32 last_decoded_sample;
} ProbedPage;

struct stb_vorbis
{
  // user-accessible info
   unsigned int sample_rate;
   int channels;

   unsigned int setup_memory_required;
   unsigned int temp_memory_required;
   unsigned int setup_temp_memory_required;

   char *vendor;
   int comment_list_length;
   char **comment_list;

  // input config
#ifndef STB_VORBIS_NO_STDIO
   FILE *f;
   uint32 f_start;
   int close_on_free;
#endif

   uint8 *stream;
   uint8 *stream_start;
   uint8 *stream_end;

   uint32 stream_len;

   uint8  push_mode;

   // the page to seek to when seeking to start, may be zero
   uint32 first_audio_page_offset;

   // p_first is the page on which the first audio packet ends
   // (but not necessarily the page on which it starts)
   ProbedPage p_first, p_last;

  // memory management
   stb_vorbis_alloc alloc;
   int setup_offset;
   int temp_offset;

  // run-time results
   int eof;
   enum STBVorbisError error;

  // user-useful data

  // header info
   int blocksize[2];
   int blocksize_0, blocksize_1;
   int codebook_count;
   Codebook *codebooks;
   int floor_count;
   uint16 floor_types[64]; // varies
   Floor *floor_config;
   int residue_count;
   uint16 residue_types[64]; // varies
   Residue *residue_config;
   int mapping_count;
   Mapping *mapping;
   int mode_count;
   Mode mode_config[64];  // varies

   uint32 total_samples;

  // decode buffer
   float *channel_buffers[STB_VORBIS_MAX_CHANNELS];
   float *outputs        [STB_VORBIS_MAX_CHANNELS];

   float *previous_window[STB_VORBIS_MAX_CHANNELS];
   int previous_length;

   #ifndef STB_VORBIS_NO_DEFER_FLOOR
   int16 *finalY[STB_VORBIS_MAX_CHANNELS];
   #else
   float *floor_buffers[STB_VORBIS_MAX_CHANNELS];
   #endif

   uint32 current_loc; // sample location of next frame to decode
   int    current_loc_valid;

  // per-blocksize precomputed data

   // twiddle factors
   float *A[2],*B[2],*C[2];
   float *window[2];
   uint16 *bit_reverse[2];

  // current page/packet/segment streaming info
   uint32 serial; // stream serial number for verification
   int last_page;
   int segment_count;
   uint8 segments[255];
   uint8 page_flag;
   uint8 bytes_in_seg;
   uint8 first_decode;
   int next_seg;
   int last_seg;  // flag that we're on the last segment
   int last_seg_which; // what was the segment number of the last seg?
   uint32 acc;
   int valid_bits;
   int packet_bytes;
   int end_seg_with_known_loc;
   uint32 known_loc_for_packet;
   int discard_samples_deferred;
   uint32 samples_output;

  // push mode scanning
   int page_crc_tests; // only in push_mode: number of tests active; -1 if not searching
#ifndef STB_VORBIS_NO_PUSHDATA_API
   CRCscan scan[STB_VORBIS_PUSHDATA_CRC_COUNT];
#endif

  // sample-access
   int channel_buffer_start;
   int channel_buffer_end;
};

#if defined(STB_VORBIS_NO_PUSHDATA_API)
   #define IS_PUSH_MODE(f)   FALSE
#elif defined(STB_VORBIS_NO_PULLDATA_API)
   #define IS_PUSH_MODE(f)   TRUE
#else
   #define IS_PUSH_MODE(f)   ((f)->push_mode)
#endif

typedef struct stb_vorbis vorb;

static int error(vorb *f, enum STBVorbisError e)
{
   f->error = e;
   if (!f->eof && e != VORBIS_need_more_data) {
      f->error=e; // breakpoint for debugging
   }
   return 0;
}


// these functions are used for allocating temporary memory
// while decoding. if you can afford the stack space, use
// alloca(); otherwise, provide a temp buffer and it will
// allocate out of those.

#define array_size_required(count,size)  (count*(sizeof(void *)+(size)))

#define temp_alloc(f,size)              (f->alloc.alloc_buffer ? setup_temp_malloc(f,size) : alloca(size))
#define temp_free(f,p)                  (void)0
#define temp_alloc_save(f)              ((f)->temp_offset)
#define temp_alloc_restore(f,p)         ((f)->temp_offset = (p))

#define temp_block_array(f,count,size)  make_block_array(temp_alloc(f,array_size_required(count,size)), count, size)

// given a sufficiently large block of memory, make an array of pointers to subblocks of it
static void *make_block_array(void *mem, int count, int size)
{
   int i;
   void ** p = (void **) mem;
   char *q = (char *) (p + count);
   for (i=0; i < count; ++i) {
      p[i] = q;
      q += size;
   }
   return p;
}

static void *setup_malloc(vorb *f, int sz)
{
   sz = (sz+7) & ~7; // round up to nearest 8 for alignment of future allocs.
   f->setup_memory_required += sz;
   if (f->alloc.alloc_buffer) {
      void *p = (char *) f->alloc.alloc_buffer + f->setup_offset;
      if (f->setup_offset + sz > f->temp_offset) return NULL;
      f->setup_offset += sz;
      return p;
   }
   return sz ? malloc(sz) : NULL;
}

static void setup_free(vorb *f, void *p)
{
   if (f->alloc.alloc_buffer) return; // do nothing; setup mem is a stack
   free(p);
}

static void *setup_temp_malloc(vorb *f, int sz)
{
   sz = (sz+7) & ~7; // round up to nearest 8 for alignment of future allocs.
   if (f->alloc.alloc_buffer) {
      if (f->temp_offset - sz < f->setup_offset) return NULL;
      f->temp_offset -= sz;
      return (char *) f->alloc.alloc_buffer + f->temp_offset;
   }
   return malloc(sz);
}

static void setup_temp_free(vorb *f, void *p, int sz)
{
   if (f->alloc.alloc_buffer) {
      f->temp_offset += (sz+7)&~7;
      return;
   }
   free(p);
}

#define CRC32_POLY    0x04c11db7   // from spec

static uint32 crc_table[256];
static void crc32_init(void)
{
   int i,j;
   uint32 s;
   for(i=0; i < 256; i++) {
      for (s=(uint32) i << 24, j=0; j < 8; ++j)
         s = (s << 1) ^ (s >= (1U<<31) ? CRC32_POLY : 0);
      crc_table[i] = s;
   }
}

static __forceinline uint32 crc32_update(uint32 crc, uint8 byte)
{
   return (crc << 8) ^ crc_table[byte ^ (crc >> 24)];
}


// used in setup, and for huffman that doesn't go fast path
static unsigned int bit_reverse(unsigned int n)
{
  n = ((n & 0xAAAAAAAA) >>  1) | ((n & 0x55555555) << 1);
  n = ((n & 0xCCCCCCCC) >>  2) | ((n & 0x33333333) << 2);
  n = ((n & 0xF0F0F0F0) >>  4) | ((n & 0x0F0F0F0F) << 4);
  n = ((n & 0xFF00FF00) >>  8) | ((n & 0x00FF00FF) << 8);
  return (n >> 16) | (n << 16);
}

static float square(float x)
{
   return x*x;
}

// this is a weird definition of log2() for which log2(1) = 1, log2(2) = 2, log2(4) = 3
// as required by the specification. fast(?) implementation from stb.h
// @OPTIMIZE: called multiple times per-packet with "constants"; move to setup
static int ilog(int32 n)
{
   static signed char log2_4[16] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 };

   if (n < 0) return 0; // signed n returns 0

   // 2 compares if n < 16, 3 compares otherwise (4 if signed or n > 1<<29)
   if (n < (1 << 14))
        if (n < (1 <<  4))            return  0 + log2_4[n      ];
        else if (n < (1 <<  9))       return  5 + log2_4[n >>  5];
             else                     return 10 + log2_4[n >> 10];
   else if (n < (1 << 24))
             if (n < (1 << 19))       return 15 + log2_4[n >> 15];
             else                     return 20 + log2_4[n >> 20];
        else if (n < (1 << 29))       return 25 + log2_4[n >> 25];
             else                     return 30 + log2_4[n >> 30];
}

#ifndef M_PI
  #define M_PI  3.14159265358979323846264f  // from CRC
#endif

// code length assigned to a value with no huffman encoding
#define NO_CODE   255

/////////////////////// LEAF SETUP FUNCTIONS //////////////////////////
//
// these functions are only called at setup, and only a few times
// per file

static float float32_unpack(uint32 x)
{
   // from the specification
   uint32 mantissa = x & 0x1fffff;
   uint32 sign = x & 0x80000000;
   uint32 exp = (x & 0x7fe00000) >> 21;
   double res = sign ? -(double)mantissa : (double)mantissa;
   return (float) ldexp((float)res, exp-788);
}


// zlib & jpeg huffman tables assume that the output symbols
// can either be arbitrarily arranged, or have monotonically
// increasing frequencies--they rely on the lengths being sorted;
// this makes for a very simple generation algorithm.
// vorbis allows a huffman table with non-sorted lengths. This
// requires a more sophisticated construction, since symbols in
// order do not map to huffman codes "in order".
static void add_entry(Codebook *c, uint32 huff_code, int symbol, int count, int len, uint32 *values)
{
   if (!c->sparse) {
      c->codewords      [symbol] = huff_code;
   } else {
      c->codewords       [count] = huff_code;
      c->codeword_lengths[count] = len;
      values             [count] = symbol;
   }
}

static int compute_codewords(Codebook *c, uint8 *len, int n, uint32 *values)
{
   int i,k,m=0;
   uint32 available[32];

   memset(available, 0, sizeof(available));
   // find the first entry
   for (k=0; k < n; ++k) if (len[k] < NO_CODE) break;
   if (k == n) { assert(c->sorted_entries == 0); return TRUE; }
   // add to the list
   add_entry(c, 0, k, m++, len[k], values);
   // add all available leaves
   for (i=1; i <= len[k]; ++i)
      available[i] = 1U << (32-i);
   // note that the above code treats the first case specially,
   // but it's really the same as the following code, so they
   // could probably be combined (except the initial code is 0,
   // and I use 0 in available[] to mean 'empty')
   for (i=k+1; i < n; ++i) {
      uint32 res;
      int z = len[i], y;
      if (z == NO_CODE) continue;
      // find lowest available leaf (should always be earliest,
      // which is what the specification calls for)
      // note that this property, and the fact we can never have
      // more than one free leaf at a given level, isn't totally
      // trivial to prove, but it seems true and the assert never
      // fires, so!
      while (z > 0 && !available[z]) --z;
      if (z == 0) { return FALSE; }
      res = available[z];
      assert(z >= 0 && z < 32);
      available[z] = 0;
      add_entry(c, bit_reverse(res), i, m++, len[i], values);
      // propagate availability up the tree
      if (z != len[i]) {
         assert(len[i] >= 0 && len[i] < 32);
         for (y=len[i]; y > z; --y) {
            assert(available[y] == 0);
            available[y] = res + (1 << (32-y));
         }
      }
   }
   return TRUE;
}

// accelerated huffman table allows fast O(1) match of all symbols
// of length <= STB_VORBIS_FAST_HUFFMAN_LENGTH
static void compute_accelerated_huffman(Codebook *c)
{
   int i, len;
   for (i=0; i < FAST_HUFFMAN_TABLE_SIZE; ++i)
      c->fast_huffman[i] = -1;

   len = c->sparse ? c->sorted_entries : c->entries;
   #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT
   if (len > 32767) len = 32767; // largest possible value we can encode!
   #endif
   for (i=0; i < len; ++i) {
      if (c->codeword_lengths[i] <= STB_VORBIS_FAST_HUFFMAN_LENGTH) {
         uint32 z = c->sparse ? bit_reverse(c->sorted_codewords[i]) : c->codewords[i];
         // set table entries for all bit combinations in the higher bits
         while (z < FAST_HUFFMAN_TABLE_SIZE) {
             c->fast_huffman[z] = i;
             z += 1 << c->codeword_lengths[i];
         }
      }
   }
}

#ifdef _MSC_VER
#define STBV_CDECL __cdecl
#else
#define STBV_CDECL
#endif

static int STBV_CDECL uint32_compare(const void *p, const void *q)
{
   uint32 x = * (uint32 *) p;
   uint32 y = * (uint32 *) q;
   return x < y ? -1 : x > y;
}

static int include_in_sort(Codebook *c, uint8 len)
{
   if (c->sparse) { assert(len != NO_CODE); return TRUE; }
   if (len == NO_CODE) return FALSE;
   if (len > STB_VORBIS_FAST_HUFFMAN_LENGTH) return TRUE;
   return FALSE;
}

// if the fast table above doesn't work, we want to binary
// search them... need to reverse the bits
static void compute_sorted_huffman(Codebook *c, uint8 *lengths, uint32 *values)
{
   int i, len;
   // build a list of all the entries
   // OPTIMIZATION: don't include the short ones, since they'll be caught by FAST_HUFFMAN.
   // this is kind of a frivolous optimization--I don't see any performance improvement,
   // but it's like 4 extra lines of code, so.
   if (!c->sparse) {
      int k = 0;
      for (i=0; i < c->entries; ++i)
         if (include_in_sort(c, lengths[i]))
            c->sorted_codewords[k++] = bit_reverse(c->codewords[i]);
      assert(k == c->sorted_entries);
   } else {
      for (i=0; i < c->sorted_entries; ++i)
         c->sorted_codewords[i] = bit_reverse(c->codewords[i]);
   }

   qsort(c->sorted_codewords, c->sorted_entries, sizeof(c->sorted_codewords[0]), uint32_compare);
   c->sorted_codewords[c->sorted_entries] = 0xffffffff;

   len = c->sparse ? c->sorted_entries : c->entries;
   // now we need to indicate how they correspond; we could either
   //   #1: sort a different data structure that says who they correspond to
   //   #2: for each sorted entry, search the original list to find who corresponds
   //   #3: for each original entry, find the sorted entry
   // #1 requires extra storage, #2 is slow, #3 can use binary search!
   for (i=0; i < len; ++i) {
      int huff_len = c->sparse ? lengths[values[i]] : lengths[i];
      if (include_in_sort(c,huff_len)) {
         uint32 code = bit_reverse(c->codewords[i]);
         int x=0, n=c->sorted_entries;
         while (n > 1) {
            // invariant: sc[x] <= code < sc[x+n]
            int m = x + (n >> 1);
            if (c->sorted_codewords[m] <= code) {
               x = m;
               n -= (n>>1);
            } else {
               n >>= 1;
            }
         }
         assert(c->sorted_codewords[x] == code);
         if (c->sparse) {
            c->sorted_values[x] = values[i];
            c->codeword_lengths[x] = huff_len;
         } else {
            c->sorted_values[x] = i;
         }
      }
   }
}

// only run while parsing the header (3 times)
static int vorbis_validate(uint8 *data)
{
   static uint8 vorbis[6] = { 'v', 'o', 'r', 'b', 'i', 's' };
   return memcmp(data, vorbis, 6) == 0;
}

// called from setup only, once per code book
// (formula implied by specification)
static int lookup1_values(int entries, int dim)
{
   int r = (int) floor(exp((float) log((float) entries) / dim));
   if ((int) floor(pow((float) r+1, dim)) <= entries)   // (int) cast for MinGW warning;
      ++r;                                              // floor() to avoid _ftol() when non-CRT
   if (pow((float) r+1, dim) <= entries)
      return -1;
   if ((int) floor(pow((float) r, dim)) > entries)
      return -1;
   return r;
}

// called twice per file
static void compute_twiddle_factors(int n, float *A, float *B, float *C)
{
   int n4 = n >> 2, n8 = n >> 3;
   int k,k2;

   for (k=k2=0; k < n4; ++k,k2+=2) {
      A[k2  ] = (float)  cos(4*k*M_PI/n);
      A[k2+1] = (float) -sin(4*k*M_PI/n);
      B[k2  ] = (float)  cos((k2+1)*M_PI/n/2) * 0.5f;
      B[k2+1] = (float)  sin((k2+1)*M_PI/n/2) * 0.5f;
   }
   for (k=k2=0; k < n8; ++k,k2+=2) {
      C[k2  ] = (float)  cos(2*(k2+1)*M_PI/n);
      C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n);
   }
}

static void compute_window(int n, float *window)
{
   int n2 = n >> 1, i;
   for (i=0; i < n2; ++i)
      window[i] = (float) sin(0.5 * M_PI * square((float) sin((i - 0 + 0.5) / n2 * 0.5 * M_PI)));
}

static void compute_bitreverse(int n, uint16 *rev)
{
   int ld = ilog(n) - 1; // ilog is off-by-one from normal definitions
   int i, n8 = n >> 3;
   for (i=0; i < n8; ++i)
      rev[i] = (bit_reverse(i) >> (32-ld+3)) << 2;
}

static int init_blocksize(vorb *f, int b, int n)
{
   int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3;
   f->A[b] = (float *) setup_malloc(f, sizeof(float) * n2);
   f->B[b] = (float *) setup_malloc(f, sizeof(float) * n2);
   f->C[b] = (float *) setup_malloc(f, sizeof(float) * n4);
   if (!f->A[b] || !f->B[b] || !f->C[b]) return error(f, VORBIS_outofmem);
   compute_twiddle_factors(n, f->A[b], f->B[b], f->C[b]);
   f->window[b] = (float *) setup_malloc(f, sizeof(float) * n2);
   if (!f->window[b]) return error(f, VORBIS_outofmem);
   compute_window(n, f->window[b]);
   f->bit_reverse[b] = (uint16 *) setup_malloc(f, sizeof(uint16) * n8);
   if (!f->bit_reverse[b]) return error(f, VORBIS_outofmem);
   compute_bitreverse(n, f->bit_reverse[b]);
   return TRUE;
}

static void neighbors(uint16 *x, int n, int *plow, int *phigh)
{
   int low = -1;
   int high = 65536;
   int i;
   for (i=0; i < n; ++i) {
      if (x[i] > low  && x[i] < x[n]) { *plow  = i; low = x[i]; }
      if (x[i] < high && x[i] > x[n]) { *phigh = i; high = x[i]; }
   }
}

// this has been repurposed so y is now the original index instead of y
typedef struct
{
   uint16 x,id;
} stbv__floor_ordering;

static int STBV_CDECL point_compare(const void *p, const void *q)
{
   stbv__floor_ordering *a = (stbv__floor_ordering *) p;
   stbv__floor_ordering *b = (stbv__floor_ordering *) q;
   return a->x < b->x ? -1 : a->x > b->x;
}

//
/////////////////////// END LEAF SETUP FUNCTIONS //////////////////////////


#if defined(STB_VORBIS_NO_STDIO)
   #define USE_MEMORY(z)    TRUE
#else
   #define USE_MEMORY(z)    ((z)->stream)
#endif

static uint8 get8(vorb *z)
{
   if (USE_MEMORY(z)) {
      if (z->stream >= z->stream_end) { z->eof = TRUE; return 0; }
      return *z->stream++;
   }

   #ifndef STB_VORBIS_NO_STDIO
   {
   int c = fgetc(z->f);
   if (c == EOF) { z->eof = TRUE; return 0; }
   return c;
   }
   #endif
}

static uint32 get32(vorb *f)
{
   uint32 x;
   x = get8(f);
   x += get8(f) << 8;
   x += get8(f) << 16;
   x += (uint32) get8(f) << 24;
   return x;
}

static int getn(vorb *z, uint8 *data, int n)
{
   if (USE_MEMORY(z)) {
      if (z->stream+n > z->stream_end) { z->eof = 1; return 0; }
      memcpy(data, z->stream, n);
      z->stream += n;
      return 1;
   }

   #ifndef STB_VORBIS_NO_STDIO
   if (fread(data, n, 1, z->f) == 1)
      return 1;
   else {
      z->eof = 1;
      return 0;
   }
   #endif
}

static void skip(vorb *z, int n)
{
   if (USE_MEMORY(z)) {
      z->stream += n;
      if (z->stream >= z->stream_end) z->eof = 1;
      return;
   }
   #ifndef STB_VORBIS_NO_STDIO
   {
      long x = ftell(z->f);
      fseek(z->f, x+n, SEEK_SET);
   }
   #endif
}

static int set_file_offset(stb_vorbis *f, unsigned int loc)
{
   #ifndef STB_VORBIS_NO_PUSHDATA_API
   if (f->push_mode) return 0;
   #endif
   f->eof = 0;
   if (USE_MEMORY(f)) {
      if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) {
         f->stream = f->stream_end;
         f->eof = 1;
         return 0;
      } else {
         f->stream = f->stream_start + loc;
         return 1;
      }
   }
   #ifndef STB_VORBIS_NO_STDIO
   if (loc + f->f_start < loc || loc >= 0x80000000) {
      loc = 0x7fffffff;
      f->eof = 1;
   } else {
      loc += f->f_start;
   }
   if (!fseek(f->f, loc, SEEK_SET))
      return 1;
   f->eof = 1;
   fseek(f->f, f->f_start, SEEK_END);
   return 0;
   #endif
}


static uint8 ogg_page_header[4] = { 0x4f, 0x67, 0x67, 0x53 };

static int capture_pattern(vorb *f)
{
   if (0x4f != get8(f)) return FALSE;
   if (0x67 != get8(f)) return FALSE;
   if (0x67 != get8(f)) return FALSE;
   if (0x53 != get8(f)) return FALSE;
   return TRUE;
}

#define PAGEFLAG_continued_packet   1
#define PAGEFLAG_first_page         2
#define PAGEFLAG_last_page          4

static int start_page_no_capturepattern(vorb *f)
{
   uint32 loc0,loc1,n;
   if (f->first_decode && !IS_PUSH_MODE(f)) {
      f->p_first.page_start = stb_vorbis_get_file_offset(f) - 4;
   }
   // stream structure version
   if (0 != get8(f)) return error(f, VORBIS_invalid_stream_structure_version);
   // header flag
   f->page_flag = get8(f);
   // absolute granule position
   loc0 = get32(f);
   loc1 = get32(f);
   // @TODO: validate loc0,loc1 as valid positions?
   // stream serial number -- vorbis doesn't interleave, so discard
   get32(f);
   //if (f->serial != get32(f)) return error(f, VORBIS_incorrect_stream_serial_number);
   // page sequence number
   n = get32(f);
   f->last_page = n;
   // CRC32
   get32(f);
   // page_segments
   f->segment_count = get8(f);
   if (!getn(f, f->segments, f->segment_count))
      return error(f, VORBIS_unexpected_eof);
   // assume we _don't_ know any the sample position of any segments
   f->end_seg_with_known_loc = -2;
   if (loc0 != ~0U || loc1 != ~0U) {
      int i;
      // determine which packet is the last one that will complete
      for (i=f->segment_count-1; i >= 0; --i)
         if (f->segments[i] < 255)
            break;
      // 'i' is now the index of the _last_ segment of a packet that ends
      if (i >= 0) {
         f->end_seg_with_known_loc = i;
         f->known_loc_for_packet   = loc0;
      }
   }
   if (f->first_decode) {
      int i,len;
      len = 0;
      for (i=0; i < f->segment_count; ++i)
         len += f->segments[i];
      len += 27 + f->segment_count;
      f->p_first.page_end = f->p_first.page_start + len;
      f->p_first.last_decoded_sample = loc0;
   }
   f->next_seg = 0;
   return TRUE;
}

static int start_page(vorb *f)
{
   if (!capture_pattern(f)) return error(f, VORBIS_missing_capture_pattern);
   return start_page_no_capturepattern(f);
}

static int start_packet(vorb *f)
{
   while (f->next_seg == -1) {
      if (!start_page(f)) return FALSE;
      if (f->page_flag & PAGEFLAG_continued_packet)
         return error(f, VORBIS_continued_packet_flag_invalid);
   }
   f->last_seg = FALSE;
   f->valid_bits = 0;
   f->packet_bytes = 0;
   f->bytes_in_seg = 0;
   // f->next_seg is now valid
   return TRUE;
}

static int maybe_start_packet(vorb *f)
{
   if (f->next_seg == -1) {
      int x = get8(f);
      if (f->eof) return FALSE; // EOF at page boundary is not an error!
      if (0x4f != x      ) return error(f, VORBIS_missing_capture_pattern);
      if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern);
      if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern);
      if (0x53 != get8(f)) return error(f, VORBIS_missing_capture_pattern);
      if (!start_page_no_capturepattern(f)) return FALSE;
      if (f->page_flag & PAGEFLAG_continued_packet) {
         // set up enough state that we can read this packet if we want,
         // e.g. during recovery
         f->last_seg = FALSE;
         f->bytes_in_seg = 0;
         return error(f, VORBIS_continued_packet_flag_invalid);
      }
   }
   return start_packet(f);
}

static int next_segment(vorb *f)
{
   int len;
   if (f->last_seg) return 0;
   if (f->next_seg == -1) {
      f->last_seg_which = f->segment_count-1; // in case start_page fails
      if (!start_page(f)) { f->last_seg = 1; return 0; }
      if (!(f->page_flag & PAGEFLAG_continued_packet)) return error(f, VORBIS_continued_packet_flag_invalid);
   }
   len = f->segments[f->next_seg++];
   if (len < 255) {
      f->last_seg = TRUE;
      f->last_seg_which = f->next_seg-1;
   }
   if (f->next_seg >= f->segment_count)
      f->next_seg = -1;
   assert(f->bytes_in_seg == 0);
   f->bytes_in_seg = len;
   return len;
}

#define EOP    (-1)
#define INVALID_BITS  (-1)

static int get8_packet_raw(vorb *f)
{
   if (!f->bytes_in_seg) {  // CLANG!
      if (f->last_seg) return EOP;
      else if (!next_segment(f)) return EOP;
   }
   assert(f->bytes_in_seg > 0);
   --f->bytes_in_seg;
   ++f->packet_bytes;
   return get8(f);
}

static int get8_packet(vorb *f)
{
   int x = get8_packet_raw(f);
   f->valid_bits = 0;
   return x;
}

static int get32_packet(vorb *f)
{
   uint32 x;
   x = get8_packet(f);
   x += get8_packet(f) << 8;
   x += get8_packet(f) << 16;
   x += (uint32) get8_packet(f) << 24;
   return x;
}

static void flush_packet(vorb *f)
{
   while (get8_packet_raw(f) != EOP);
}

// @OPTIMIZE: this is the secondary bit decoder, so it's probably not as important
// as the huffman decoder?
static uint32 get_bits(vorb *f, int n)
{
   uint32 z;

   if (f->valid_bits < 0) return 0;
   if (f->valid_bits < n) {
      if (n > 24) {
         // the accumulator technique below would not work correctly in this case
         z = get_bits(f, 24);
         z += get_bits(f, n-24) << 24;
         return z;
      }
      if (f->valid_bits == 0) f->acc = 0;
      while (f->valid_bits < n) {
         int z = get8_packet_raw(f);
         if (z == EOP) {
            f->valid_bits = INVALID_BITS;
            return 0;
         }
         f->acc += z << f->valid_bits;
         f->valid_bits += 8;
      }
   }
   if (f->valid_bits < 0) return 0;
   z = f->acc & ((1 << n)-1);
   f->acc >>= n;
   f->valid_bits -= n;
   return z;
}

// @OPTIMIZE: primary accumulator for huffman
// expand the buffer to as many bits as possible without reading off end of packet
// it might be nice to allow f->valid_bits and f->acc to be stored in registers,
// e.g. cache them locally and decode locally
static __forceinline void prep_huffman(vorb *f)
{
   if (f->valid_bits <= 24) {
      if (f->valid_bits == 0) f->acc = 0;
      do {
         int z;
         if (f->last_seg && !f->bytes_in_seg) return;
         z = get8_packet_raw(f);
         if (z == EOP) return;
         f->acc += (unsigned) z << f->valid_bits;
         f->valid_bits += 8;
      } while (f->valid_bits <= 24);
   }
}

enum
{
   VORBIS_packet_id = 1,
   VORBIS_packet_comment = 3,
   VORBIS_packet_setup = 5
};

static int codebook_decode_scalar_raw(vorb *f, Codebook *c)
{
   int i;
   prep_huffman(f);

   if (c->codewords == NULL && c->sorted_codewords == NULL)
      return -1;

   // cases to use binary search: sorted_codewords && !c->codewords
   //                             sorted_codewords && c->entries > 8
   if (c->entries > 8 ? c->sorted_codewords!=NULL : !c->codewords) {
      // binary search
      uint32 code = bit_reverse(f->acc);
      int x=0, n=c->sorted_entries, len;

      while (n > 1) {
         // invariant: sc[x] <= code < sc[x+n]
         int m = x + (n >> 1);
         if (c->sorted_codewords[m] <= code) {
            x = m;
            n -= (n>>1);
         } else {
            n >>= 1;
         }
      }
      // x is now the sorted index
      if (!c->sparse) x = c->sorted_values[x];
      // x is now sorted index if sparse, or symbol otherwise
      len = c->codeword_lengths[x];
      if (f->valid_bits >= len) {
         f->acc >>= len;
         f->valid_bits -= len;
         return x;
      }

      f->valid_bits = 0;
      return -1;
   }

   // if small, linear search
   assert(!c->sparse);
   for (i=0; i < c->entries; ++i) {
      if (c->codeword_lengths[i] == NO_CODE) continue;
      if (c->codewords[i] == (f->acc & ((1 << c->codeword_lengths[i])-1))) {
         if (f->valid_bits >= c->codeword_lengths[i]) {
            f->acc >>= c->codeword_lengths[i];
            f->valid_bits -= c->codeword_lengths[i];
            return i;
         }
         f->valid_bits = 0;
         return -1;
      }
   }

   error(f, VORBIS_invalid_stream);
   f->valid_bits = 0;
   return -1;
}

#ifndef STB_VORBIS_NO_INLINE_DECODE

#define DECODE_RAW(var, f,c)                                  \
   if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH)        \
      prep_huffman(f);                                        \
   var = f->acc & FAST_HUFFMAN_TABLE_MASK;                    \
   var = c->fast_huffman[var];                                \
   if (var >= 0) {                                            \
      int n = c->codeword_lengths[var];                       \
      f->acc >>= n;                                           \
      f->valid_bits -= n;                                     \
      if (f->valid_bits < 0) { f->valid_bits = 0; var = -1; } \
   } else {                                                   \
      var = codebook_decode_scalar_raw(f,c);                  \
   }

#else

static int codebook_decode_scalar(vorb *f, Codebook *c)
{
   int i;
   if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH)
      prep_huffman(f);
   // fast huffman table lookup
   i = f->acc & FAST_HUFFMAN_TABLE_MASK;
   i = c->fast_huffman[i];
   if (i >= 0) {
      f->acc >>= c->codeword_lengths[i];
      f->valid_bits -= c->codeword_lengths[i];
      if (f->valid_bits < 0) { f->valid_bits = 0; return -1; }
      return i;
   }
   return codebook_decode_scalar_raw(f,c);
}

#define DECODE_RAW(var,f,c)    var = codebook_decode_scalar(f,c);

#endif

#define DECODE(var,f,c)                                       \
   DECODE_RAW(var,f,c)                                        \
   if (c->sparse) var = c->sorted_values[var];

#ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
  #define DECODE_VQ(var,f,c)   DECODE_RAW(var,f,c)
#else
  #define DECODE_VQ(var,f,c)   DECODE(var,f,c)
#endif






// CODEBOOK_ELEMENT_FAST is an optimization for the CODEBOOK_FLOATS case
// where we avoid one addition
#define CODEBOOK_ELEMENT(c,off)          (c->multiplicands[off])
#define CODEBOOK_ELEMENT_FAST(c,off)     (c->multiplicands[off])
#define CODEBOOK_ELEMENT_BASE(c)         (0)

static int codebook_decode_start(vorb *f, Codebook *c)
{
   int z = -1;

   // type 0 is only legal in a scalar context
   if (c->lookup_type == 0)
      error(f, VORBIS_invalid_stream);
   else {
      DECODE_VQ(z,f,c);
      if (c->sparse) assert(z < c->sorted_entries);
      if (z < 0) {  // check for EOP
         if (!f->bytes_in_seg)
            if (f->last_seg)
               return z;
         error(f, VORBIS_invalid_stream);
      }
   }
   return z;
}

static int codebook_decode(vorb *f, Codebook *c, float *output, int len)
{
   int i,z = codebook_decode_start(f,c);
   if (z < 0) return FALSE;
   if (len > c->dimensions) len = c->dimensions;

#ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
   if (c->lookup_type == 1) {
      float last = CODEBOOK_ELEMENT_BASE(c);
      int div = 1;
      for (i=0; i < len; ++i) {
         int off = (z / div) % c->lookup_values;
         float val = CODEBOOK_ELEMENT_FAST(c,off) + last;
         output[i] += val;
         if (c->sequence_p) last = val + c->minimum_value;
         div *= c->lookup_values;
      }
      return TRUE;
   }
#endif

   z *= c->dimensions;
   if (c->sequence_p) {
      float last = CODEBOOK_ELEMENT_BASE(c);
      for (i=0; i < len; ++i) {
         float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
         output[i] += val;
         last = val + c->minimum_value;
      }
   } else {
      float last = CODEBOOK_ELEMENT_BASE(c);
      for (i=0; i < len; ++i) {
         output[i] += CODEBOOK_ELEMENT_FAST(c,z+i) + last;
      }
   }

   return TRUE;
}

static int codebook_decode_step(vorb *f, Codebook *c, float *output, int len, int step)
{
   int i,z = codebook_decode_start(f,c);
   float last = CODEBOOK_ELEMENT_BASE(c);
   if (z < 0) return FALSE;
   if (len > c->dimensions) len = c->dimensions;

#ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
   if (c->lookup_type == 1) {
      int div = 1;
      for (i=0; i < len; ++i) {
         int off = (z / div) % c->lookup_values;
         float val = CODEBOOK_ELEMENT_FAST(c,off) + last;
         output[i*step] += val;
         if (c->sequence_p) last = val;
         div *= c->lookup_values;
      }
      return TRUE;
   }
#endif

   z *= c->dimensions;
   for (i=0; i < len; ++i) {
      float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
      output[i*step] += val;
      if (c->sequence_p) last = val;
   }

   return TRUE;
}

static int codebook_decode_deinterleave_repeat(vorb *f, Codebook *c, float **outputs, int ch, int *c_inter_p, int *p_inter_p, int len, int total_decode)
{
   int c_inter = *c_inter_p;
   int p_inter = *p_inter_p;
   int i,z, effective = c->dimensions;

   // type 0 is only legal in a scalar context
   if (c->lookup_type == 0)   return error(f, VORBIS_invalid_stream);

   while (total_decode > 0) {
      float last = CODEBOOK_ELEMENT_BASE(c);
      DECODE_VQ(z,f,c);
      #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
      assert(!c->sparse || z < c->sorted_entries);
      #endif
      if (z < 0) {
         if (!f->bytes_in_seg)
            if (f->last_seg) return FALSE;
         return error(f, VORBIS_invalid_stream);
      }

      // if this will take us off the end of the buffers, stop short!
      // we check by computing the length of the virtual interleaved
      // buffer (len*ch), our current offset within it (p_inter*ch)+(c_inter),
      // and the length we'll be using (effective)
      if (c_inter + p_inter*ch + effective > len * ch) {
         effective = len*ch - (p_inter*ch - c_inter);
      }

   #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
      if (c->lookup_type == 1) {
         int div = 1;
         for (i=0; i < effective; ++i) {
            int off = (z / div) % c->lookup_values;
            float val = CODEBOOK_ELEMENT_FAST(c,off) + last;
            if (outputs[c_inter])
               outputs[c_inter][p_inter] += val;
            if (++c_inter == ch) { c_inter = 0; ++p_inter; }
            if (c->sequence_p) last = val;
            div *= c->lookup_values;
         }
      } else
   #endif
      {
         z *= c->dimensions;
         if (c->sequence_p) {
            for (i=0; i < effective; ++i) {
               float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
               if (outputs[c_inter])
                  outputs[c_inter][p_inter] += val;
               if (++c_inter == ch) { c_inter = 0; ++p_inter; }
               last = val;
            }
         } else {
            for (i=0; i < effective; ++i) {
               float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last;
               if (outputs[c_inter])
                  outputs[c_inter][p_inter] += val;
               if (++c_inter == ch) { c_inter = 0; ++p_inter; }
            }
         }
      }

      total_decode -= effective;
   }
   *c_inter_p = c_inter;
   *p_inter_p = p_inter;
   return TRUE;
}

static int predict_point(int x, int x0, int x1, int y0, int y1)
{
   int dy = y1 - y0;
   int adx = x1 - x0;
   // @OPTIMIZE: force int division to round in the right direction... is this necessary on x86?
   int err = abs(dy) * (x - x0);
   int off = err / adx;
   return dy < 0 ? y0 - off : y0 + off;
}

// the following table is block-copied from the specification
static float inverse_db_table[256] =
{
  1.0649863e-07f, 1.1341951e-07f, 1.2079015e-07f, 1.2863978e-07f,
  1.3699951e-07f, 1.4590251e-07f, 1.5538408e-07f, 1.6548181e-07f,
  1.7623575e-07f, 1.8768855e-07f, 1.9988561e-07f, 2.1287530e-07f,
  2.2670913e-07f, 2.4144197e-07f, 2.5713223e-07f, 2.7384213e-07f,
  2.9163793e-07f, 3.1059021e-07f, 3.3077411e-07f, 3.5226968e-07f,
  3.7516214e-07f, 3.9954229e-07f, 4.2550680e-07f, 4.5315863e-07f,
  4.8260743e-07f, 5.1396998e-07f, 5.4737065e-07f, 5.8294187e-07f,
  6.2082472e-07f, 6.6116941e-07f, 7.0413592e-07f, 7.4989464e-07f,
  7.9862701e-07f, 8.5052630e-07f, 9.0579828e-07f, 9.6466216e-07f,
  1.0273513e-06f, 1.0941144e-06f, 1.1652161e-06f, 1.2409384e-06f,
  1.3215816e-06f, 1.4074654e-06f, 1.4989305e-06f, 1.5963394e-06f,
  1.7000785e-06f, 1.8105592e-06f, 1.9282195e-06f, 2.0535261e-06f,
  2.1869758e-06f, 2.3290978e-06f, 2.4804557e-06f, 2.6416497e-06f,
  2.8133190e-06f, 2.9961443e-06f, 3.1908506e-06f, 3.3982101e-06f,
  3.6190449e-06f, 3.8542308e-06f, 4.1047004e-06f, 4.3714470e-06f,
  4.6555282e-06f, 4.9580707e-06f, 5.2802740e-06f, 5.6234160e-06f,
  5.9888572e-06f, 6.3780469e-06f, 6.7925283e-06f, 7.2339451e-06f,
  7.7040476e-06f, 8.2047000e-06f, 8.7378876e-06f, 9.3057248e-06f,
  9.9104632e-06f, 1.0554501e-05f, 1.1240392e-05f, 1.1970856e-05f,
  1.2748789e-05f, 1.3577278e-05f, 1.4459606e-05f, 1.5399272e-05f,
  1.6400004e-05f, 1.7465768e-05f, 1.8600792e-05f, 1.9809576e-05f,
  2.1096914e-05f, 2.2467911e-05f, 2.3928002e-05f, 2.5482978e-05f,
  2.7139006e-05f, 2.8902651e-05f, 3.0780908e-05f, 3.2781225e-05f,
  3.4911534e-05f, 3.7180282e-05f, 3.9596466e-05f, 4.2169667e-05f,
  4.4910090e-05f, 4.7828601e-05f, 5.0936773e-05f, 5.4246931e-05f,
  5.7772202e-05f, 6.1526565e-05f, 6.5524908e-05f, 6.9783085e-05f,
  7.4317983e-05f, 7.9147585e-05f, 8.4291040e-05f, 8.9768747e-05f,
  9.5602426e-05f, 0.00010181521f, 0.00010843174f, 0.00011547824f,
  0.00012298267f, 0.00013097477f, 0.00013948625f, 0.00014855085f,
  0.00015820453f, 0.00016848555f, 0.00017943469f, 0.00019109536f,
  0.00020351382f, 0.00021673929f, 0.00023082423f, 0.00024582449f,
  0.00026179955f, 0.00027881276f, 0.00029693158f, 0.00031622787f,
  0.00033677814f, 0.00035866388f, 0.00038197188f, 0.00040679456f,
  0.00043323036f, 0.00046138411f, 0.00049136745f, 0.00052329927f,
  0.00055730621f, 0.00059352311f, 0.00063209358f, 0.00067317058f,
  0.00071691700f, 0.00076350630f, 0.00081312324f, 0.00086596457f,
  0.00092223983f, 0.00098217216f, 0.0010459992f,  0.0011139742f,
  0.0011863665f,  0.0012634633f,  0.0013455702f,  0.0014330129f,
  0.0015261382f,  0.0016253153f,  0.0017309374f,  0.0018434235f,
  0.0019632195f,  0.0020908006f,  0.0022266726f,  0.0023713743f,
  0.0025254795f,  0.0026895994f,  0.0028643847f,  0.0030505286f,
  0.0032487691f,  0.0034598925f,  0.0036847358f,  0.0039241906f,
  0.0041792066f,  0.0044507950f,  0.0047400328f,  0.0050480668f,
  0.0053761186f,  0.0057254891f,  0.0060975636f,  0.0064938176f,
  0.0069158225f,  0.0073652516f,  0.0078438871f,  0.0083536271f,
  0.0088964928f,  0.009474637f,   0.010090352f,   0.010746080f,
  0.011444421f,   0.012188144f,   0.012980198f,   0.013823725f,
  0.014722068f,   0.015678791f,   0.016697687f,   0.017782797f,
  0.018938423f,   0.020169149f,   0.021479854f,   0.022875735f,
  0.024362330f,   0.025945531f,   0.027631618f,   0.029427276f,
  0.031339626f,   0.033376252f,   0.035545228f,   0.037855157f,
  0.040315199f,   0.042935108f,   0.045725273f,   0.048696758f,
  0.051861348f,   0.055231591f,   0.058820850f,   0.062643361f,
  0.066714279f,   0.071049749f,   0.075666962f,   0.080584227f,
  0.085821044f,   0.091398179f,   0.097337747f,   0.10366330f,
  0.11039993f,    0.11757434f,    0.12521498f,    0.13335215f,
  0.14201813f,    0.15124727f,    0.16107617f,    0.17154380f,
  0.18269168f,    0.19456402f,    0.20720788f,    0.22067342f,
  0.23501402f,    0.25028656f,    0.26655159f,    0.28387361f,
  0.30232132f,    0.32196786f,    0.34289114f,    0.36517414f,
  0.38890521f,    0.41417847f,    0.44109412f,    0.46975890f,
  0.50028648f,    0.53279791f,    0.56742212f,    0.60429640f,
  0.64356699f,    0.68538959f,    0.72993007f,    0.77736504f,
  0.82788260f,    0.88168307f,    0.9389798f,     1.0f
};


// @OPTIMIZE: if you want to replace this bresenham line-drawing routine,
// note that you must produce bit-identical output to decode correctly;
// this specific sequence of operations is specified in the spec (it's
// drawing integer-quantized frequency-space lines that the encoder
// expects to be exactly the same)
//     ... also, isn't the whole point of Bresenham's algorithm to NOT
// have to divide in the setup? sigh.
#ifndef STB_VORBIS_NO_DEFER_FLOOR
#define LINE_OP(a,b)   a *= b
#else
#define LINE_OP(a,b)   a = b
#endif

#ifdef STB_VORBIS_DIVIDE_TABLE
#define DIVTAB_NUMER   32
#define DIVTAB_DENOM   64
int8 integer_divide_table[DIVTAB_NUMER][DIVTAB_DENOM]; // 2KB
#endif

static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n)
{
   int dy = y1 - y0;
   int adx = x1 - x0;
   int ady = abs(dy);
   int base;
   int x=x0,y=y0;
   int err = 0;
   int sy;

#ifdef STB_VORBIS_DIVIDE_TABLE
   if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) {
      if (dy < 0) {
         base = -integer_divide_table[ady][adx];
         sy = base-1;
      } else {
         base =  integer_divide_table[ady][adx];
         sy = base+1;
      }
   } else {
      base = dy / adx;
      if (dy < 0)
         sy = base - 1;
      else
         sy = base+1;
   }
#else
   base = dy / adx;
   if (dy < 0)
      sy = base - 1;
   else
      sy = base+1;
#endif
   ady -= abs(base) * adx;
   if (x1 > n) x1 = n;
   if (x < x1) {
      LINE_OP(output[x], inverse_db_table[y&255]);
      for (++x; x < x1; ++x) {
         err += ady;
         if (err >= adx) {
            err -= adx;
            y += sy;
         } else
            y += base;
         LINE_OP(output[x], inverse_db_table[y&255]);
      }
   }
}

static int residue_decode(vorb *f, Codebook *book, float *target, int offset, int n, int rtype)
{
   int k;
   if (rtype == 0) {
      int step = n / book->dimensions;
      for (k=0; k < step; ++k)
         if (!codebook_decode_step(f, book, target+offset+k, n-offset-k, step))
            return FALSE;
   } else {
      for (k=0; k < n; ) {
         if (!codebook_decode(f, book, target+offset, n-k))
            return FALSE;
         k += book->dimensions;
         offset += book->dimensions;
      }
   }
   return TRUE;
}

// n is 1/2 of the blocksize --
// specification: "Correct per-vector decode length is [n]/2"
static void decode_residue(vorb *f, float *residue_buffers[], int ch, int n, int rn, uint8 *do_not_decode)
{
   int i,j,pass;
   Residue *r = f->residue_config + rn;
   int rtype = f->residue_types[rn];
   int c = r->classbook;
   int classwords = f->codebooks[c].dimensions;
   unsigned int actual_size = rtype == 2 ? n*2 : n;
   unsigned int limit_r_begin = (r->begin < actual_size ? r->begin : actual_size);
   unsigned int limit_r_end   = (r->end   < actual_size ? r->end   : actual_size);
   int n_read = limit_r_end - limit_r_begin;
   int part_read = n_read / r->part_size;
   int temp_alloc_point = temp_alloc_save(f);
   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
   uint8 ***part_classdata = (uint8 ***) temp_block_array(f,f->channels, part_read * sizeof(**part_classdata));
   #else
   int **classifications = (int **) temp_block_array(f,f->channels, part_read * sizeof(**classifications));
   #endif

   CHECK(f);

   for (i=0; i < ch; ++i)
      if (!do_not_decode[i])
         memset(residue_buffers[i], 0, sizeof(float) * n);

   if (rtype == 2 && ch != 1) {
      for (j=0; j < ch; ++j)
         if (!do_not_decode[j])
            break;
      if (j == ch)
         goto done;

      for (pass=0; pass < 8; ++pass) {
         int pcount = 0, class_set = 0;
         if (ch == 2) {
            while (pcount < part_read) {
               int z = r->begin + pcount*r->part_size;
               int c_inter = (z & 1), p_inter = z>>1;
               if (pass == 0) {
                  Codebook *c = f->codebooks+r->classbook;
                  int q;
                  DECODE(q,f,c);
                  if (q == EOP) goto done;
                  #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
                  part_classdata[0][class_set] = r->classdata[q];
                  #else
                  for (i=classwords-1; i >= 0; --i) {
                     classifications[0][i+pcount] = q % r->classifications;
                     q /= r->classifications;
                  }
                  #endif
               }
               for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) {
                  int z = r->begin + pcount*r->part_size;
                  #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
                  int c = part_classdata[0][class_set][i];
                  #else
                  int c = classifications[0][pcount];
                  #endif
                  int b = r->residue_books[c][pass];
                  if (b >= 0) {
                     Codebook *book = f->codebooks + b;
                     #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK
                     if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size))
                        goto done;
                     #else
                     // saves 1%
                     if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size))
                        goto done;
                     #endif
                  } else {
                     z += r->part_size;
                     c_inter = z & 1;
                     p_inter = z >> 1;
                  }
               }
               #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
               ++class_set;
               #endif
            }
         } else if (ch > 2) {
            while (pcount < part_read) {
               int z = r->begin + pcount*r->part_size;
               int c_inter = z % ch, p_inter = z/ch;
               if (pass == 0) {
                  Codebook *c = f->codebooks+r->classbook;
                  int q;
                  DECODE(q,f,c);
                  if (q == EOP) goto done;
                  #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
                  part_classdata[0][class_set] = r->classdata[q];
                  #else
                  for (i=classwords-1; i >= 0; --i) {
                     classifications[0][i+pcount] = q % r->classifications;
                     q /= r->classifications;
                  }
                  #endif
               }
               for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) {
                  int z = r->begin + pcount*r->part_size;
                  #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
                  int c = part_classdata[0][class_set][i];
                  #else
                  int c = classifications[0][pcount];
                  #endif
                  int b = r->residue_books[c][pass];
                  if (b >= 0) {
                     Codebook *book = f->codebooks + b;
                     if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size))
                        goto done;
                  } else {
                     z += r->part_size;
                     c_inter = z % ch;
                     p_inter = z / ch;
                  }
               }
               #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
               ++class_set;
               #endif
            }
         }
      }
      goto done;
   }
   CHECK(f);

   for (pass=0; pass < 8; ++pass) {
      int pcount = 0, class_set=0;
      while (pcount < part_read) {
         if (pass == 0) {
            for (j=0; j < ch; ++j) {
               if (!do_not_decode[j]) {
                  Codebook *c = f->codebooks+r->classbook;
                  int temp;
                  DECODE(temp,f,c);
                  if (temp == EOP) goto done;
                  #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
                  part_classdata[j][class_set] = r->classdata[temp];
                  #else
                  for (i=classwords-1; i >= 0; --i) {
                     classifications[j][i+pcount] = temp % r->classifications;
                     temp /= r->classifications;
                  }
                  #endif
               }
            }
         }
         for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) {
            for (j=0; j < ch; ++j) {
               if (!do_not_decode[j]) {
                  #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
                  int c = part_classdata[j][class_set][i];
                  #else
                  int c = classifications[j][pcount];
                  #endif
                  int b = r->residue_books[c][pass];
                  if (b >= 0) {
                     float *target = residue_buffers[j];
                     int offset = r->begin + pcount * r->part_size;
                     int n = r->part_size;
                     Codebook *book = f->codebooks + b;
                     if (!residue_decode(f, book, target, offset, n, rtype))
                        goto done;
                  }
               }
            }
         }
         #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
         ++class_set;
         #endif
      }
   }
  done:
   CHECK(f);
   #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
   temp_free(f,part_classdata);
   #else
   temp_free(f,classifications);
   #endif
   temp_alloc_restore(f,temp_alloc_point);
}


#if 0
// slow way for debugging
void inverse_mdct_slow(float *buffer, int n)
{
   int i,j;
   int n2 = n >> 1;
   float *x = (float *) malloc(sizeof(*x) * n2);
   memcpy(x, buffer, sizeof(*x) * n2);
   for (i=0; i < n; ++i) {
      float acc = 0;
      for (j=0; j < n2; ++j)
         // formula from paper:
         //acc += n/4.0f * x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1));
         // formula from wikipedia
         //acc += 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5));
         // these are equivalent, except the formula from the paper inverts the multiplier!
         // however, what actually works is NO MULTIPLIER!?!
         //acc += 64 * 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5));
         acc += x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1));
      buffer[i] = acc;
   }
   free(x);
}
#elif 0
// same as above, but just barely able to run in real time on modern machines
void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype)
{
   float mcos[16384];
   int i,j;
   int n2 = n >> 1, nmask = (n << 2) -1;
   float *x = (float *) malloc(sizeof(*x) * n2);
   memcpy(x, buffer, sizeof(*x) * n2);
   for (i=0; i < 4*n; ++i)
      mcos[i] = (float) cos(M_PI / 2 * i / n);

   for (i=0; i < n; ++i) {
      float acc = 0;
      for (j=0; j < n2; ++j)
         acc += x[j] * mcos[(2 * i + 1 + n2)*(2*j+1) & nmask];
      buffer[i] = acc;
   }
   free(x);
}
#elif 0
// transform to use a slow dct-iv; this is STILL basically trivial,
// but only requires half as many ops
void dct_iv_slow(float *buffer, int n)
{
   float mcos[16384];
   float x[2048];
   int i,j;
   int n2 = n >> 1, nmask = (n << 3) - 1;
   memcpy(x, buffer, sizeof(*x) * n);
   for (i=0; i < 8*n; ++i)
      mcos[i] = (float) cos(M_PI / 4 * i / n);
   for (i=0; i < n; ++i) {
      float acc = 0;
      for (j=0; j < n; ++j)
         acc += x[j] * mcos[((2 * i + 1)*(2*j+1)) & nmask];
      buffer[i] = acc;
   }
}

void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype)
{
   int i, n4 = n >> 2, n2 = n >> 1, n3_4 = n - n4;
   float temp[4096];

   memcpy(temp, buffer, n2 * sizeof(float));
   dct_iv_slow(temp, n2);  // returns -c'-d, a-b'

   for (i=0; i < n4  ; ++i) buffer[i] = temp[i+n4];            // a-b'
   for (   ; i < n3_4; ++i) buffer[i] = -temp[n3_4 - i - 1];   // b-a', c+d'
   for (   ; i < n   ; ++i) buffer[i] = -temp[i - n3_4];       // c'+d
}
#endif

#ifndef LIBVORBIS_MDCT
#define LIBVORBIS_MDCT 0
#endif

#if LIBVORBIS_MDCT
// directly call the vorbis MDCT using an interface documented
// by Jeff Roberts... useful for performance comparison
typedef struct
{
  int n;
  int log2n;

  float *trig;
  int   *bitrev;

  float scale;
} mdct_lookup;

extern void mdct_init(mdct_lookup *lookup, int n);
extern void mdct_clear(mdct_lookup *l);
extern void mdct_backward(mdct_lookup *init, float *in, float *out);

mdct_lookup M1,M2;

void inverse_mdct(float *buffer, int n, vorb *f, int blocktype)
{
   mdct_lookup *M;
   if (M1.n == n) M = &M1;
   else if (M2.n == n) M = &M2;
   else if (M1.n == 0) { mdct_init(&M1, n); M = &M1; }
   else {
      if (M2.n) __asm int 3;
      mdct_init(&M2, n);
      M = &M2;
   }

   mdct_backward(M, buffer, buffer);
}
#endif


// the following were split out into separate functions while optimizing;
// they could be pushed back up but eh. __forceinline showed no change;
// they're probably already being inlined.
static void imdct_step3_iter0_loop(int n, float *e, int i_off, int k_off, float *A)
{
   float *ee0 = e + i_off;
   float *ee2 = ee0 + k_off;
   int i;

   assert((n & 3) == 0);
   for (i=(n>>2); i > 0; --i) {
      float k00_20, k01_21;
      k00_20  = ee0[ 0] - ee2[ 0];
      k01_21  = ee0[-1] - ee2[-1];
      ee0[ 0] += ee2[ 0];//ee0[ 0] = ee0[ 0] + ee2[ 0];
      ee0[-1] += ee2[-1];//ee0[-1] = ee0[-1] + ee2[-1];
      ee2[ 0] = k00_20 * A[0] - k01_21 * A[1];
      ee2[-1] = k01_21 * A[0] + k00_20 * A[1];
      A += 8;

      k00_20  = ee0[-2] - ee2[-2];
      k01_21  = ee0[-3] - ee2[-3];
      ee0[-2] += ee2[-2];//ee0[-2] = ee0[-2] + ee2[-2];
      ee0[-3] += ee2[-3];//ee0[-3] = ee0[-3] + ee2[-3];
      ee2[-2] = k00_20 * A[0] - k01_21 * A[1];
      ee2[-3] = k01_21 * A[0] + k00_20 * A[1];
      A += 8;

      k00_20  = ee0[-4] - ee2[-4];
      k01_21  = ee0[-5] - ee2[-5];
      ee0[-4] += ee2[-4];//ee0[-4] = ee0[-4] + ee2[-4];
      ee0[-5] += ee2[-5];//ee0[-5] = ee0[-5] + ee2[-5];
      ee2[-4] = k00_20 * A[0] - k01_21 * A[1];
      ee2[-5] = k01_21 * A[0] + k00_20 * A[1];
      A += 8;

      k00_20  = ee0[-6] - ee2[-6];
      k01_21  = ee0[-7] - ee2[-7];
      ee0[-6] += ee2[-6];//ee0[-6] = ee0[-6] + ee2[-6];
      ee0[-7] += ee2[-7];//ee0[-7] = ee0[-7] + ee2[-7];
      ee2[-6] = k00_20 * A[0] - k01_21 * A[1];
      ee2[-7] = k01_21 * A[0] + k00_20 * A[1];
      A += 8;
      ee0 -= 8;
      ee2 -= 8;
   }
}

static void imdct_step3_inner_r_loop(int lim, float *e, int d0, int k_off, float *A, int k1)
{
   int i;
   float k00_20, k01_21;

   float *e0 = e + d0;
   float *e2 = e0 + k_off;

   for (i=lim >> 2; i > 0; --i) {
      k00_20 = e0[-0] - e2[-0];
      k01_21 = e0[-1] - e2[-1];
      e0[-0] += e2[-0];//e0[-0] = e0[-0] + e2[-0];
      e0[-1] += e2[-1];//e0[-1] = e0[-1] + e2[-1];
      e2[-0] = (k00_20)*A[0] - (k01_21) * A[1];
      e2[-1] = (k01_21)*A[0] + (k00_20) * A[1];

      A += k1;

      k00_20 = e0[-2] - e2[-2];
      k01_21 = e0[-3] - e2[-3];
      e0[-2] += e2[-2];//e0[-2] = e0[-2] + e2[-2];
      e0[-3] += e2[-3];//e0[-3] = e0[-3] + e2[-3];
      e2[-2] = (k00_20)*A[0] - (k01_21) * A[1];
      e2[-3] = (k01_21)*A[0] + (k00_20) * A[1];

      A += k1;

      k00_20 = e0[-4] - e2[-4];
      k01_21 = e0[-5] - e2[-5];
      e0[-4] += e2[-4];//e0[-4] = e0[-4] + e2[-4];
      e0[-5] += e2[-5];//e0[-5] = e0[-5] + e2[-5];
      e2[-4] = (k00_20)*A[0] - (k01_21) * A[1];
      e2[-5] = (k01_21)*A[0] + (k00_20) * A[1];

      A += k1;

      k00_20 = e0[-6] - e2[-6];
      k01_21 = e0[-7] - e2[-7];
      e0[-6] += e2[-6];//e0[-6] = e0[-6] + e2[-6];
      e0[-7] += e2[-7];//e0[-7] = e0[-7] + e2[-7];
      e2[-6] = (k00_20)*A[0] - (k01_21) * A[1];
      e2[-7] = (k01_21)*A[0] + (k00_20) * A[1];

      e0 -= 8;
      e2 -= 8;

      A += k1;
   }
}

static void imdct_step3_inner_s_loop(int n, float *e, int i_off, int k_off, float *A, int a_off, int k0)
{
   int i;
   float A0 = A[0];
   float A1 = A[0+1];
   float A2 = A[0+a_off];
   float A3 = A[0+a_off+1];
   float A4 = A[0+a_off*2+0];
   float A5 = A[0+a_off*2+1];
   float A6 = A[0+a_off*3+0];
   float A7 = A[0+a_off*3+1];

   float k00,k11;

   float *ee0 = e  +i_off;
   float *ee2 = ee0+k_off;

   for (i=n; i > 0; --i) {
      k00     = ee0[ 0] - ee2[ 0];
      k11     = ee0[-1] - ee2[-1];
      ee0[ 0] =  ee0[ 0] + ee2[ 0];
      ee0[-1] =  ee0[-1] + ee2[-1];
      ee2[ 0] = (k00) * A0 - (k11) * A1;
      ee2[-1] = (k11) * A0 + (k00) * A1;

      k00     = ee0[-2] - ee2[-2];
      k11     = ee0[-3] - ee2[-3];
      ee0[-2] =  ee0[-2] + ee2[-2];
      ee0[-3] =  ee0[-3] + ee2[-3];
      ee2[-2] = (k00) * A2 - (k11) * A3;
      ee2[-3] = (k11) * A2 + (k00) * A3;

      k00     = ee0[-4] - ee2[-4];
      k11     = ee0[-5] - ee2[-5];
      ee0[-4] =  ee0[-4] + ee2[-4];
      ee0[-5] =  ee0[-5] + ee2[-5];
      ee2[-4] = (k00) * A4 - (k11) * A5;
      ee2[-5] = (k11) * A4 + (k00) * A5;

      k00     = ee0[-6] - ee2[-6];
      k11     = ee0[-7] - ee2[-7];
      ee0[-6] =  ee0[-6] + ee2[-6];
      ee0[-7] =  ee0[-7] + ee2[-7];
      ee2[-6] = (k00) * A6 - (k11) * A7;
      ee2[-7] = (k11) * A6 + (k00) * A7;

      ee0 -= k0;
      ee2 -= k0;
   }
}

static __forceinline void iter_54(float *z)
{
   float k00,k11,k22,k33;
   float y0,y1,y2,y3;

   k00  = z[ 0] - z[-4];
   y0   = z[ 0] + z[-4];
   y2   = z[-2] + z[-6];
   k22  = z[-2] - z[-6];

   z[-0] = y0 + y2;      // z0 + z4 + z2 + z6
   z[-2] = y0 - y2;      // z0 + z4 - z2 - z6

   // done with y0,y2

   k33  = z[-3] - z[-7];

   z[-4] = k00 + k33;    // z0 - z4 + z3 - z7
   z[-6] = k00 - k33;    // z0 - z4 - z3 + z7

   // done with k33

   k11  = z[-1] - z[-5];
   y1   = z[-1] + z[-5];
   y3   = z[-3] + z[-7];

   z[-1] = y1 + y3;      // z1 + z5 + z3 + z7
   z[-3] = y1 - y3;      // z1 + z5 - z3 - z7
   z[-5] = k11 - k22;    // z1 - z5 + z2 - z6
   z[-7] = k11 + k22;    // z1 - z5 - z2 + z6
}

static void imdct_step3_inner_s_loop_ld654(int n, float *e, int i_off, float *A, int base_n)
{
   int a_off = base_n >> 3;
   float A2 = A[0+a_off];
   float *z = e + i_off;
   float *base = z - 16 * n;

   while (z > base) {
      float k00,k11;

      k00   = z[-0] - z[-8];
      k11   = z[-1] - z[-9];
      z[-0] = z[-0] + z[-8];
      z[-1] = z[-1] + z[-9];
      z[-8] =  k00;
      z[-9] =  k11 ;

      k00    = z[ -2] - z[-10];
      k11    = z[ -3] - z[-11];
      z[ -2] = z[ -2] + z[-10];
      z[ -3] = z[ -3] + z[-11];
      z[-10] = (k00+k11) * A2;
      z[-11] = (k11-k00) * A2;

      k00    = z[-12] - z[ -4];  // reverse to avoid a unary negation
      k11    = z[ -5] - z[-13];
      z[ -4] = z[ -4] + z[-12];
      z[ -5] = z[ -5] + z[-13];
      z[-12] = k11;
      z[-13] = k00;

      k00    = z[-14] - z[ -6];  // reverse to avoid a unary negation
      k11    = z[ -7] - z[-15];
      z[ -6] = z[ -6] + z[-14];
      z[ -7] = z[ -7] + z[-15];
      z[-14] = (k00+k11) * A2;
      z[-15] = (k00-k11) * A2;

      iter_54(z);
      iter_54(z-8);
      z -= 16;
   }
}

static void inverse_mdct(float *buffer, int n, vorb *f, int blocktype)
{
   int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l;
   int ld;
   // @OPTIMIZE: reduce register pressure by using fewer variables?
   int save_point = temp_alloc_save(f);
   float *buf2 = (float *) temp_alloc(f, n2 * sizeof(*buf2));
   float *u=NULL,*v=NULL;
   // twiddle factors
   float *A = f->A[blocktype];

   // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio"
   // See notes about bugs in that paper in less-optimal implementation 'inverse_mdct_old' after this function.

   // kernel from paper


   // merged:
   //   copy and reflect spectral data
   //   step 0

   // note that it turns out that the items added together during
   // this step are, in fact, being added to themselves (as reflected
   // by step 0). inexplicable inefficiency! this became obvious
   // once I combined the passes.

   // so there's a missing 'times 2' here (for adding X to itself).
   // this propagates through linearly to the end, where the numbers
   // are 1/2 too small, and need to be compensated for.

   {
      float *d,*e, *AA, *e_stop;
      d = &buf2[n2-2];
      AA = A;
      e = &buffer[0];
      e_stop = &buffer[n2];
      while (e != e_stop) {
         d[1] = (e[0] * AA[0] - e[2]*AA[1]);
         d[0] = (e[0] * AA[1] + e[2]*AA[0]);
         d -= 2;
         AA += 2;
         e += 4;
      }

      e = &buffer[n2-3];
      while (d >= buf2) {
         d[1] = (-e[2] * AA[0] - -e[0]*AA[1]);
         d[0] = (-e[2] * AA[1] + -e[0]*AA[0]);
         d -= 2;
         AA += 2;
         e -= 4;
      }
   }

   // now we use symbolic names for these, so that we can
   // possibly swap their meaning as we change which operations
   // are in place

   u = buffer;
   v = buf2;

   // step 2    (paper output is w, now u)
   // this could be in place, but the data ends up in the wrong
   // place... _somebody_'s got to swap it, so this is nominated
   {
      float *AA = &A[n2-8];
      float *d0,*d1, *e0, *e1;

      e0 = &v[n4];
      e1 = &v[0];

      d0 = &u[n4];
      d1 = &u[0];

      while (AA >= A) {
         float v40_20, v41_21;

         v41_21 = e0[1] - e1[1];
         v40_20 = e0[0] - e1[0];
         d0[1]  = e0[1] + e1[1];
         d0[0]  = e0[0] + e1[0];
         d1[1]  = v41_21*AA[4] - v40_20*AA[5];
         d1[0]  = v40_20*AA[4] + v41_21*AA[5];

         v41_21 = e0[3] - e1[3];
         v40_20 = e0[2] - e1[2];
         d0[3]  = e0[3] + e1[3];
         d0[2]  = e0[2] + e1[2];
         d1[3]  = v41_21*AA[0] - v40_20*AA[1];
         d1[2]  = v40_20*AA[0] + v41_21*AA[1];

         AA -= 8;

         d0 += 4;
         d1 += 4;
         e0 += 4;
         e1 += 4;
      }
   }

   // step 3
   ld = ilog(n) - 1; // ilog is off-by-one from normal definitions

   // optimized step 3:

   // the original step3 loop can be nested r inside s or s inside r;
   // it's written originally as s inside r, but this is dumb when r
   // iterates many times, and s few. So I have two copies of it and
   // switch between them halfway.

   // this is iteration 0 of step 3
   imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*0, -(n >> 3), A);
   imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*1, -(n >> 3), A);

   // this is iteration 1 of step 3
   imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*0, -(n >> 4), A, 16);
   imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*1, -(n >> 4), A, 16);
   imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*2, -(n >> 4), A, 16);
   imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*3, -(n >> 4), A, 16);

   l=2;
   for (; l < (ld-3)>>1; ++l) {
      int k0 = n >> (l+2), k0_2 = k0>>1;
      int lim = 1 << (l+1);
      int i;
      for (i=0; i < lim; ++i)
         imdct_step3_inner_r_loop(n >> (l+4), u, n2-1 - k0*i, -k0_2, A, 1 << (l+3));
   }

   for (; l < ld-6; ++l) {
      int k0 = n >> (l+2), k1 = 1 << (l+3), k0_2 = k0>>1;
      int rlim = n >> (l+6), r;
      int lim = 1 << (l+1);
      int i_off;
      float *A0 = A;
      i_off = n2-1;
      for (r=rlim; r > 0; --r) {
         imdct_step3_inner_s_loop(lim, u, i_off, -k0_2, A0, k1, k0);
         A0 += k1*4;
         i_off -= 8;
      }
   }

   // iterations with count:
   //   ld-6,-5,-4 all interleaved together
   //       the big win comes from getting rid of needless flops
   //         due to the constants on pass 5 & 4 being all 1 and 0;
   //       combining them to be simultaneous to improve cache made little difference
   imdct_step3_inner_s_loop_ld654(n >> 5, u, n2-1, A, n);

   // output is u

   // step 4, 5, and 6
   // cannot be in-place because of step 5
   {
      uint16 *bitrev = f->bit_reverse[blocktype];
      // weirdly, I'd have thought reading sequentially and writing
      // erratically would have been better than vice-versa, but in
      // fact that's not what my testing showed. (That is, with
      // j = bitreverse(i), do you read i and write j, or read j and write i.)

      float *d0 = &v[n4-4];
      float *d1 = &v[n2-4];
      while (d0 >= v) {
         int k4;

         k4 = bitrev[0];
         d1[3] = u[k4+0];
         d1[2] = u[k4+1];
         d0[3] = u[k4+2];
         d0[2] = u[k4+3];

         k4 = bitrev[1];
         d1[1] = u[k4+0];
         d1[0] = u[k4+1];
         d0[1] = u[k4+2];
         d0[0] = u[k4+3];

         d0 -= 4;
         d1 -= 4;
         bitrev += 2;
      }
   }
   // (paper output is u, now v)


   // data must be in buf2
   assert(v == buf2);

   // step 7   (paper output is v, now v)
   // this is now in place
   {
      float *C = f->C[blocktype];
      float *d, *e;

      d = v;
      e = v + n2 - 4;

      while (d < e) {
         float a02,a11,b0,b1,b2,b3;

         a02 = d[0] - e[2];
         a11 = d[1] + e[3];

         b0 = C[1]*a02 + C[0]*a11;
         b1 = C[1]*a11 - C[0]*a02;

         b2 = d[0] + e[ 2];
         b3 = d[1] - e[ 3];

         d[0] = b2 + b0;
         d[1] = b3 + b1;
         e[2] = b2 - b0;
         e[3] = b1 - b3;

         a02 = d[2] - e[0];
         a11 = d[3] + e[1];

         b0 = C[3]*a02 + C[2]*a11;
         b1 = C[3]*a11 - C[2]*a02;

         b2 = d[2] + e[ 0];
         b3 = d[3] - e[ 1];

         d[2] = b2 + b0;
         d[3] = b3 + b1;
         e[0] = b2 - b0;
         e[1] = b1 - b3;

         C += 4;
         d += 4;
         e -= 4;
      }
   }

   // data must be in buf2


   // step 8+decode   (paper output is X, now buffer)
   // this generates pairs of data a la 8 and pushes them directly through
   // the decode kernel (pushing rather than pulling) to avoid having
   // to make another pass later

   // this cannot POSSIBLY be in place, so we refer to the buffers directly

   {
      float *d0,*d1,*d2,*d3;

      float *B = f->B[blocktype] + n2 - 8;
      float *e = buf2 + n2 - 8;
      d0 = &buffer[0];
      d1 = &buffer[n2-4];
      d2 = &buffer[n2];
      d3 = &buffer[n-4];
      while (e >= v) {
         float p0,p1,p2,p3;

         p3 =  e[6]*B[7] - e[7]*B[6];
         p2 = -e[6]*B[6] - e[7]*B[7];

         d0[0] =   p3;
         d1[3] = - p3;
         d2[0] =   p2;
         d3[3] =   p2;

         p1 =  e[4]*B[5] - e[5]*B[4];
         p0 = -e[4]*B[4] - e[5]*B[5];

         d0[1] =   p1;
         d1[2] = - p1;
         d2[1] =   p0;
         d3[2] =   p0;

         p3 =  e[2]*B[3] - e[3]*B[2];
         p2 = -e[2]*B[2] - e[3]*B[3];

         d0[2] =   p3;
         d1[1] = - p3;
         d2[2] =   p2;
         d3[1] =   p2;

         p1 =  e[0]*B[1] - e[1]*B[0];
         p0 = -e[0]*B[0] - e[1]*B[1];

         d0[3] =   p1;
         d1[0] = - p1;
         d2[3] =   p0;
         d3[0] =   p0;

         B -= 8;
         e -= 8;
         d0 += 4;
         d2 += 4;
         d1 -= 4;
         d3 -= 4;
      }
   }

   temp_free(f,buf2);
   temp_alloc_restore(f,save_point);
}

#if 0
// this is the original version of the above code, if you want to optimize it from scratch
void inverse_mdct_naive(float *buffer, int n)
{
   float s;
   float A[1 << 12], B[1 << 12], C[1 << 11];
   int i,k,k2,k4, n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l;
   int n3_4 = n - n4, ld;
   // how can they claim this only uses N words?!
   // oh, because they're only used sparsely, whoops
   float u[1 << 13], X[1 << 13], v[1 << 13], w[1 << 13];
   // set up twiddle factors

   for (k=k2=0; k < n4; ++k,k2+=2) {
      A[k2  ] = (float)  cos(4*k*M_PI/n);
      A[k2+1] = (float) -sin(4*k*M_PI/n);
      B[k2  ] = (float)  cos((k2+1)*M_PI/n/2);
      B[k2+1] = (float)  sin((k2+1)*M_PI/n/2);
   }
   for (k=k2=0; k < n8; ++k,k2+=2) {
      C[k2  ] = (float)  cos(2*(k2+1)*M_PI/n);
      C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n);
   }

   // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio"
   // Note there are bugs in that pseudocode, presumably due to them attempting
   // to rename the arrays nicely rather than representing the way their actual
   // implementation bounces buffers back and forth. As a result, even in the
   // "some formulars corrected" version, a direct implementation fails. These
   // are noted below as "paper bug".

   // copy and reflect spectral data
   for (k=0; k < n2; ++k) u[k] = buffer[k];
   for (   ; k < n ; ++k) u[k] = -buffer[n - k - 1];
   // kernel from paper
   // step 1
   for (k=k2=k4=0; k < n4; k+=1, k2+=2, k4+=4) {
      v[n-k4-1] = (u[k4] - u[n-k4-1]) * A[k2]   - (u[k4+2] - u[n-k4-3])*A[k2+1];
      v[n-k4-3] = (u[k4] - u[n-k4-1]) * A[k2+1] + (u[k4+2] - u[n-k4-3])*A[k2];
   }
   // step 2
   for (k=k4=0; k < n8; k+=1, k4+=4) {
      w[n2+3+k4] = v[n2+3+k4] + v[k4+3];
      w[n2+1+k4] = v[n2+1+k4] + v[k4+1];
      w[k4+3]    = (v[n2+3+k4] - v[k4+3])*A[n2-4-k4] - (v[n2+1+k4]-v[k4+1])*A[n2-3-k4];
      w[k4+1]    = (v[n2+1+k4] - v[k4+1])*A[n2-4-k4] + (v[n2+3+k4]-v[k4+3])*A[n2-3-k4];
   }
   // step 3
   ld = ilog(n) - 1; // ilog is off-by-one from normal definitions
   for (l=0; l < ld-3; ++l) {
      int k0 = n >> (l+2), k1 = 1 << (l+3);
      int rlim = n >> (l+4), r4, r;
      int s2lim = 1 << (l+2), s2;
      for (r=r4=0; r < rlim; r4+=4,++r) {
         for (s2=0; s2 < s2lim; s2+=2) {
            u[n-1-k0*s2-r4] = w[n-1-k0*s2-r4] + w[n-1-k0*(s2+1)-r4];
            u[n-3-k0*s2-r4] = w[n-3-k0*s2-r4] + w[n-3-k0*(s2+1)-r4];
            u[n-1-k0*(s2+1)-r4] = (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1]
                                - (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1+1];
            u[n-3-k0*(s2+1)-r4] = (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1]
                                + (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1+1];
         }
      }
      if (l+1 < ld-3) {
         // paper bug: ping-ponging of u&w here is omitted
         memcpy(w, u, sizeof(u));
      }
   }

   // step 4
   for (i=0; i < n8; ++i) {
      int j = bit_reverse(i) >> (32-ld+3);
      assert(j < n8);
      if (i == j) {
         // paper bug: original code probably swapped in place; if copying,
         //            need to directly copy in this case
         int i8 = i << 3;
         v[i8+1] = u[i8+1];
         v[i8+3] = u[i8+3];
         v[i8+5] = u[i8+5];
         v[i8+7] = u[i8+7];
      } else if (i < j) {
         int i8 = i << 3, j8 = j << 3;
         v[j8+1] = u[i8+1], v[i8+1] = u[j8 + 1];
         v[j8+3] = u[i8+3], v[i8+3] = u[j8 + 3];
         v[j8+5] = u[i8+5], v[i8+5] = u[j8 + 5];
         v[j8+7] = u[i8+7], v[i8+7] = u[j8 + 7];
      }
   }
   // step 5
   for (k=0; k < n2; ++k) {
      w[k] = v[k*2+1];
   }
   // step 6
   for (k=k2=k4=0; k < n8; ++k, k2 += 2, k4 += 4) {
      u[n-1-k2] = w[k4];
      u[n-2-k2] = w[k4+1];
      u[n3_4 - 1 - k2] = w[k4+2];
      u[n3_4 - 2 - k2] = w[k4+3];
   }
   // step 7
   for (k=k2=0; k < n8; ++k, k2 += 2) {
      v[n2 + k2 ] = ( u[n2 + k2] + u[n-2-k2] + C[k2+1]*(u[n2+k2]-u[n-2-k2]) + C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2;
      v[n-2 - k2] = ( u[n2 + k2] + u[n-2-k2] - C[k2+1]*(u[n2+k2]-u[n-2-k2]) - C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2;
      v[n2+1+ k2] = ( u[n2+1+k2] - u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2;
      v[n-1 - k2] = (-u[n2+1+k2] + u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2;
   }
   // step 8
   for (k=k2=0; k < n4; ++k,k2 += 2) {
      X[k]      = v[k2+n2]*B[k2  ] + v[k2+1+n2]*B[k2+1];
      X[n2-1-k] = v[k2+n2]*B[k2+1] - v[k2+1+n2]*B[k2  ];
   }

   // decode kernel to output
   // determined the following value experimentally
   // (by first figuring out what made inverse_mdct_slow work); then matching that here
   // (probably vorbis encoder premultiplies by n or n/2, to save it on the decoder?)
   s = 0.5; // theoretically would be n4

   // [[[ note! the s value of 0.5 is compensated for by the B[] in the current code,
   //     so it needs to use the "old" B values to behave correctly, or else
   //     set s to 1.0 ]]]
   for (i=0; i < n4  ; ++i) buffer[i] = s * X[i+n4];
   for (   ; i < n3_4; ++i) buffer[i] = -s * X[n3_4 - i - 1];
   for (   ; i < n   ; ++i) buffer[i] = -s * X[i - n3_4];
}
#endif

static float *get_window(vorb *f, int len)
{
   len <<= 1;
   if (len == f->blocksize_0) return f->window[0];
   if (len == f->blocksize_1) return f->window[1];
   return NULL;
}

#ifndef STB_VORBIS_NO_DEFER_FLOOR
typedef int16 YTYPE;
#else
typedef int YTYPE;
#endif
static int do_floor(vorb *f, Mapping *map, int i, int n, float *target, YTYPE *finalY, uint8 *step2_flag)
{
   int n2 = n >> 1;
   int s = map->chan[i].mux, floor;
   floor = map->submap_floor[s];
   if (f->floor_types[floor] == 0) {
      return error(f, VORBIS_invalid_stream);
   } else {
      Floor1 *g = &f->floor_config[floor].floor1;
      int j,q;
      int lx = 0, ly = finalY[0] * g->floor1_multiplier;
      for (q=1; q < g->values; ++q) {
         j = g->sorted_order[q];
         #ifndef STB_VORBIS_NO_DEFER_FLOOR
         if (finalY[j] >= 0)
         #else
         if (step2_flag[j])
         #endif
         {
            int hy = finalY[j] * g->floor1_multiplier;
            int hx = g->Xlist[j];
            if (lx != hx)
               draw_line(target, lx,ly, hx,hy, n2);
            CHECK(f);
            lx = hx, ly = hy;
         }
      }
      if (lx < n2) {
         // optimization of: draw_line(target, lx,ly, n,ly, n2);
         for (j=lx; j < n2; ++j)
            LINE_OP(target[j], inverse_db_table[ly]);
         CHECK(f);
      }
   }
   return TRUE;
}

// The meaning of "left" and "right"
//
// For a given frame:
//     we compute samples from 0..n
//     window_center is n/2
//     we'll window and mix the samples from left_start to left_end with data from the previous frame
//     all of the samples from left_end to right_start can be output without mixing; however,
//        this interval is 0-length except when transitioning between short and long frames
//     all of the samples from right_start to right_end need to be mixed with the next frame,
//        which we don't have, so those get saved in a buffer
//     frame N's right_end-right_start, the number of samples to mix with the next frame,
//        has to be the same as frame N+1's left_end-left_start (which they are by
//        construction)

static int vorbis_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode)
{
   Mode *m;
   int i, n, prev, next, window_center;
   f->channel_buffer_start = f->channel_buffer_end = 0;

  retry:
   if (f->eof) return FALSE;
   if (!maybe_start_packet(f))
      return FALSE;
   // check packet type
   if (get_bits(f,1) != 0) {
      if (IS_PUSH_MODE(f))
         return error(f,VORBIS_bad_packet_type);
      while (EOP != get8_packet(f));
      goto retry;
   }

   if (f->alloc.alloc_buffer)
      assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);

   i = get_bits(f, ilog(f->mode_count-1));
   if (i == EOP) return FALSE;
   if (i >= f->mode_count) return FALSE;
   *mode = i;
   m = f->mode_config + i;
   if (m->blockflag) {
      n = f->blocksize_1;
      prev = get_bits(f,1);
      next = get_bits(f,1);
   } else {
      prev = next = 0;
      n = f->blocksize_0;
   }

// WINDOWING

   window_center = n >> 1;
   if (m->blockflag && !prev) {
      *p_left_start = (n - f->blocksize_0) >> 2;
      *p_left_end   = (n + f->blocksize_0) >> 2;
   } else {
      *p_left_start = 0;
      *p_left_end   = window_center;
   }
   if (m->blockflag && !next) {
      *p_right_start = (n*3 - f->blocksize_0) >> 2;
      *p_right_end   = (n*3 + f->blocksize_0) >> 2;
   } else {
      *p_right_start = window_center;
      *p_right_end   = n;
   }

   return TRUE;
}

static int vorbis_decode_packet_rest(vorb *f, int *len, Mode *m, int left_start, int left_end, int right_start, int right_end, int *p_left)
{
   Mapping *map;
   int i,j,k,n,n2;
   int zero_channel[256];
   int really_zero_channel[256];

// WINDOWING

   n = f->blocksize[m->blockflag];
   map = &f->mapping[m->mapping];

// FLOORS
   n2 = n >> 1;

   CHECK(f);

   for (i=0; i < f->channels; ++i) {
      int s = map->chan[i].mux, floor;
      zero_channel[i] = FALSE;
      floor = map->submap_floor[s];
      if (f->floor_types[floor] == 0) {
         return error(f, VORBIS_invalid_stream);
      } else {
         Floor1 *g = &f->floor_config[floor].floor1;
         if (get_bits(f, 1)) {
            short *finalY;
            uint8 step2_flag[256];
            static int range_list[4] = { 256, 128, 86, 64 };
            int range = range_list[g->floor1_multiplier-1];
            int offset = 2;
            finalY = f->finalY[i];
            finalY[0] = get_bits(f, ilog(range)-1);
            finalY[1] = get_bits(f, ilog(range)-1);
            for (j=0; j < g->partitions; ++j) {
               int pclass = g->partition_class_list[j];
               int cdim = g->class_dimensions[pclass];
               int cbits = g->class_subclasses[pclass];
               int csub = (1 << cbits)-1;
               int cval = 0;
               if (cbits) {
                  Codebook *c = f->codebooks + g->class_masterbooks[pclass];
                  DECODE(cval,f,c);
               }
               for (k=0; k < cdim; ++k) {
                  int book = g->subclass_books[pclass][cval & csub];
                  cval = cval >> cbits;
                  if (book >= 0) {
                     int temp;
                     Codebook *c = f->codebooks + book;
                     DECODE(temp,f,c);
                     finalY[offset++] = temp;
                  } else
                     finalY[offset++] = 0;
               }
            }
            if (f->valid_bits == INVALID_BITS) goto error; // behavior according to spec
            step2_flag[0] = step2_flag[1] = 1;
            for (j=2; j < g->values; ++j) {
               int low, high, pred, highroom, lowroom, room, val;
               low = g->neighbors[j][0];
               high = g->neighbors[j][1];
               //neighbors(g->Xlist, j, &low, &high);
               pred = predict_point(g->Xlist[j], g->Xlist[low], g->Xlist[high], finalY[low], finalY[high]);
               val = finalY[j];
               highroom = range - pred;
               lowroom = pred;
               if (highroom < lowroom)
                  room = highroom * 2;
               else
                  room = lowroom * 2;
               if (val) {
                  step2_flag[low] = step2_flag[high] = 1;
                  step2_flag[j] = 1;
                  if (val >= room)
                     if (highroom > lowroom)
                        finalY[j] = val - lowroom + pred;
                     else
                        finalY[j] = pred - val + highroom - 1;
                  else
                     if (val & 1)
                        finalY[j] = pred - ((val+1)>>1);
                     else
                        finalY[j] = pred + (val>>1);
               } else {
                  step2_flag[j] = 0;
                  finalY[j] = pred;
               }
            }

#ifdef STB_VORBIS_NO_DEFER_FLOOR
            do_floor(f, map, i, n, f->floor_buffers[i], finalY, step2_flag);
#else
            // defer final floor computation until _after_ residue
            for (j=0; j < g->values; ++j) {
               if (!step2_flag[j])
                  finalY[j] = -1;
            }
#endif
         } else {
           error:
            zero_channel[i] = TRUE;
         }
         // So we just defer everything else to later

         // at this point we've decoded the floor into buffer
      }
   }
   CHECK(f);
   // at this point we've decoded all floors

   if (f->alloc.alloc_buffer)
      assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);

   // re-enable coupled channels if necessary
   memcpy(really_zero_channel, zero_channel, sizeof(really_zero_channel[0]) * f->channels);
   for (i=0; i < map->coupling_steps; ++i)
      if (!zero_channel[map->chan[i].magnitude] || !zero_channel[map->chan[i].angle]) {
         zero_channel[map->chan[i].magnitude] = zero_channel[map->chan[i].angle] = FALSE;
      }

   CHECK(f);
// RESIDUE DECODE
   for (i=0; i < map->submaps; ++i) {
      float *residue_buffers[STB_VORBIS_MAX_CHANNELS];
      int r;
      uint8 do_not_decode[256];
      int ch = 0;
      for (j=0; j < f->channels; ++j) {
         if (map->chan[j].mux == i) {
            if (zero_channel[j]) {
               do_not_decode[ch] = TRUE;
               residue_buffers[ch] = NULL;
            } else {
               do_not_decode[ch] = FALSE;
               residue_buffers[ch] = f->channel_buffers[j];
            }
            ++ch;
         }
      }
      r = map->submap_residue[i];
      decode_residue(f, residue_buffers, ch, n2, r, do_not_decode);
   }

   if (f->alloc.alloc_buffer)
      assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);
   CHECK(f);

// INVERSE COUPLING
   for (i = map->coupling_steps-1; i >= 0; --i) {
      int n2 = n >> 1;
      float *m = f->channel_buffers[map->chan[i].magnitude];
      float *a = f->channel_buffers[map->chan[i].angle    ];
      for (j=0; j < n2; ++j) {
         float a2,m2;
         if (m[j] > 0)
            if (a[j] > 0)
               m2 = m[j], a2 = m[j] - a[j];
            else
               a2 = m[j], m2 = m[j] + a[j];
         else
            if (a[j] > 0)
               m2 = m[j], a2 = m[j] + a[j];
            else
               a2 = m[j], m2 = m[j] - a[j];
         m[j] = m2;
         a[j] = a2;
      }
   }
   CHECK(f);

   // finish decoding the floors
#ifndef STB_VORBIS_NO_DEFER_FLOOR
   for (i=0; i < f->channels; ++i) {
      if (really_zero_channel[i]) {
         memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2);
      } else {
         do_floor(f, map, i, n, f->channel_buffers[i], f->finalY[i], NULL);
      }
   }
#else
   for (i=0; i < f->channels; ++i) {
      if (really_zero_channel[i]) {
         memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2);
      } else {
         for (j=0; j < n2; ++j)
            f->channel_buffers[i][j] *= f->floor_buffers[i][j];
      }
   }
#endif

// INVERSE MDCT
   CHECK(f);
   for (i=0; i < f->channels; ++i)
      inverse_mdct(f->channel_buffers[i], n, f, m->blockflag);
   CHECK(f);

   // this shouldn't be necessary, unless we exited on an error
   // and want to flush to get to the next packet
   flush_packet(f);

   if (f->first_decode) {
      // assume we start so first non-discarded sample is sample 0
      // this isn't to spec, but spec would require us to read ahead
      // and decode the size of all current frames--could be done,
      // but presumably it's not a commonly used feature
      f->current_loc = -n2; // start of first frame is positioned for discard
      // we might have to discard samples "from" the next frame too,
      // if we're lapping a large block then a small at the start?
      f->discard_samples_deferred = n - right_end;
      f->current_loc_valid = TRUE;
      f->first_decode = FALSE;
   } else if (f->discard_samples_deferred) {
      if (f->discard_samples_deferred >= right_start - left_start) {
         f->discard_samples_deferred -= (right_start - left_start);
         left_start = right_start;
         *p_left = left_start;
      } else {
         left_start += f->discard_samples_deferred;
         *p_left = left_start;
         f->discard_samples_deferred = 0;
      }
   } else if (f->previous_length == 0 && f->current_loc_valid) {
      // we're recovering from a seek... that means we're going to discard
      // the samples from this packet even though we know our position from
      // the last page header, so we need to update the position based on
      // the discarded samples here
      // but wait, the code below is going to add this in itself even
      // on a discard, so we don't need to do it here...
   }

   // check if we have ogg information about the sample # for this packet
   if (f->last_seg_which == f->end_seg_with_known_loc) {
      // if we have a valid current loc, and this is final:
      if (f->current_loc_valid && (f->page_flag & PAGEFLAG_last_page)) {
         uint32 current_end = f->known_loc_for_packet;
         // then let's infer the size of the (probably) short final frame
         if (current_end < f->current_loc + (right_end-left_start)) {
            if (current_end < f->current_loc) {
               // negative truncation, that's impossible!
               *len = 0;
            } else {
               *len = current_end - f->current_loc;
            }
            *len += left_start; // this doesn't seem right, but has no ill effect on my test files
            if (*len > right_end) *len = right_end; // this should never happen
            f->current_loc += *len;
            return TRUE;
         }
      }
      // otherwise, just set our sample loc
      // guess that the ogg granule pos refers to the _middle_ of the
      // last frame?
      // set f->current_loc to the position of left_start
      f->current_loc = f->known_loc_for_packet - (n2-left_start);
      f->current_loc_valid = TRUE;
   }
   if (f->current_loc_valid)
      f->current_loc += (right_start - left_start);

   if (f->alloc.alloc_buffer)
      assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset);
   *len = right_end;  // ignore samples after the window goes to 0
   CHECK(f);

   return TRUE;
}

static int vorbis_decode_packet(vorb *f, int *len, int *p_left, int *p_right)
{
   int mode, left_end, right_end;
   if (!vorbis_decode_initial(f, p_left, &left_end, p_right, &right_end, &mode)) return 0;
   return vorbis_decode_packet_rest(f, len, f->mode_config + mode, *p_left, left_end, *p_right, right_end, p_left);
}

static int vorbis_finish_frame(stb_vorbis *f, int len, int left, int right)
{
   int prev,i,j;
   // we use right&left (the start of the right- and left-window sin()-regions)
   // to determine how much to return, rather than inferring from the rules
   // (same result, clearer code); 'left' indicates where our sin() window
   // starts, therefore where the previous window's right edge starts, and
   // therefore where to start mixing from the previous buffer. 'right'
   // indicates where our sin() ending-window starts, therefore that's where
   // we start saving, and where our returned-data ends.

   // mixin from previous window
   if (f->previous_length) {
      int i,j, n = f->previous_length;
      float *w = get_window(f, n);
      if (w == NULL) return 0;
      for (i=0; i < f->channels; ++i) {
         for (j=0; j < n; ++j)
            f->channel_buffers[i][left+j] =
               f->channel_buffers[i][left+j]*w[    j] +
               f->previous_window[i][     j]*w[n-1-j];
      }
   }

   prev = f->previous_length;

   // last half of this data becomes previous window
   f->previous_length = len - right;

   // @OPTIMIZE: could avoid this copy by double-buffering the
   // output (flipping previous_window with channel_buffers), but
   // then previous_window would have to be 2x as large, and
   // channel_buffers couldn't be temp mem (although they're NOT
   // currently temp mem, they could be (unless we want to level
   // performance by spreading out the computation))
   for (i=0; i < f->channels; ++i)
      for (j=0; right+j < len; ++j)
         f->previous_window[i][j] = f->channel_buffers[i][right+j];

   if (!prev)
      // there was no previous packet, so this data isn't valid...
      // this isn't entirely true, only the would-have-overlapped data
      // isn't valid, but this seems to be what the spec requires
      return 0;

   // truncate a short frame
   if (len < right) right = len;

   f->samples_output += right-left;

   return right - left;
}

static int vorbis_pump_first_frame(stb_vorbis *f)
{
   int len, right, left, res;
   res = vorbis_decode_packet(f, &len, &left, &right);
   if (res)
      vorbis_finish_frame(f, len, left, right);
   return res;
}

#ifndef STB_VORBIS_NO_PUSHDATA_API
static int is_whole_packet_present(stb_vorbis *f)
{
   // make sure that we have the packet available before continuing...
   // this requires a full ogg parse, but we know we can fetch from f->stream

   // instead of coding this out explicitly, we could save the current read state,
   // read the next packet with get8() until end-of-packet, check f->eof, then
   // reset the state? but that would be slower, esp. since we'd have over 256 bytes
   // of state to restore (primarily the page segment table)

   int s = f->next_seg, first = TRUE;
   uint8 *p = f->stream;

   if (s != -1) { // if we're not starting the packet with a 'continue on next page' flag
      for (; s < f->segment_count; ++s) {
         p += f->segments[s];
         if (f->segments[s] < 255)               // stop at first short segment
            break;
      }
      // either this continues, or it ends it...
      if (s == f->segment_count)
         s = -1; // set 'crosses page' flag
      if (p > f->stream_end)                     return error(f, VORBIS_need_more_data);
      first = FALSE;
   }
   for (; s == -1;) {
      uint8 *q;
      int n;

      // check that we have the page header ready
      if (p + 26 >= f->stream_end)               return error(f, VORBIS_need_more_data);
      // validate the page
      if (memcmp(p, ogg_page_header, 4))         return error(f, VORBIS_invalid_stream);
      if (p[4] != 0)                             return error(f, VORBIS_invalid_stream);
      if (first) { // the first segment must NOT have 'continued_packet', later ones MUST
         if (f->previous_length)
            if ((p[5] & PAGEFLAG_continued_packet))  return error(f, VORBIS_invalid_stream);
         // if no previous length, we're resynching, so we can come in on a continued-packet,
         // which we'll just drop
      } else {
         if (!(p[5] & PAGEFLAG_continued_packet)) return error(f, VORBIS_invalid_stream);
      }
      n = p[26]; // segment counts
      q = p+27;  // q points to segment table
      p = q + n; // advance past header
      // make sure we've read the segment table
      if (p > f->stream_end)                     return error(f, VORBIS_need_more_data);
      for (s=0; s < n; ++s) {
         p += q[s];
         if (q[s] < 255)
            break;
      }
      if (s == n)
         s = -1; // set 'crosses page' flag
      if (p > f->stream_end)                     return error(f, VORBIS_need_more_data);
      first = FALSE;
   }
   return TRUE;
}
#endif // !STB_VORBIS_NO_PUSHDATA_API

static int start_decoder(vorb *f)
{
   uint8 header[6], x,y;
   int len,i,j,k, max_submaps = 0;
   int longest_floorlist=0;

   // first page, first packet
   f->first_decode = TRUE;

   if (!start_page(f))                              return FALSE;
   // validate page flag
   if (!(f->page_flag & PAGEFLAG_first_page))       return error(f, VORBIS_invalid_first_page);
   if (f->page_flag & PAGEFLAG_last_page)           return error(f, VORBIS_invalid_first_page);
   if (f->page_flag & PAGEFLAG_continued_packet)    return error(f, VORBIS_invalid_first_page);
   // check for expected packet length
   if (f->segment_count != 1)                       return error(f, VORBIS_invalid_first_page);
   if (f->segments[0] != 30) {
      // check for the Ogg skeleton fishead identifying header to refine our error
      if (f->segments[0] == 64 &&
          getn(f, header, 6) &&
          header[0] == 'f' &&
          header[1] == 'i' &&
          header[2] == 's' &&
          header[3] == 'h' &&
          header[4] == 'e' &&
          header[5] == 'a' &&
          get8(f)   == 'd' &&
          get8(f)   == '\0')                        return error(f, VORBIS_ogg_skeleton_not_supported);
      else
                                                    return error(f, VORBIS_invalid_first_page);
   }

   // read packet
   // check packet header
   if (get8(f) != VORBIS_packet_id)                 return error(f, VORBIS_invalid_first_page);
   if (!getn(f, header, 6))                         return error(f, VORBIS_unexpected_eof);
   if (!vorbis_validate(header))                    return error(f, VORBIS_invalid_first_page);
   // vorbis_version
   if (get32(f) != 0)                               return error(f, VORBIS_invalid_first_page);
   f->channels = get8(f); if (!f->channels)         return error(f, VORBIS_invalid_first_page);
   if (f->channels > STB_VORBIS_MAX_CHANNELS)       return error(f, VORBIS_too_many_channels);
   f->sample_rate = get32(f); if (!f->sample_rate)  return error(f, VORBIS_invalid_first_page);
   get32(f); // bitrate_maximum
   get32(f); // bitrate_nominal
   get32(f); // bitrate_minimum
   x = get8(f);
   {
      int log0,log1;
      log0 = x & 15;
      log1 = x >> 4;
      f->blocksize_0 = 1 << log0;
      f->blocksize_1 = 1 << log1;
      if (log0 < 6 || log0 > 13)                       return error(f, VORBIS_invalid_setup);
      if (log1 < 6 || log1 > 13)                       return error(f, VORBIS_invalid_setup);
      if (log0 > log1)                                 return error(f, VORBIS_invalid_setup);
   }

   // framing_flag
   x = get8(f);
   if (!(x & 1))                                    return error(f, VORBIS_invalid_first_page);

   // second packet!
   if (!start_page(f))                              return FALSE;

   if (!start_packet(f))                            return FALSE;

   if (!next_segment(f))                            return FALSE;

   if (get8_packet(f) != VORBIS_packet_comment)            return error(f, VORBIS_invalid_setup);
   for (i=0; i < 6; ++i) header[i] = get8_packet(f);
   if (!vorbis_validate(header))                    return error(f, VORBIS_invalid_setup);
   //file vendor
   len = get32_packet(f);
   f->vendor = (char*)setup_malloc(f, sizeof(char) * (len+1));
   for(i=0; i < len; ++i) {
      f->vendor[i] = get8_packet(f);
   }
   f->vendor[len] = (char)'\0';
   //user comments
   f->comment_list_length = get32_packet(f);
   f->comment_list = (char**)setup_malloc(f, sizeof(char*) * (f->comment_list_length));

   for(i=0; i < f->comment_list_length; ++i) {
      len = get32_packet(f);
      f->comment_list[i] = (char*)setup_malloc(f, sizeof(char) * (len+1));

      for(j=0; j < len; ++j) {
         f->comment_list[i][j] = get8_packet(f);
      }
      f->comment_list[i][len] = (char)'\0';
   }

   // framing_flag
   x = get8_packet(f);
   if (!(x & 1))                                    return error(f, VORBIS_invalid_setup);


   skip(f, f->bytes_in_seg);
   f->bytes_in_seg = 0;

   do {
      len = next_segment(f);
      skip(f, len);
      f->bytes_in_seg = 0;
   } while (len);

   // third packet!
   if (!start_packet(f))                            return FALSE;

   #ifndef STB_VORBIS_NO_PUSHDATA_API
   if (IS_PUSH_MODE(f)) {
      if (!is_whole_packet_present(f)) {
         // convert error in ogg header to write type
         if (f->error == VORBIS_invalid_stream)
            f->error = VORBIS_invalid_setup;
         return FALSE;
      }
   }
   #endif

   crc32_init(); // always init it, to avoid multithread race conditions

   if (get8_packet(f) != VORBIS_packet_setup)       return error(f, VORBIS_invalid_setup);
   for (i=0; i < 6; ++i) header[i] = get8_packet(f);
   if (!vorbis_validate(header))                    return error(f, VORBIS_invalid_setup);

   // codebooks

   f->codebook_count = get_bits(f,8) + 1;
   f->codebooks = (Codebook *) setup_malloc(f, sizeof(*f->codebooks) * f->codebook_count);
   if (f->codebooks == NULL)                        return error(f, VORBIS_outofmem);
   memset(f->codebooks, 0, sizeof(*f->codebooks) * f->codebook_count);
   for (i=0; i < f->codebook_count; ++i) {
      uint32 *values;
      int ordered, sorted_count;
      int total=0;
      uint8 *lengths;
      Codebook *c = f->codebooks+i;
      CHECK(f);
      x = get_bits(f, 8); if (x != 0x42)            return error(f, VORBIS_invalid_setup);
      x = get_bits(f, 8); if (x != 0x43)            return error(f, VORBIS_invalid_setup);
      x = get_bits(f, 8); if (x != 0x56)            return error(f, VORBIS_invalid_setup);
      x = get_bits(f, 8);
      c->dimensions = (get_bits(f, 8)<<8) + x;
      x = get_bits(f, 8);
      y = get_bits(f, 8);
      c->entries = (get_bits(f, 8)<<16) + (y<<8) + x;
      ordered = get_bits(f,1);
      c->sparse = ordered ? 0 : get_bits(f,1);

      if (c->dimensions == 0 && c->entries != 0)    return error(f, VORBIS_invalid_setup);

      if (c->sparse)
         lengths = (uint8 *) setup_temp_malloc(f, c->entries);
      else
         lengths = c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries);

      if (!lengths) return error(f, VORBIS_outofmem);

      if (ordered) {
         int current_entry = 0;
         int current_length = get_bits(f,5) + 1;
         while (current_entry < c->entries) {
            int limit = c->entries - current_entry;
            int n = get_bits(f, ilog(limit));
            if (current_length >= 32) return error(f, VORBIS_invalid_setup);
            if (current_entry + n > (int) c->entries) { return error(f, VORBIS_invalid_setup); }
            memset(lengths + current_entry, current_length, n);
            current_entry += n;
            ++current_length;
         }
      } else {
         for (j=0; j < c->entries; ++j) {
            int present = c->sparse ? get_bits(f,1) : 1;
            if (present) {
               lengths[j] = get_bits(f, 5) + 1;
               ++total;
               if (lengths[j] == 32)
                  return error(f, VORBIS_invalid_setup);
            } else {
               lengths[j] = NO_CODE;
            }
         }
      }

      if (c->sparse && total >= c->entries >> 2) {
         // convert sparse items to non-sparse!
         if (c->entries > (int) f->setup_temp_memory_required)
            f->setup_temp_memory_required = c->entries;

         c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries);
         if (c->codeword_lengths == NULL) return error(f, VORBIS_outofmem);
         memcpy(c->codeword_lengths, lengths, c->entries);
         setup_temp_free(f, lengths, c->entries); // note this is only safe if there have been no intervening temp mallocs!
         lengths = c->codeword_lengths;
         c->sparse = 0;
      }

      // compute the size of the sorted tables
      if (c->sparse) {
         sorted_count = total;
      } else {
         sorted_count = 0;
         #ifndef STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH
         for (j=0; j < c->entries; ++j)
            if (lengths[j] > STB_VORBIS_FAST_HUFFMAN_LENGTH && lengths[j] != NO_CODE)
               ++sorted_count;
         #endif
      }

      c->sorted_entries = sorted_count;
      values = NULL;

      CHECK(f);
      if (!c->sparse) {
         c->codewords = (uint32 *) setup_malloc(f, sizeof(c->codewords[0]) * c->entries);
         if (!c->codewords)                  return error(f, VORBIS_outofmem);
      } else {
         unsigned int size;
         if (c->sorted_entries) {
            c->codeword_lengths = (uint8 *) setup_malloc(f, c->sorted_entries);
            if (!c->codeword_lengths)           return error(f, VORBIS_outofmem);
            c->codewords = (uint32 *) setup_temp_malloc(f, sizeof(*c->codewords) * c->sorted_entries);
            if (!c->codewords)                  return error(f, VORBIS_outofmem);
            values = (uint32 *) setup_temp_malloc(f, sizeof(*values) * c->sorted_entries);
            if (!values)                        return error(f, VORBIS_outofmem);
         }
         size = c->entries + (sizeof(*c->codewords) + sizeof(*values)) * c->sorted_entries;
         if (size > f->setup_temp_memory_required)
            f->setup_temp_memory_required = size;
      }

      if (!compute_codewords(c, lengths, c->entries, values)) {
         if (c->sparse) setup_temp_free(f, values, 0);
         return error(f, VORBIS_invalid_setup);
      }

      if (c->sorted_entries) {
         // allocate an extra slot for sentinels
         c->sorted_codewords = (uint32 *) setup_malloc(f, sizeof(*c->sorted_codewords) * (c->sorted_entries+1));
         if (c->sorted_codewords == NULL) return error(f, VORBIS_outofmem);
         // allocate an extra slot at the front so that c->sorted_values[-1] is defined
         // so that we can catch that case without an extra if
         c->sorted_values    = ( int   *) setup_malloc(f, sizeof(*c->sorted_values   ) * (c->sorted_entries+1));
         if (c->sorted_values == NULL) return error(f, VORBIS_outofmem);
         ++c->sorted_values;
         c->sorted_values[-1] = -1;
         compute_sorted_huffman(c, lengths, values);
      }

      if (c->sparse) {
         setup_temp_free(f, values, sizeof(*values)*c->sorted_entries);
         setup_temp_free(f, c->codewords, sizeof(*c->codewords)*c->sorted_entries);
         setup_temp_free(f, lengths, c->entries);
         c->codewords = NULL;
      }

      compute_accelerated_huffman(c);

      CHECK(f);
      c->lookup_type = get_bits(f, 4);
      if (c->lookup_type > 2) return error(f, VORBIS_invalid_setup);
      if (c->lookup_type > 0) {
         uint16 *mults;
         c->minimum_value = float32_unpack(get_bits(f, 32));
         c->delta_value = float32_unpack(get_bits(f, 32));
         c->value_bits = get_bits(f, 4)+1;
         c->sequence_p = get_bits(f,1);
         if (c->lookup_type == 1) {
            int values = lookup1_values(c->entries, c->dimensions);
            if (values < 0) return error(f, VORBIS_invalid_setup);
            c->lookup_values = (uint32) values;
         } else {
            c->lookup_values = c->entries * c->dimensions;
         }
         if (c->lookup_values == 0) return error(f, VORBIS_invalid_setup);
         mults = (uint16 *) setup_temp_malloc(f, sizeof(mults[0]) * c->lookup_values);
         if (mults == NULL) return error(f, VORBIS_outofmem);
         for (j=0; j < (int) c->lookup_values; ++j) {
            int q = get_bits(f, c->value_bits);
            if (q == EOP) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_invalid_setup); }
            mults[j] = q;
         }

#ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
         if (c->lookup_type == 1) {
            int len, sparse = c->sparse;
            float last=0;
            // pre-expand the lookup1-style multiplicands, to avoid a divide in the inner loop
            if (sparse) {
               if (c->sorted_entries == 0) goto skip;
               c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->sorted_entries * c->dimensions);
            } else
               c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->entries        * c->dimensions);
            if (c->multiplicands == NULL) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); }
            len = sparse ? c->sorted_entries : c->entries;
            for (j=0; j < len; ++j) {
               unsigned int z = sparse ? c->sorted_values[j] : j;
               unsigned int div=1;
               for (k=0; k < c->dimensions; ++k) {
                  int off = (z / div) % c->lookup_values;
                  float val = mults[off];
                  val = mults[off]*c->delta_value + c->minimum_value + last;
                  c->multiplicands[j*c->dimensions + k] = val;
                  if (c->sequence_p)
                     last = val;
                  if (k+1 < c->dimensions) {
                     if (div > UINT_MAX / (unsigned int) c->lookup_values) {
                        setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values);
                        return error(f, VORBIS_invalid_setup);
                     }
                     div *= c->lookup_values;
                  }
               }
            }
            c->lookup_type = 2;
         }
         else
#endif
         {
            float last=0;
            CHECK(f);
            c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->lookup_values);
            if (c->multiplicands == NULL) { setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); }
            for (j=0; j < (int) c->lookup_values; ++j) {
               float val = mults[j] * c->delta_value + c->minimum_value + last;
               c->multiplicands[j] = val;
               if (c->sequence_p)
                  last = val;
            }
         }
#ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK
        skip:;
#endif
         setup_temp_free(f, mults, sizeof(mults[0])*c->lookup_values);

         CHECK(f);
      }
      CHECK(f);
   }

   // time domain transfers (notused)

   x = get_bits(f, 6) + 1;
   for (i=0; i < x; ++i) {
      uint32 z = get_bits(f, 16);
      if (z != 0) return error(f, VORBIS_invalid_setup);
   }

   // Floors
   f->floor_count = get_bits(f, 6)+1;
   f->floor_config = (Floor *)  setup_malloc(f, f->floor_count * sizeof(*f->floor_config));
   if (f->floor_config == NULL) return error(f, VORBIS_outofmem);
   for (i=0; i < f->floor_count; ++i) {
      f->floor_types[i] = get_bits(f, 16);
      if (f->floor_types[i] > 1) return error(f, VORBIS_invalid_setup);
      if (f->floor_types[i] == 0) {
         Floor0 *g = &f->floor_config[i].floor0;
         g->order = get_bits(f,8);
         g->rate = get_bits(f,16);
         g->bark_map_size = get_bits(f,16);
         g->amplitude_bits = get_bits(f,6);
         g->amplitude_offset = get_bits(f,8);
         g->number_of_books = get_bits(f,4) + 1;
         for (j=0; j < g->number_of_books; ++j)
            g->book_list[j] = get_bits(f,8);
         return error(f, VORBIS_feature_not_supported);
      } else {
         stbv__floor_ordering p[31*8+2];
         Floor1 *g = &f->floor_config[i].floor1;
         int max_class = -1;
         g->partitions = get_bits(f, 5);
         for (j=0; j < g->partitions; ++j) {
            g->partition_class_list[j] = get_bits(f, 4);
            if (g->partition_class_list[j] > max_class)
               max_class = g->partition_class_list[j];
         }
         for (j=0; j <= max_class; ++j) {
            g->class_dimensions[j] = get_bits(f, 3)+1;
            g->class_subclasses[j] = get_bits(f, 2);
            if (g->class_subclasses[j]) {
               g->class_masterbooks[j] = get_bits(f, 8);
               if (g->class_masterbooks[j] >= f->codebook_count) return error(f, VORBIS_invalid_setup);
            }
            for (k=0; k < 1 << g->class_subclasses[j]; ++k) {
               g->subclass_books[j][k] = get_bits(f,8)-1;
               if (g->subclass_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup);
            }
         }
         g->floor1_multiplier = get_bits(f,2)+1;
         g->rangebits = get_bits(f,4);
         g->Xlist[0] = 0;
         g->Xlist[1] = 1 << g->rangebits;
         g->values = 2;
         for (j=0; j < g->partitions; ++j) {
            int c = g->partition_class_list[j];
            for (k=0; k < g->class_dimensions[c]; ++k) {
               g->Xlist[g->values] = get_bits(f, g->rangebits);
               ++g->values;
            }
         }
         // precompute the sorting
         for (j=0; j < g->values; ++j) {
            p[j].x = g->Xlist[j];
            p[j].id = j;
         }
         qsort(p, g->values, sizeof(p[0]), point_compare);
         for (j=0; j < g->values-1; ++j)
            if (p[j].x == p[j+1].x)
               return error(f, VORBIS_invalid_setup);
         for (j=0; j < g->values; ++j)
            g->sorted_order[j] = (uint8) p[j].id;
         // precompute the neighbors
         for (j=2; j < g->values; ++j) {
            int low = 0,hi = 0;
            neighbors(g->Xlist, j, &low,&hi);
            g->neighbors[j][0] = low;
            g->neighbors[j][1] = hi;
         }

         if (g->values > longest_floorlist)
            longest_floorlist = g->values;
      }
   }

   // Residue
   f->residue_count = get_bits(f, 6)+1;
   f->residue_config = (Residue *) setup_malloc(f, f->residue_count * sizeof(f->residue_config[0]));
   if (f->residue_config == NULL) return error(f, VORBIS_outofmem);
   memset(f->residue_config, 0, f->residue_count * sizeof(f->residue_config[0]));
   for (i=0; i < f->residue_count; ++i) {
      uint8 residue_cascade[64];
      Residue *r = f->residue_config+i;
      f->residue_types[i] = get_bits(f, 16);
      if (f->residue_types[i] > 2) return error(f, VORBIS_invalid_setup);
      r->begin = get_bits(f, 24);
      r->end = get_bits(f, 24);
      if (r->end < r->begin) return error(f, VORBIS_invalid_setup);
      r->part_size = get_bits(f,24)+1;
      r->classifications = get_bits(f,6)+1;
      r->classbook = get_bits(f,8);
      if (r->classbook >= f->codebook_count) return error(f, VORBIS_invalid_setup);
      for (j=0; j < r->classifications; ++j) {
         uint8 high_bits=0;
         uint8 low_bits=get_bits(f,3);
         if (get_bits(f,1))
            high_bits = get_bits(f,5);
         residue_cascade[j] = high_bits*8 + low_bits;
      }
      r->residue_books = (short (*)[8]) setup_malloc(f, sizeof(r->residue_books[0]) * r->classifications);
      if (r->residue_books == NULL) return error(f, VORBIS_outofmem);
      for (j=0; j < r->classifications; ++j) {
         for (k=0; k < 8; ++k) {
            if (residue_cascade[j] & (1 << k)) {
               r->residue_books[j][k] = get_bits(f, 8);
               if (r->residue_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup);
            } else {
               r->residue_books[j][k] = -1;
            }
         }
      }
      // precompute the classifications[] array to avoid inner-loop mod/divide
      // call it 'classdata' since we already have r->classifications
      r->classdata = (uint8 **) setup_malloc(f, sizeof(*r->classdata) * f->codebooks[r->classbook].entries);
      if (!r->classdata) return error(f, VORBIS_outofmem);
      memset(r->classdata, 0, sizeof(*r->classdata) * f->codebooks[r->classbook].entries);
      for (j=0; j < f->codebooks[r->classbook].entries; ++j) {
         int classwords = f->codebooks[r->classbook].dimensions;
         int temp = j;
         r->classdata[j] = (uint8 *) setup_malloc(f, sizeof(r->classdata[j][0]) * classwords);
         if (r->classdata[j] == NULL) return error(f, VORBIS_outofmem);
         for (k=classwords-1; k >= 0; --k) {
            r->classdata[j][k] = temp % r->classifications;
            temp /= r->classifications;
         }
      }
   }

   f->mapping_count = get_bits(f,6)+1;
   f->mapping = (Mapping *) setup_malloc(f, f->mapping_count * sizeof(*f->mapping));
   if (f->mapping == NULL) return error(f, VORBIS_outofmem);
   memset(f->mapping, 0, f->mapping_count * sizeof(*f->mapping));
   for (i=0; i < f->mapping_count; ++i) {
      Mapping *m = f->mapping + i;
      int mapping_type = get_bits(f,16);
      if (mapping_type != 0) return error(f, VORBIS_invalid_setup);
      m->chan = (MappingChannel *) setup_malloc(f, f->channels * sizeof(*m->chan));
      if (m->chan == NULL) return error(f, VORBIS_outofmem);
      if (get_bits(f,1))
         m->submaps = get_bits(f,4)+1;
      else
         m->submaps = 1;
      if (m->submaps > max_submaps)
         max_submaps = m->submaps;
      if (get_bits(f,1)) {
         m->coupling_steps = get_bits(f,8)+1;
         if (m->coupling_steps > f->channels) return error(f, VORBIS_invalid_setup);
         for (k=0; k < m->coupling_steps; ++k) {
            m->chan[k].magnitude = get_bits(f, ilog(f->channels-1));
            m->chan[k].angle = get_bits(f, ilog(f->channels-1));
            if (m->chan[k].magnitude >= f->channels)        return error(f, VORBIS_invalid_setup);
            if (m->chan[k].angle     >= f->channels)        return error(f, VORBIS_invalid_setup);
            if (m->chan[k].magnitude == m->chan[k].angle)   return error(f, VORBIS_invalid_setup);
         }
      } else
         m->coupling_steps = 0;

      // reserved field
      if (get_bits(f,2)) return error(f, VORBIS_invalid_setup);
      if (m->submaps > 1) {
         for (j=0; j < f->channels; ++j) {
            m->chan[j].mux = get_bits(f, 4);
            if (m->chan[j].mux >= m->submaps)                return error(f, VORBIS_invalid_setup);
         }
      } else
         // @SPECIFICATION: this case is missing from the spec
         for (j=0; j < f->channels; ++j)
            m->chan[j].mux = 0;

      for (j=0; j < m->submaps; ++j) {
         get_bits(f,8); // discard
         m->submap_floor[j] = get_bits(f,8);
         m->submap_residue[j] = get_bits(f,8);
         if (m->submap_floor[j] >= f->floor_count)      return error(f, VORBIS_invalid_setup);
         if (m->submap_residue[j] >= f->residue_count)  return error(f, VORBIS_invalid_setup);
      }
   }

   // Modes
   f->mode_count = get_bits(f, 6)+1;
   for (i=0; i < f->mode_count; ++i) {
      Mode *m = f->mode_config+i;
      m->blockflag = get_bits(f,1);
      m->windowtype = get_bits(f,16);
      m->transformtype = get_bits(f,16);
      m->mapping = get_bits(f,8);
      if (m->windowtype != 0)                 return error(f, VORBIS_invalid_setup);
      if (m->transformtype != 0)              return error(f, VORBIS_invalid_setup);
      if (m->mapping >= f->mapping_count)     return error(f, VORBIS_invalid_setup);
   }

   flush_packet(f);

   f->previous_length = 0;

   for (i=0; i < f->channels; ++i) {
      f->channel_buffers[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1);
      f->previous_window[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2);
      f->finalY[i]          = (int16 *) setup_malloc(f, sizeof(int16) * longest_floorlist);
      if (f->channel_buffers[i] == NULL || f->previous_window[i] == NULL || f->finalY[i] == NULL) return error(f, VORBIS_outofmem);
      memset(f->channel_buffers[i], 0, sizeof(float) * f->blocksize_1);
      #ifdef STB_VORBIS_NO_DEFER_FLOOR
      f->floor_buffers[i]   = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2);
      if (f->floor_buffers[i] == NULL) return error(f, VORBIS_outofmem);
      #endif
   }

   if (!init_blocksize(f, 0, f->blocksize_0)) return FALSE;
   if (!init_blocksize(f, 1, f->blocksize_1)) return FALSE;
   f->blocksize[0] = f->blocksize_0;
   f->blocksize[1] = f->blocksize_1;

#ifdef STB_VORBIS_DIVIDE_TABLE
   if (integer_divide_table[1][1]==0)
      for (i=0; i < DIVTAB_NUMER; ++i)
         for (j=1; j < DIVTAB_DENOM; ++j)
            integer_divide_table[i][j] = i / j;
#endif

   // compute how much temporary memory is needed

   // 1.
   {
      uint32 imdct_mem = (f->blocksize_1 * sizeof(float) >> 1);
      uint32 classify_mem;
      int i,max_part_read=0;
      for (i=0; i < f->residue_count; ++i) {
         Residue *r = f->residue_config + i;
         unsigned int actual_size = f->blocksize_1 / 2;
         unsigned int limit_r_begin = r->begin < actual_size ? r->begin : actual_size;
         unsigned int limit_r_end   = r->end   < actual_size ? r->end   : actual_size;
         int n_read = limit_r_end - limit_r_begin;
         int part_read = n_read / r->part_size;
         if (part_read > max_part_read)
            max_part_read = part_read;
      }
      #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE
      classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(uint8 *));
      #else
      classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(int *));
      #endif

      // maximum reasonable partition size is f->blocksize_1

      f->temp_memory_required = classify_mem;
      if (imdct_mem > f->temp_memory_required)
         f->temp_memory_required = imdct_mem;
   }


   if (f->alloc.alloc_buffer) {
      assert(f->temp_offset == f->alloc.alloc_buffer_length_in_bytes);
      // check if there's enough temp memory so we don't error later
      if (f->setup_offset + sizeof(*f) + f->temp_memory_required > (unsigned) f->temp_offset)
         return error(f, VORBIS_outofmem);
   }

   // @TODO: stb_vorbis_seek_start expects first_audio_page_offset to point to a page
   // without PAGEFLAG_continued_packet, so this either points to the first page, or
   // the page after the end of the headers. It might be cleaner to point to a page
   // in the middle of the headers, when that's the page where the first audio packet
   // starts, but we'd have to also correctly skip the end of any continued packet in
   // stb_vorbis_seek_start.
   if (f->next_seg == -1) {
      f->first_audio_page_offset = stb_vorbis_get_file_offset(f);
   } else {
      f->first_audio_page_offset = 0;
   }

   return TRUE;
}

static void vorbis_deinit(stb_vorbis *p)
{
   int i,j;

   setup_free(p, p->vendor);
   for (i=0; i < p->comment_list_length; ++i) {
      setup_free(p, p->comment_list[i]);
   }
   setup_free(p, p->comment_list);

   if (p->residue_config) {
      for (i=0; i < p->residue_count; ++i) {
         Residue *r = p->residue_config+i;
         if (r->classdata) {
            for (j=0; j < p->codebooks[r->classbook].entries; ++j)
               setup_free(p, r->classdata[j]);
            setup_free(p, r->classdata);
         }
         setup_free(p, r->residue_books);
      }
   }

   if (p->codebooks) {
      CHECK(p);
      for (i=0; i < p->codebook_count; ++i) {
         Codebook *c = p->codebooks + i;
         setup_free(p, c->codeword_lengths);
         setup_free(p, c->multiplicands);
         setup_free(p, c->codewords);
         setup_free(p, c->sorted_codewords);
         // c->sorted_values[-1] is the first entry in the array
         setup_free(p, c->sorted_values ? c->sorted_values-1 : NULL);
      }
      setup_free(p, p->codebooks);
   }
   setup_free(p, p->floor_config);
   setup_free(p, p->residue_config);
   if (p->mapping) {
      for (i=0; i < p->mapping_count; ++i)
         setup_free(p, p->mapping[i].chan);
      setup_free(p, p->mapping);
   }
   CHECK(p);
   for (i=0; i < p->channels && i < STB_VORBIS_MAX_CHANNELS; ++i) {
      setup_free(p, p->channel_buffers[i]);
      setup_free(p, p->previous_window[i]);
      #ifdef STB_VORBIS_NO_DEFER_FLOOR
      setup_free(p, p->floor_buffers[i]);
      #endif
      setup_free(p, p->finalY[i]);
   }
   for (i=0; i < 2; ++i) {
      setup_free(p, p->A[i]);
      setup_free(p, p->B[i]);
      setup_free(p, p->C[i]);
      setup_free(p, p->window[i]);
      setup_free(p, p->bit_reverse[i]);
   }
   #ifndef STB_VORBIS_NO_STDIO
   if (p->close_on_free) fclose(p->f);
   #endif
}

void stb_vorbis_close(stb_vorbis *p)
{
   if (p == NULL) return;
   vorbis_deinit(p);
   setup_free(p,p);
}

static void vorbis_init(stb_vorbis *p, const stb_vorbis_alloc *z)
{
   memset(p, 0, sizeof(*p)); // NULL out all malloc'd pointers to start
   if (z) {
      p->alloc = *z;
      p->alloc.alloc_buffer_length_in_bytes = (p->alloc.alloc_buffer_length_in_bytes+3) & ~3;
      p->temp_offset = p->alloc.alloc_buffer_length_in_bytes;
   }
   p->eof = 0;
   p->error = VORBIS__no_error;
   p->stream = NULL;
   p->codebooks = NULL;
   p->page_crc_tests = -1;
   #ifndef STB_VORBIS_NO_STDIO
   p->close_on_free = FALSE;
   p->f = NULL;
   #endif
}

int stb_vorbis_get_sample_offset(stb_vorbis *f)
{
   if (f->current_loc_valid)
      return f->current_loc;
   else
      return -1;
}

stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f)
{
   stb_vorbis_info d;
   d.channels = f->channels;
   d.sample_rate = f->sample_rate;
   d.setup_memory_required = f->setup_memory_required;
   d.setup_temp_memory_required = f->setup_temp_memory_required;
   d.temp_memory_required = f->temp_memory_required;
   d.max_frame_size = f->blocksize_1 >> 1;
   return d;
}

stb_vorbis_comment stb_vorbis_get_comment(stb_vorbis *f)
{
   stb_vorbis_comment d;
   d.vendor = f->vendor;
   d.comment_list_length = f->comment_list_length;
   d.comment_list = f->comment_list;
   return d;
}

int stb_vorbis_get_error(stb_vorbis *f)
{
   int e = f->error;
   f->error = VORBIS__no_error;
   return e;
}

static stb_vorbis * vorbis_alloc(stb_vorbis *f)
{
   stb_vorbis *p = (stb_vorbis *) setup_malloc(f, sizeof(*p));
   return p;
}

#ifndef STB_VORBIS_NO_PUSHDATA_API

void stb_vorbis_flush_pushdata(stb_vorbis *f)
{
   f->previous_length = 0;
   f->page_crc_tests  = 0;
   f->discard_samples_deferred = 0;
   f->current_loc_valid = FALSE;
   f->first_decode = FALSE;
   f->samples_output = 0;
   f->channel_buffer_start = 0;
   f->channel_buffer_end = 0;
}

static int vorbis_search_for_page_pushdata(vorb *f, uint8 *data, int data_len)
{
   int i,n;
   for (i=0; i < f->page_crc_tests; ++i)
      f->scan[i].bytes_done = 0;

   // if we have room for more scans, search for them first, because
   // they may cause us to stop early if their header is incomplete
   if (f->page_crc_tests < STB_VORBIS_PUSHDATA_CRC_COUNT) {
      if (data_len < 4) return 0;
      data_len -= 3; // need to look for 4-byte sequence, so don't miss
                     // one that straddles a boundary
      for (i=0; i < data_len; ++i) {
         if (data[i] == 0x4f) {
            if (0==memcmp(data+i, ogg_page_header, 4)) {
               int j,len;
               uint32 crc;
               // make sure we have the whole page header
               if (i+26 >= data_len || i+27+data[i+26] >= data_len) {
                  // only read up to this page start, so hopefully we'll
                  // have the whole page header start next time
                  data_len = i;
                  break;
               }
               // ok, we have it all; compute the length of the page
               len = 27 + data[i+26];
               for (j=0; j < data[i+26]; ++j)
                  len += data[i+27+j];
               // scan everything up to the embedded crc (which we must 0)
               crc = 0;
               for (j=0; j < 22; ++j)
                  crc = crc32_update(crc, data[i+j]);
               // now process 4 0-bytes
               for (   ; j < 26; ++j)
                  crc = crc32_update(crc, 0);
               // len is the total number of bytes we need to scan
               n = f->page_crc_tests++;
               f->scan[n].bytes_left = len-j;
               f->scan[n].crc_so_far = crc;
               f->scan[n].goal_crc = data[i+22] + (data[i+23] << 8) + (data[i+24]<<16) + (data[i+25]<<24);
               // if the last frame on a page is continued to the next, then
               // we can't recover the sample_loc immediately
               if (data[i+27+data[i+26]-1] == 255)
                  f->scan[n].sample_loc = ~0;
               else
                  f->scan[n].sample_loc = data[i+6] + (data[i+7] << 8) + (data[i+ 8]<<16) + (data[i+ 9]<<24);
               f->scan[n].bytes_done = i+j;
               if (f->page_crc_tests == STB_VORBIS_PUSHDATA_CRC_COUNT)
                  break;
               // keep going if we still have room for more
            }
         }
      }
   }

   for (i=0; i < f->page_crc_tests;) {
      uint32 crc;
      int j;
      int n = f->scan[i].bytes_done;
      int m = f->scan[i].bytes_left;
      if (m > data_len - n) m = data_len - n;
      // m is the bytes to scan in the current chunk
      crc = f->scan[i].crc_so_far;
      for (j=0; j < m; ++j)
         crc = crc32_update(crc, data[n+j]);
      f->scan[i].bytes_left -= m;
      f->scan[i].crc_so_far = crc;
      if (f->scan[i].bytes_left == 0) {
         // does it match?
         if (f->scan[i].crc_so_far == f->scan[i].goal_crc) {
            // Houston, we have page
            data_len = n+m; // consumption amount is wherever that scan ended
            f->page_crc_tests = -1; // drop out of page scan mode
            f->previous_length = 0; // decode-but-don't-output one frame
            f->next_seg = -1;       // start a new page
            f->current_loc = f->scan[i].sample_loc; // set the current sample location
                                    // to the amount we'd have decoded had we decoded this page
            f->current_loc_valid = f->current_loc != ~0U;
            return data_len;
         }
         // delete entry
         f->scan[i] = f->scan[--f->page_crc_tests];
      } else {
         ++i;
      }
   }

   return data_len;
}

// return value: number of bytes we used
int stb_vorbis_decode_frame_pushdata(
         stb_vorbis *f,                   // the file we're decoding
         const uint8 *data, int data_len, // the memory available for decoding
         int *channels,                   // place to write number of float * buffers
         float ***output,                 // place to write float ** array of float * buffers
         int *samples                     // place to write number of output samples
     )
{
   int i;
   int len,right,left;

   if (!IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);

   if (f->page_crc_tests >= 0) {
      *samples = 0;
      return vorbis_search_for_page_pushdata(f, (uint8 *) data, data_len);
   }

   f->stream     = (uint8 *) data;
   f->stream_end = (uint8 *) data + data_len;
   f->error      = VORBIS__no_error;

   // check that we have the entire packet in memory
   if (!is_whole_packet_present(f)) {
      *samples = 0;
      return 0;
   }

   if (!vorbis_decode_packet(f, &len, &left, &right)) {
      // save the actual error we encountered
      enum STBVorbisError error = f->error;
      if (error == VORBIS_bad_packet_type) {
         // flush and resynch
         f->error = VORBIS__no_error;
         while (get8_packet(f) != EOP)
            if (f->eof) break;
         *samples = 0;
         return (int) (f->stream - data);
      }
      if (error == VORBIS_continued_packet_flag_invalid) {
         if (f->previous_length == 0) {
            // we may be resynching, in which case it's ok to hit one
            // of these; just discard the packet
            f->error = VORBIS__no_error;
            while (get8_packet(f) != EOP)
               if (f->eof) break;
            *samples = 0;
            return (int) (f->stream - data);
         }
      }
      // if we get an error while parsing, what to do?
      // well, it DEFINITELY won't work to continue from where we are!
      stb_vorbis_flush_pushdata(f);
      // restore the error that actually made us bail
      f->error = error;
      *samples = 0;
      return 1;
   }

   // success!
   len = vorbis_finish_frame(f, len, left, right);
   for (i=0; i < f->channels; ++i)
      f->outputs[i] = f->channel_buffers[i] + left;

   if (channels) *channels = f->channels;
   *samples = len;
   *output = f->outputs;
   return (int) (f->stream - data);
}

stb_vorbis *stb_vorbis_open_pushdata(
         const unsigned char *data, int data_len, // the memory available for decoding
         int *data_used,              // only defined if result is not NULL
         int *error, const stb_vorbis_alloc *alloc)
{
   stb_vorbis *f, p;
   vorbis_init(&p, alloc);
   p.stream     = (uint8 *) data;
   p.stream_end = (uint8 *) data + data_len;
   p.push_mode  = TRUE;
   if (!start_decoder(&p)) {
      if (p.eof)
         *error = VORBIS_need_more_data;
      else
         *error = p.error;
      return NULL;
   }
   f = vorbis_alloc(&p);
   if (f) {
      *f = p;
      *data_used = (int) (f->stream - data);
      *error = 0;
      return f;
   } else {
      vorbis_deinit(&p);
      return NULL;
   }
}
#endif // STB_VORBIS_NO_PUSHDATA_API

unsigned int stb_vorbis_get_file_offset(stb_vorbis *f)
{
   #ifndef STB_VORBIS_NO_PUSHDATA_API
   if (f->push_mode) return 0;
   #endif
   if (USE_MEMORY(f)) return (unsigned int) (f->stream - f->stream_start);
   #ifndef STB_VORBIS_NO_STDIO
   return (unsigned int) (ftell(f->f) - f->f_start);
   #endif
}

#ifndef STB_VORBIS_NO_PULLDATA_API
//
// DATA-PULLING API
//

static uint32 vorbis_find_page(stb_vorbis *f, uint32 *end, uint32 *last)
{
   for(;;) {
      int n;
      if (f->eof) return 0;
      n = get8(f);
      if (n == 0x4f) { // page header candidate
         unsigned int retry_loc = stb_vorbis_get_file_offset(f);
         int i;
         // check if we're off the end of a file_section stream
         if (retry_loc - 25 > f->stream_len)
            return 0;
         // check the rest of the header
         for (i=1; i < 4; ++i)
            if (get8(f) != ogg_page_header[i])
               break;
         if (f->eof) return 0;
         if (i == 4) {
            uint8 header[27];
            uint32 i, crc, goal, len;
            for (i=0; i < 4; ++i)
               header[i] = ogg_page_header[i];
            for (; i < 27; ++i)
               header[i] = get8(f);
            if (f->eof) return 0;
            if (header[4] != 0) goto invalid;
            goal = header[22] + (header[23] << 8) + (header[24]<<16) + (header[25]<<24);
            for (i=22; i < 26; ++i)
               header[i] = 0;
            crc = 0;
            for (i=0; i < 27; ++i)
               crc = crc32_update(crc, header[i]);
            len = 0;
            for (i=0; i < header[26]; ++i) {
               int s = get8(f);
               crc = crc32_update(crc, s);
               len += s;
            }
            if (len && f->eof) return 0;
            for (i=0; i < len; ++i)
               crc = crc32_update(crc, get8(f));
            // finished parsing probable page
            if (crc == goal) {
               // we could now check that it's either got the last
               // page flag set, OR it's followed by the capture
               // pattern, but I guess TECHNICALLY you could have
               // a file with garbage between each ogg page and recover
               // from it automatically? So even though that paranoia
               // might decrease the chance of an invalid decode by
               // another 2^32, not worth it since it would hose those
               // invalid-but-useful files?
               if (end)
                  *end = stb_vorbis_get_file_offset(f);
               if (last) {
                  if (header[5] & 0x04)
                     *last = 1;
                  else
                     *last = 0;
               }
               set_file_offset(f, retry_loc-1);
               return 1;
            }
         }
        invalid:
         // not a valid page, so rewind and look for next one
         set_file_offset(f, retry_loc);
      }
   }
}


#define SAMPLE_unknown  0xffffffff

// seeking is implemented with a binary search, which narrows down the range to
// 64K, before using a linear search (because finding the synchronization
// pattern can be expensive, and the chance we'd find the end page again is
// relatively high for small ranges)
//
// two initial interpolation-style probes are used at the start of the search
// to try to bound either side of the binary search sensibly, while still
// working in O(log n) time if they fail.

static int get_seek_page_info(stb_vorbis *f, ProbedPage *z)
{
   uint8 header[27], lacing[255];
   int i,len;

   // record where the page starts
   z->page_start = stb_vorbis_get_file_offset(f);

   // parse the header
   getn(f, header, 27);
   if (header[0] != 'O' || header[1] != 'g' || header[2] != 'g' || header[3] != 'S')
      return 0;
   getn(f, lacing, header[26]);

   // determine the length of the payload
   len = 0;
   for (i=0; i < header[26]; ++i)
      len += lacing[i];

   // this implies where the page ends
   z->page_end = z->page_start + 27 + header[26] + len;

   // read the last-decoded sample out of the data
   z->last_decoded_sample = header[6] + (header[7] << 8) + (header[8] << 16) + (header[9] << 24);

   // restore file state to where we were
   set_file_offset(f, z->page_start);
   return 1;
}

// rarely used function to seek back to the preceding page while finding the
// start of a packet
static int go_to_page_before(stb_vorbis *f, unsigned int limit_offset)
{
   unsigned int previous_safe, end;

   // now we want to seek back 64K from the limit
   if (limit_offset >= 65536 && limit_offset-65536 >= f->first_audio_page_offset)
      previous_safe = limit_offset - 65536;
   else
      previous_safe = f->first_audio_page_offset;

   set_file_offset(f, previous_safe);

   while (vorbis_find_page(f, &end, NULL)) {
      if (end >= limit_offset && stb_vorbis_get_file_offset(f) < limit_offset)
         return 1;
      set_file_offset(f, end);
   }

   return 0;
}

// implements the search logic for finding a page and starting decoding. if
// the function succeeds, current_loc_valid will be true and current_loc will
// be less than or equal to the provided sample number (the closer the
// better).
static int seek_to_sample_coarse(stb_vorbis *f, uint32 sample_number)
{
   ProbedPage left, right, mid;
   int i, start_seg_with_known_loc, end_pos, page_start;
   uint32 delta, stream_length, padding, last_sample_limit;
   double offset = 0.0, bytes_per_sample = 0.0;
   int probe = 0;

   // find the last page and validate the target sample
   stream_length = stb_vorbis_stream_length_in_samples(f);
   if (stream_length == 0)            return error(f, VORBIS_seek_without_length);
   if (sample_number > stream_length) return error(f, VORBIS_seek_invalid);

   // this is the maximum difference between the window-center (which is the
   // actual granule position value), and the right-start (which the spec
   // indicates should be the granule position (give or take one)).
   padding = ((f->blocksize_1 - f->blocksize_0) >> 2);
   if (sample_number < padding)
      last_sample_limit = 0;
   else
      last_sample_limit = sample_number - padding;

   left = f->p_first;
   while (left.last_decoded_sample == ~0U) {
      // (untested) the first page does not have a 'last_decoded_sample'
      set_file_offset(f, left.page_end);
      if (!get_seek_page_info(f, &left)) goto error;
   }

   right = f->p_last;
   assert(right.last_decoded_sample != ~0U);

   // starting from the start is handled differently
   if (last_sample_limit <= left.last_decoded_sample) {
      if (stb_vorbis_seek_start(f)) {
         if (f->current_loc > sample_number)
            return error(f, VORBIS_seek_failed);
         return 1;
      }
      return 0;
   }

   while (left.page_end != right.page_start) {
      assert(left.page_end < right.page_start);
      // search range in bytes
      delta = right.page_start - left.page_end;
      if (delta <= 65536) {
         // there's only 64K left to search - handle it linearly
         set_file_offset(f, left.page_end);
      } else {
         if (probe < 2) {
            if (probe == 0) {
               // first probe (interpolate)
               double data_bytes = right.page_end - left.page_start;
               bytes_per_sample = data_bytes / right.last_decoded_sample;
               offset = left.page_start + bytes_per_sample * (last_sample_limit - left.last_decoded_sample);
            } else {
               // second probe (try to bound the other side)
               double error = ((double) last_sample_limit - mid.last_decoded_sample) * bytes_per_sample;
               if (error >= 0 && error <  8000) error =  8000;
               if (error <  0 && error > -8000) error = -8000;
               offset += error * 2;
            }

            // ensure the offset is valid
            if (offset < left.page_end)
               offset = left.page_end;
            if (offset > right.page_start - 65536)
               offset = right.page_start - 65536;

            set_file_offset(f, (unsigned int) offset);
         } else {
            // binary search for large ranges (offset by 32K to ensure
            // we don't hit the right page)
            set_file_offset(f, left.page_end + (delta / 2) - 32768);
         }

         if (!vorbis_find_page(f, NULL, NULL)) goto error;
      }

      for (;;) {
         if (!get_seek_page_info(f, &mid)) goto error;
         if (mid.last_decoded_sample != ~0U) break;
         // (untested) no frames end on this page
         set_file_offset(f, mid.page_end);
         assert(mid.page_start < right.page_start);
      }

      // if we've just found the last page again then we're in a tricky file,
      // and we're close enough (if it wasn't an interpolation probe).
      if (mid.page_start == right.page_start) {
         if (probe >= 2 || delta <= 65536)
            break;
      } else {
         if (last_sample_limit < mid.last_decoded_sample)
            right = mid;
         else
            left = mid;
      }

      ++probe;
   }

   // seek back to start of the last packet
   page_start = left.page_start;
   set_file_offset(f, page_start);
   if (!start_page(f)) return error(f, VORBIS_seek_failed);
   end_pos = f->end_seg_with_known_loc;
   assert(end_pos >= 0);

   for (;;) {
      for (i = end_pos; i > 0; --i)
         if (f->segments[i-1] != 255)
            break;

      start_seg_with_known_loc = i;

      if (start_seg_with_known_loc > 0 || !(f->page_flag & PAGEFLAG_continued_packet))
         break;

      // (untested) the final packet begins on an earlier page
      if (!go_to_page_before(f, page_start))
         goto error;

      page_start = stb_vorbis_get_file_offset(f);
      if (!start_page(f)) goto error;
      end_pos = f->segment_count - 1;
   }

   // prepare to start decoding
   f->current_loc_valid = FALSE;
   f->last_seg = FALSE;
   f->valid_bits = 0;
   f->packet_bytes = 0;
   f->bytes_in_seg = 0;
   f->previous_length = 0;
   f->next_seg = start_seg_with_known_loc;

   for (i = 0; i < start_seg_with_known_loc; i++)
      skip(f, f->segments[i]);

   // start decoding (optimizable - this frame is generally discarded)
   if (!vorbis_pump_first_frame(f))
      return 0;
   if (f->current_loc > sample_number)
      return error(f, VORBIS_seek_failed);
   return 1;

error:
   // try to restore the file to a valid state
   stb_vorbis_seek_start(f);
   return error(f, VORBIS_seek_failed);
}

// the same as vorbis_decode_initial, but without advancing
static int peek_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode)
{
   int bits_read, bytes_read;

   if (!vorbis_decode_initial(f, p_left_start, p_left_end, p_right_start, p_right_end, mode))
      return 0;

   // either 1 or 2 bytes were read, figure out which so we can rewind
   bits_read = 1 + ilog(f->mode_count-1);
   if (f->mode_config[*mode].blockflag)
      bits_read += 2;
   bytes_read = (bits_read + 7) / 8;

   f->bytes_in_seg += bytes_read;
   f->packet_bytes -= bytes_read;
   skip(f, -bytes_read);
   if (f->next_seg == -1)
      f->next_seg = f->segment_count - 1;
   else
      f->next_seg--;
   f->valid_bits = 0;

   return 1;
}

int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number)
{
   uint32 max_frame_samples;

   if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);

   // fast page-level search
   if (!seek_to_sample_coarse(f, sample_number))
      return 0;

   assert(f->current_loc_valid);
   assert(f->current_loc <= sample_number);

   // linear search for the relevant packet
   max_frame_samples = (f->blocksize_1*3 - f->blocksize_0) >> 2;
   while (f->current_loc < sample_number) {
      int left_start, left_end, right_start, right_end, mode, frame_samples;
      if (!peek_decode_initial(f, &left_start, &left_end, &right_start, &right_end, &mode))
         return error(f, VORBIS_seek_failed);
      // calculate the number of samples returned by the next frame
      frame_samples = right_start - left_start;
      if (f->current_loc + frame_samples > sample_number) {
         return 1; // the next frame will contain the sample
      } else if (f->current_loc + frame_samples + max_frame_samples > sample_number) {
         // there's a chance the frame after this could contain the sample
         vorbis_pump_first_frame(f);
      } else {
         // this frame is too early to be relevant
         f->current_loc += frame_samples;
         f->previous_length = 0;
         maybe_start_packet(f);
         flush_packet(f);
      }
   }
   // the next frame should start with the sample
   if (f->current_loc != sample_number) return error(f, VORBIS_seek_failed);
   return 1;
}

int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number)
{
   if (!stb_vorbis_seek_frame(f, sample_number))
      return 0;

   if (sample_number != f->current_loc) {
      int n;
      uint32 frame_start = f->current_loc;
      stb_vorbis_get_frame_float(f, &n, NULL);
      assert(sample_number > frame_start);
      assert(f->channel_buffer_start + (int) (sample_number-frame_start) <= f->channel_buffer_end);
      f->channel_buffer_start += (sample_number - frame_start);
   }

   return 1;
}

int stb_vorbis_seek_start(stb_vorbis *f)
{
   if (IS_PUSH_MODE(f)) { return error(f, VORBIS_invalid_api_mixing); }
   set_file_offset(f, f->first_audio_page_offset);
   f->previous_length = 0;
   f->first_decode = TRUE;
   f->next_seg = -1;
   return vorbis_pump_first_frame(f);
}

unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f)
{
   unsigned int restore_offset, previous_safe;
   unsigned int end, last_page_loc;

   if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);
   if (!f->total_samples) {
      unsigned int last;
      uint32 lo,hi;
      char header[6];

      // first, store the current decode position so we can restore it
      restore_offset = stb_vorbis_get_file_offset(f);

      // now we want to seek back 64K from the end (the last page must
      // be at most a little less than 64K, but let's allow a little slop)
      if (f->stream_len >= 65536 && f->stream_len-65536 >= f->first_audio_page_offset)
         previous_safe = f->stream_len - 65536;
      else
         previous_safe = f->first_audio_page_offset;

      set_file_offset(f, previous_safe);
      // previous_safe is now our candidate 'earliest known place that seeking
      // to will lead to the final page'

      if (!vorbis_find_page(f, &end, &last)) {
         // if we can't find a page, we're hosed!
         f->error = VORBIS_cant_find_last_page;
         f->total_samples = 0xffffffff;
         goto done;
      }

      // check if there are more pages
      last_page_loc = stb_vorbis_get_file_offset(f);

      // stop when the last_page flag is set, not when we reach eof;
      // this allows us to stop short of a 'file_section' end without
      // explicitly checking the length of the section
      while (!last) {
         set_file_offset(f, end);
         if (!vorbis_find_page(f, &end, &last)) {
            // the last page we found didn't have the 'last page' flag
            // set. whoops!
            break;
         }
         previous_safe = last_page_loc+1;
         last_page_loc = stb_vorbis_get_file_offset(f);
      }

      set_file_offset(f, last_page_loc);

      // parse the header
      getn(f, (unsigned char *)header, 6);
      // extract the absolute granule position
      lo = get32(f);
      hi = get32(f);
      if (lo == 0xffffffff && hi == 0xffffffff) {
         f->error = VORBIS_cant_find_last_page;
         f->total_samples = SAMPLE_unknown;
         goto done;
      }
      if (hi)
         lo = 0xfffffffe; // saturate
      f->total_samples = lo;

      f->p_last.page_start = last_page_loc;
      f->p_last.page_end   = end;
      f->p_last.last_decoded_sample = lo;

     done:
      set_file_offset(f, restore_offset);
   }
   return f->total_samples == SAMPLE_unknown ? 0 : f->total_samples;
}

float stb_vorbis_stream_length_in_seconds(stb_vorbis *f)
{
   return stb_vorbis_stream_length_in_samples(f) / (float) f->sample_rate;
}



int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output)
{
   int len, right,left,i;
   if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing);

   if (!vorbis_decode_packet(f, &len, &left, &right)) {
      f->channel_buffer_start = f->channel_buffer_end = 0;
      return 0;
   }

   len = vorbis_finish_frame(f, len, left, right);
   for (i=0; i < f->channels; ++i)
      f->outputs[i] = f->channel_buffers[i] + left;

   f->channel_buffer_start = left;
   f->channel_buffer_end   = left+len;

   if (channels) *channels = f->channels;
   if (output)   *output = f->outputs;
   return len;
}

#ifndef STB_VORBIS_NO_STDIO

stb_vorbis * stb_vorbis_open_file_section(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc, unsigned int length)
{
   stb_vorbis *f, p;
   vorbis_init(&p, alloc);
   p.f = file;
   p.f_start = (uint32) ftell(file);
   p.stream_len   = length;
   p.close_on_free = close_on_free;
   if (start_decoder(&p)) {
      f = vorbis_alloc(&p);
      if (f) {
         *f = p;
         vorbis_pump_first_frame(f);
         return f;
      }
   }
   if (error) *error = p.error;
   vorbis_deinit(&p);
   return NULL;
}

stb_vorbis * stb_vorbis_open_file(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc)
{
   unsigned int len, start;
   start = (unsigned int) ftell(file);
   fseek(file, 0, SEEK_END);
   len = (unsigned int) (ftell(file) - start);
   fseek(file, start, SEEK_SET);
   return stb_vorbis_open_file_section(file, close_on_free, error, alloc, len);
}

stb_vorbis * stb_vorbis_open_filename(const char *filename, int *error, const stb_vorbis_alloc *alloc)
{
   FILE *f;
#if defined(_WIN32) && defined(__STDC_WANT_SECURE_LIB__)
   if (0 != fopen_s(&f, filename, "rb"))
      f = NULL;
#else
   f = fopen(filename, "rb");
#endif
   if (f)
      return stb_vorbis_open_file(f, TRUE, error, alloc);
   if (error) *error = VORBIS_file_open_failure;
   return NULL;
}
#endif // STB_VORBIS_NO_STDIO

stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, int *error, const stb_vorbis_alloc *alloc)
{
   stb_vorbis *f, p;
   if (data == NULL) return NULL;
   vorbis_init(&p, alloc);
   p.stream = (uint8 *) data;
   p.stream_end = (uint8 *) data + len;
   p.stream_start = (uint8 *) p.stream;
   p.stream_len = len;
   p.push_mode = FALSE;
   if (start_decoder(&p)) {
      f = vorbis_alloc(&p);
      if (f) {
         *f = p;
         vorbis_pump_first_frame(f);
         if (error) *error = VORBIS__no_error;
         return f;
      }
   }
   if (error) *error = p.error;
   vorbis_deinit(&p);
   return NULL;
}

#ifndef STB_VORBIS_NO_INTEGER_CONVERSION
#define PLAYBACK_MONO     1
#define PLAYBACK_LEFT     2
#define PLAYBACK_RIGHT    4

#define L  (PLAYBACK_LEFT  | PLAYBACK_MONO)
#define C  (PLAYBACK_LEFT  | PLAYBACK_RIGHT | PLAYBACK_MONO)
#define R  (PLAYBACK_RIGHT | PLAYBACK_MONO)

static int8 channel_position[7][6] =
{
   { 0 },
   { C },
   { L, R },
   { L, C, R },
   { L, R, L, R },
   { L, C, R, L, R },
   { L, C, R, L, R, C },
};


#ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT
   typedef union {
      float f;
      int i;
   } float_conv;
   typedef char stb_vorbis_float_size_test[sizeof(float)==4 && sizeof(int) == 4];
   #define FASTDEF(x) float_conv x
   // add (1<<23) to convert to int, then divide by 2^SHIFT, then add 0.5/2^SHIFT to round
   #define MAGIC(SHIFT) (1.5f * (1 << (23-SHIFT)) + 0.5f/(1 << SHIFT))
   #define ADDEND(SHIFT) (((150-SHIFT) << 23) + (1 << 22))
   #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) (temp.f = (x) + MAGIC(s), temp.i - ADDEND(s))
   #define check_endianness()
#else
   #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) ((int) ((x) * (1 << (s))))
   #define check_endianness()
   #define FASTDEF(x)
#endif

static void copy_samples(short *dest, float *src, int len)
{
   int i;
   check_endianness();
   for (i=0; i < len; ++i) {
      FASTDEF(temp);
      int v = FAST_SCALED_FLOAT_TO_INT(temp, src[i],15);
      if ((unsigned int) (v + 32768) > 65535)
         v = v < 0 ? -32768 : 32767;
      dest[i] = v;
   }
}

static void compute_samples(int mask, short *output, int num_c, float **data, int d_offset, int len)
{
   #define BUFFER_SIZE  32
   float buffer[BUFFER_SIZE];
   int i,j,o,n = BUFFER_SIZE;
   check_endianness();
   for (o = 0; o < len; o += BUFFER_SIZE) {
      memset(buffer, 0, sizeof(buffer));
      if (o + n > len) n = len - o;
      for (j=0; j < num_c; ++j) {
         if (channel_position[num_c][j] & mask) {
            for (i=0; i < n; ++i)
               buffer[i] += data[j][d_offset+o+i];
         }
      }
      for (i=0; i < n; ++i) {
         FASTDEF(temp);
         int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15);
         if ((unsigned int) (v + 32768) > 65535)
            v = v < 0 ? -32768 : 32767;
         output[o+i] = v;
      }
   }
}

static void compute_stereo_samples(short *output, int num_c, float **data, int d_offset, int len)
{
   #define BUFFER_SIZE  32
   float buffer[BUFFER_SIZE];
   int i,j,o,n = BUFFER_SIZE >> 1;
   // o is the offset in the source data
   check_endianness();
   for (o = 0; o < len; o += BUFFER_SIZE >> 1) {
      // o2 is the offset in the output data
      int o2 = o << 1;
      memset(buffer, 0, sizeof(buffer));
      if (o + n > len) n = len - o;
      for (j=0; j < num_c; ++j) {
         int m = channel_position[num_c][j] & (PLAYBACK_LEFT | PLAYBACK_RIGHT);
         if (m == (PLAYBACK_LEFT | PLAYBACK_RIGHT)) {
            for (i=0; i < n; ++i) {
               buffer[i*2+0] += data[j][d_offset+o+i];
               buffer[i*2+1] += data[j][d_offset+o+i];
            }
         } else if (m == PLAYBACK_LEFT) {
            for (i=0; i < n; ++i) {
               buffer[i*2+0] += data[j][d_offset+o+i];
            }
         } else if (m == PLAYBACK_RIGHT) {
            for (i=0; i < n; ++i) {
               buffer[i*2+1] += data[j][d_offset+o+i];
            }
         }
      }
      for (i=0; i < (n<<1); ++i) {
         FASTDEF(temp);
         int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15);
         if ((unsigned int) (v + 32768) > 65535)
            v = v < 0 ? -32768 : 32767;
         output[o2+i] = v;
      }
   }
}

static void convert_samples_short(int buf_c, short **buffer, int b_offset, int data_c, float **data, int d_offset, int samples)
{
   int i;
   if (buf_c != data_c && buf_c <= 2 && data_c <= 6) {
      static int channel_selector[3][2] = { {0}, {PLAYBACK_MONO}, {PLAYBACK_LEFT, PLAYBACK_RIGHT} };
      for (i=0; i < buf_c; ++i)
         compute_samples(channel_selector[buf_c][i], buffer[i]+b_offset, data_c, data, d_offset, samples);
   } else {
      int limit = buf_c < data_c ? buf_c : data_c;
      for (i=0; i < limit; ++i)
         copy_samples(buffer[i]+b_offset, data[i]+d_offset, samples);
      for (   ; i < buf_c; ++i)
         memset(buffer[i]+b_offset, 0, sizeof(short) * samples);
   }
}

int stb_vorbis_get_frame_short(stb_vorbis *f, int num_c, short **buffer, int num_samples)
{
   float **output = NULL;
   int len = stb_vorbis_get_frame_float(f, NULL, &output);
   if (len > num_samples) len = num_samples;
   if (len)
      convert_samples_short(num_c, buffer, 0, f->channels, output, 0, len);
   return len;
}

static void convert_channels_short_interleaved(int buf_c, short *buffer, int data_c, float **data, int d_offset, int len)
{
   int i;
   check_endianness();
   if (buf_c != data_c && buf_c <= 2 && data_c <= 6) {
      assert(buf_c == 2);
      for (i=0; i < buf_c; ++i)
         compute_stereo_samples(buffer, data_c, data, d_offset, len);
   } else {
      int limit = buf_c < data_c ? buf_c : data_c;
      int j;
      for (j=0; j < len; ++j) {
         for (i=0; i < limit; ++i) {
            FASTDEF(temp);
            float f = data[i][d_offset+j];
            int v = FAST_SCALED_FLOAT_TO_INT(temp, f,15);//data[i][d_offset+j],15);
            if ((unsigned int) (v + 32768) > 65535)
               v = v < 0 ? -32768 : 32767;
            *buffer++ = v;
         }
         for (   ; i < buf_c; ++i)
            *buffer++ = 0;
      }
   }
}

int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts)
{
   float **output;
   int len;
   if (num_c == 1) return stb_vorbis_get_frame_short(f,num_c,&buffer, num_shorts);
   len = stb_vorbis_get_frame_float(f, NULL, &output);
   if (len) {
      if (len*num_c > num_shorts) len = num_shorts / num_c;
      convert_channels_short_interleaved(num_c, buffer, f->channels, output, 0, len);
   }
   return len;
}

int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts)
{
   float **outputs;
   int len = num_shorts / channels;
   int n=0;
   int z = f->channels;
   if (z > channels) z = channels;
   while (n < len) {
      int k = f->channel_buffer_end - f->channel_buffer_start;
      if (n+k >= len) k = len - n;
      if (k)
         convert_channels_short_interleaved(channels, buffer, f->channels, f->channel_buffers, f->channel_buffer_start, k);
      buffer += k*channels;
      n += k;
      f->channel_buffer_start += k;
      if (n == len) break;
      if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break;
   }
   return n;
}

int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int len)
{
   float **outputs;
   int n=0;
   int z = f->channels;
   if (z > channels) z = channels;
   while (n < len) {
      int k = f->channel_buffer_end - f->channel_buffer_start;
      if (n+k >= len) k = len - n;
      if (k)
         convert_samples_short(channels, buffer, n, f->channels, f->channel_buffers, f->channel_buffer_start, k);
      n += k;
      f->channel_buffer_start += k;
      if (n == len) break;
      if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break;
   }
   return n;
}

#ifndef STB_VORBIS_NO_STDIO
int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output)
{
   int data_len, offset, total, limit, error;
   short *data;
   stb_vorbis *v = stb_vorbis_open_filename(filename, &error, NULL);
   if (v == NULL) return -1;
   limit = v->channels * 4096;
   *channels = v->channels;
   if (sample_rate)
      *sample_rate = v->sample_rate;
   offset = data_len = 0;
   total = limit;
   data = (short *) malloc(total * sizeof(*data));
   if (data == NULL) {
      stb_vorbis_close(v);
      return -2;
   }
   for (;;) {
      int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset);
      if (n == 0) break;
      data_len += n;
      offset += n * v->channels;
      if (offset + limit > total) {
         short *data2;
         total *= 2;
         data2 = (short *) realloc(data, total * sizeof(*data));
         if (data2 == NULL) {
            free(data);
            stb_vorbis_close(v);
            return -2;
         }
         data = data2;
      }
   }
   *output = data;
   stb_vorbis_close(v);
   return data_len;
}
#endif // NO_STDIO

int stb_vorbis_decode_memory(const uint8 *mem, int len, int *channels, int *sample_rate, short **output)
{
   int data_len, offset, total, limit, error;
   short *data;
   stb_vorbis *v = stb_vorbis_open_memory(mem, len, &error, NULL);
   if (v == NULL) return -1;
   limit = v->channels * 4096;
   *channels = v->channels;
   if (sample_rate)
      *sample_rate = v->sample_rate;
   offset = data_len = 0;
   total = limit;
   data = (short *) malloc(total * sizeof(*data));
   if (data == NULL) {
      stb_vorbis_close(v);
      return -2;
   }
   for (;;) {
      int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset);
      if (n == 0) break;
      data_len += n;
      offset += n * v->channels;
      if (offset + limit > total) {
         short *data2;
         total *= 2;
         data2 = (short *) realloc(data, total * sizeof(*data));
         if (data2 == NULL) {
            free(data);
            stb_vorbis_close(v);
            return -2;
         }
         data = data2;
      }
   }
   *output = data;
   stb_vorbis_close(v);
   return data_len;
}
#endif // STB_VORBIS_NO_INTEGER_CONVERSION

int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats)
{
   float **outputs;
   int len = num_floats / channels;
   int n=0;
   int z = f->channels;
   if (z > channels) z = channels;
   while (n < len) {
      int i,j;
      int k = f->channel_buffer_end - f->channel_buffer_start;
      if (n+k >= len) k = len - n;
      for (j=0; j < k; ++j) {
         for (i=0; i < z; ++i)
            *buffer++ = f->channel_buffers[i][f->channel_buffer_start+j];
         for (   ; i < channels; ++i)
            *buffer++ = 0;
      }
      n += k;
      f->channel_buffer_start += k;
      if (n == len)
         break;
      if (!stb_vorbis_get_frame_float(f, NULL, &outputs))
         break;
   }
   return n;
}

int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples)
{
   float **outputs;
   int n=0;
   int z = f->channels;
   if (z > channels) z = channels;
   while (n < num_samples) {
      int i;
      int k = f->channel_buffer_end - f->channel_buffer_start;
      if (n+k >= num_samples) k = num_samples - n;
      if (k) {
         for (i=0; i < z; ++i)
            memcpy(buffer[i]+n, f->channel_buffers[i]+f->channel_buffer_start, sizeof(float)*k);
         for (   ; i < channels; ++i)
            memset(buffer[i]+n, 0, sizeof(float) * k);
      }
      n += k;
      f->channel_buffer_start += k;
      if (n == num_samples)
         break;
      if (!stb_vorbis_get_frame_float(f, NULL, &outputs))
         break;
   }
   return n;
}
#endif // STB_VORBIS_NO_PULLDATA_API

/* Version history
    1.17    - 2019-07-08 - fix CVE-2019-13217, -13218, -13219, -13220, -13221, -13222, -13223
                           found with Mayhem by ForAllSecure
    1.16    - 2019-03-04 - fix warnings
    1.15    - 2019-02-07 - explicit failure if Ogg Skeleton data is found
    1.14    - 2018-02-11 - delete bogus dealloca usage
    1.13    - 2018-01-29 - fix truncation of last frame (hopefully)
    1.12    - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files
    1.11    - 2017-07-23 - fix MinGW compilation
    1.10    - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory
    1.09    - 2016-04-04 - back out 'avoid discarding last frame' fix from previous version
    1.08    - 2016-04-02 - fixed multiple warnings; fix setup memory leaks;
                           avoid discarding last frame of audio data
    1.07    - 2015-01-16 - fixed some warnings, fix mingw, const-correct API
                           some more crash fixes when out of memory or with corrupt files
    1.06    - 2015-08-31 - full, correct support for seeking API (Dougall Johnson)
                           some crash fixes when out of memory or with corrupt files
    1.05    - 2015-04-19 - don't define __forceinline if it's redundant
    1.04    - 2014-08-27 - fix missing const-correct case in API
    1.03    - 2014-08-07 - Warning fixes
    1.02    - 2014-07-09 - Declare qsort compare function _cdecl on windows
    1.01    - 2014-06-18 - fix stb_vorbis_get_samples_float
    1.0     - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in multichannel
                           (API change) report sample rate for decode-full-file funcs
    0.99996 - bracket #include <malloc.h> for macintosh compilation by Laurent Gomila
    0.99995 - use union instead of pointer-cast for fast-float-to-int to avoid alias-optimization problem
    0.99994 - change fast-float-to-int to work in single-precision FPU mode, remove endian-dependence
    0.99993 - remove assert that fired on legal files with empty tables
    0.99992 - rewind-to-start
    0.99991 - bugfix to stb_vorbis_get_samples_short by Bernhard Wodo
    0.9999 - (should have been 0.99990) fix no-CRT support, compiling as C++
    0.9998 - add a full-decode function with a memory source
    0.9997 - fix a bug in the read-from-FILE case in 0.9996 addition
    0.9996 - query length of vorbis stream in samples/seconds
    0.9995 - bugfix to another optimization that only happened in certain files
    0.9994 - bugfix to one of the optimizations that caused significant (but inaudible?) errors
    0.9993 - performance improvements; runs in 99% to 104% of time of reference implementation
    0.9992 - performance improvement of IMDCT; now performs close to reference implementation
    0.9991 - performance improvement of IMDCT
    0.999 - (should have been 0.9990) performance improvement of IMDCT
    0.998 - no-CRT support from Casey Muratori
    0.997 - bugfixes for bugs found by Terje Mathisen
    0.996 - bugfix: fast-huffman decode initialized incorrectly for sparse codebooks; fixing gives 10% speedup - found by Terje Mathisen
    0.995 - bugfix: fix to 'effective' overrun detection - found by Terje Mathisen
    0.994 - bugfix: garbage decode on final VQ symbol of a non-multiple - found by Terje Mathisen
    0.993 - bugfix: pushdata API required 1 extra byte for empty page (failed to consume final page if empty) - found by Terje Mathisen
    0.992 - fixes for MinGW warning
    0.991 - turn fast-float-conversion on by default
    0.990 - fix push-mode seek recovery if you seek into the headers
    0.98b - fix to bad release of 0.98
    0.98 - fix push-mode seek recovery; robustify float-to-int and support non-fast mode
    0.97 - builds under c++ (typecasting, don't use 'class' keyword)
    0.96 - somehow MY 0.95 was right, but the web one was wrong, so here's my 0.95 rereleased as 0.96, fixes a typo in the clamping code
    0.95 - clamping code for 16-bit functions
    0.94 - not publically released
    0.93 - fixed all-zero-floor case (was decoding garbage)
    0.92 - fixed a memory leak
    0.91 - conditional compiles to omit parts of the API and the infrastructure to support them: STB_VORBIS_NO_PULLDATA_API, STB_VORBIS_NO_PUSHDATA_API, STB_VORBIS_NO_STDIO, STB_VORBIS_NO_INTEGER_CONVERSION
    0.90 - first public release
*/

#endif // STB_VORBIS_HEADER_ONLY


/*
------------------------------------------------------------------------------
This software is available under 2 licenses -- choose whichever you prefer.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/