1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
|
/*
r128.h: 128-bit (64.64) signed fixed-point arithmetic. Version 1.4.3
COMPILATION
-----------
Drop this header file somewhere in your project and include it wherever it is
needed. There is no separate .c file for this library. To get the code, in ONE
file in your project, put:
#define R128_IMPLEMENTATION
before you include this file. You may also provide a definition for R128_ASSERT
to force the library to use a custom assert macro.
COMPILER/LIBRARY SUPPORT
------------------------
This library requires a C89 compiler with support for 64-bit integers. If your
compiler does not support the long long data type, the R128_U64, etc. macros
must be set appropriately. On x86 and x64 targets, Intel intrinsics are used
for speed. If your compiler does not support these intrinsics, you can add
#define R128_STDC_ONLY
in your implementation file before including r128.h.
The only C runtime library functionality used by this library is <assert.h>.
This can be avoided by defining an R128_ASSERT macro in your implementation
file. Since this library uses 64-bit arithmetic, this may implicitly add a
runtime library dependency on 32-bit platforms.
C++ SUPPORT
-----------
Operator overloads are supplied for C++ files that include this file. Since all
C++ functions are declared inline (or static inline), the R128_IMPLEMENTATION
file can be either C++ or C.
LICENSE
-------
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef H_R128_H
#define H_R128_H
#include <stddef.h>
// 64-bit integer support
// If your compiler does not have stdint.h, add appropriate defines for these macros.
#if defined(_MSC_VER) && (_MSC_VER < 1600)
# define R128_S32 __int32
# define R128_U32 unsigned __int32
# define R128_S64 __int64
# define R128_U64 unsigned __int64
# define R128_LIT_S64(x) x##i64
# define R128_LIT_U64(x) x##ui64
#else
# include <stdint.h>
# define R128_S32 int32_t
# define R128_U32 uint32_t
# define R128_S64 int64_t
# define R128_U64 uint64_t
# define R128_LIT_S64(x) x##ll
# define R128_LIT_U64(x) x##ull
#endif
#ifdef __cplusplus
extern "C" {
#endif
typedef struct R128 {
R128_U64 lo;
R128_U64 hi;
#ifdef __cplusplus
R128();
R128(double);
R128(int);
R128(R128_S64);
R128(R128_U64 low, R128_U64 high);
operator double() const;
operator R128_S64() const;
operator int() const;
operator bool() const;
bool operator!() const;
R128 operator~() const;
R128 operator-() const;
R128 &operator|=(const R128 &rhs);
R128 &operator&=(const R128 &rhs);
R128 &operator^=(const R128 &rhs);
R128 &operator+=(const R128 &rhs);
R128 &operator-=(const R128 &rhs);
R128 &operator*=(const R128 &rhs);
R128 &operator/=(const R128 &rhs);
R128 &operator%=(const R128 &rhs);
R128 &operator<<=(int amount);
R128 &operator>>=(int amount);
#endif //__cplusplus
} R128;
// Type conversion
extern void r128FromInt(R128 *dst, R128_S64 v);
extern void r128FromFloat(R128 *dst, double v);
extern R128_S64 r128ToInt(const R128 *v);
extern double r128ToFloat(const R128 *v);
// Copy
extern void r128Copy(R128 *dst, const R128 *src);
// Negate
extern void r128Neg(R128 *dst, const R128 *src);
// Bitwise operations
extern void r128Not(R128 *dst, const R128 *src); // ~a
extern void r128Or(R128 *dst, const R128 *a, const R128 *b); // a | b
extern void r128And(R128 *dst, const R128 *a, const R128 *b); // a & b
extern void r128Xor(R128 *dst, const R128 *a, const R128 *b); // a ^ b
extern void r128Shl(R128 *dst, const R128 *src, int amount); // shift left by amount mod 128
extern void r128Shr(R128 *dst, const R128 *src, int amount); // shift right logical by amount mod 128
extern void r128Sar(R128 *dst, const R128 *src, int amount); // shift right arithmetic by amount mod 128
// Arithmetic
extern void r128Add(R128 *dst, const R128 *a, const R128 *b); // a + b
extern void r128Sub(R128 *dst, const R128 *a, const R128 *b); // a - b
extern void r128Mul(R128 *dst, const R128 *a, const R128 *b); // a * b
extern void r128Div(R128 *dst, const R128 *a, const R128 *b); // a / b
extern void r128Mod(R128 *dst, const R128 *a, const R128 *b); // a - toInt(a / b) * b
extern void r128Sqrt(R128 *dst, const R128 *v); // sqrt(v)
extern void r128Rsqrt(R128 *dst, const R128 *v); // 1 / sqrt(v)
// Comparison
extern int r128Cmp(const R128 *a, const R128 *b); // sign of a-b
extern void r128Min(R128 *dst, const R128 *a, const R128 *b);
extern void r128Max(R128 *dst, const R128 *a, const R128 *b);
extern void r128Floor(R128 *dst, const R128 *v);
extern void r128Ceil(R128 *dst, const R128 *v);
extern int r128IsNeg(const R128 *v); // quick check for < 0
// String conversion
//
typedef enum R128ToStringSign {
R128ToStringSign_Default, // no sign character for positive values
R128ToStringSign_Space, // leading space for positive values
R128ToStringSign_Plus, // leading '+' for positive values
} R128ToStringSign;
// Formatting options for use with r128ToStringOpt. The "defaults" correspond
// to a format string of "%f".
//
typedef struct R128ToStringFormat {
// sign character for positive values. Default is R128ToStringSign_Default.
R128ToStringSign sign;
// minimum number of characters to write. Default is 0.
int width;
// place to the right of the decimal at which rounding is performed. If negative,
// a maximum of 20 decimal places will be written, with no trailing zeroes.
// (20 places is sufficient to ensure that r128FromString will convert back to the
// original value.) Default is -1. NOTE: This is not the same default that the C
// standard library uses for %f.
int precision;
// If non-zero, pads the output string with leading zeroes if the final result is
// fewer than width characters. Otherwise, leading spaces are used. Default is 0.
int zeroPad;
// Always print a decimal point, even if the value is an integer. Default is 0.
int decimal;
// Left-align output if width specifier requires padding.
// Default is 0 (right align).
int leftAlign;
} R128ToStringFormat;
// r128ToStringOpt: convert R128 to a decimal string, with formatting.
//
// dst and dstSize: specify the buffer to write into. At most dstSize bytes will be written
// (including null terminator). No additional rounding is performed if dstSize is not large
// enough to hold the entire string.
//
// opt: an R128ToStringFormat struct (q.v.) with formatting options.
//
// Uses the R128_decimal global as the decimal point character.
// Always writes a null terminator, even if the destination buffer is not large enough.
//
// Number of bytes that will be written (i.e. how big does dst need to be?):
// If width is specified: width + 1 bytes.
// If precision is specified: at most precision + 22 bytes.
// If neither is specified: at most 42 bytes.
//
// Returns the number of bytes that would have been written if dst was sufficiently large,
// not including the final null terminator.
//
extern int r128ToStringOpt(char *dst, size_t dstSize, const R128 *v, const R128ToStringFormat *opt);
// r128ToStringf: convert R128 to a decimal string, with formatting.
//
// dst and dstSize: specify the buffer to write into. At most dstSize bytes will be written
// (including null terminator).
//
// format: a printf-style format specifier, as one would use with floating point types.
// e.g. "%+5.2f". (The leading % and trailing f are optional.)
// NOTE: This is NOT a full replacement for sprintf. Any characters in the format string
// that do not correspond to a format placeholder are ignored.
//
// Uses the R128_decimal global as the decimal point character.
// Always writes a null terminator, even if the destination buffer is not large enough.
//
// Number of bytes that will be written (i.e. how big does dst need to be?):
// If the precision field is specified: at most max(width, precision + 21) + 1 bytes
// Otherwise: at most max(width, 41) + 1 bytes.
//
// Returns the number of bytes that would have been written if dst was sufficiently large,
// not including the final null terminator.
//
extern int r128ToStringf(char *dst, size_t dstSize, const char *format, const R128 *v);
// r128ToString: convert R128 to a decimal string, with default formatting.
// Equivalent to r128ToStringf(dst, dstSize, "%f", v).
//
// Uses the R128_decimal global as the decimal point character.
// Always writes a null terminator, even if the destination buffer is not large enough.
//
// Will write at most 42 bytes (including NUL) to dst.
//
// Returns the number of bytes that would have been written if dst was sufficiently large,
// not including the final null terminator.
//
extern int r128ToString(char *dst, size_t dstSize, const R128 *v);
// r128FromString: Convert string to R128.
//
// The string can be formatted either as a decimal number with optional sign
// or as hexadecimal with a prefix of 0x or 0X.
//
// endptr, if not NULL, is set to the character following the last character
// used in the conversion.
//
extern void r128FromString(R128 *dst, const char *s, char **endptr);
// Constants
extern const R128 R128_min; // minimum (most negative) value
extern const R128 R128_max; // maximum (most positive) value
extern const R128 R128_smallest; // smallest positive value
extern const R128 R128_zero; // zero
extern const R128 R128_one; // 1.0
extern char R128_decimal; // decimal point character used by r128From/ToString. defaults to '.'
#ifdef __cplusplus
}
#include <limits>
namespace std {
template<>
struct numeric_limits<R128>
{
static const bool is_specialized = true;
static R128 min() throw() { return R128_min; }
static R128 max() throw() { return R128_max; }
static const int digits = 127;
static const int digits10 = 38;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = 2;
static R128 epsilon() throw() { return R128_smallest; }
static R128 round_error() throw() { return R128_one; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static R128 infinity() throw() { return R128_zero; }
static R128 quiet_NaN() throw() { return R128_zero; }
static R128 signaling_NaN() throw() { return R128_zero; }
static R128 denorm_min() throw() { return R128_zero; }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = numeric_limits<R128_U64>::traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
} //namespace std
inline R128::R128() {}
inline R128::R128(double v)
{
r128FromFloat(this, v);
}
inline R128::R128(int v)
{
r128FromInt(this, v);
}
inline R128::R128(R128_S64 v)
{
r128FromInt(this, v);
}
inline R128::R128(R128_U64 low, R128_U64 high)
{
lo = low;
hi = high;
}
inline R128::operator double() const
{
return r128ToFloat(this);
}
inline R128::operator R128_S64() const
{
return r128ToInt(this);
}
inline R128::operator int() const
{
return (int) r128ToInt(this);
}
inline R128::operator bool() const
{
return lo || hi;
}
inline bool R128::operator!() const
{
return !lo && !hi;
}
inline R128 R128::operator~() const
{
R128 r;
r128Not(&r, this);
return r;
}
inline R128 R128::operator-() const
{
R128 r;
r128Neg(&r, this);
return r;
}
inline R128 &R128::operator|=(const R128 &rhs)
{
r128Or(this, this, &rhs);
return *this;
}
inline R128 &R128::operator&=(const R128 &rhs)
{
r128And(this, this, &rhs);
return *this;
}
inline R128 &R128::operator^=(const R128 &rhs)
{
r128Xor(this, this, &rhs);
return *this;
}
inline R128 &R128::operator+=(const R128 &rhs)
{
r128Add(this, this, &rhs);
return *this;
}
inline R128 &R128::operator-=(const R128 &rhs)
{
r128Sub(this, this, &rhs);
return *this;
}
inline R128 &R128::operator*=(const R128 &rhs)
{
r128Mul(this, this, &rhs);
return *this;
}
inline R128 &R128::operator/=(const R128 &rhs)
{
r128Div(this, this, &rhs);
return *this;
}
inline R128 &R128::operator%=(const R128 &rhs)
{
r128Mod(this, this, &rhs);
return *this;
}
inline R128 &R128::operator<<=(int amount)
{
r128Shl(this, this, amount);
return *this;
}
inline R128 &R128::operator>>=(int amount)
{
r128Sar(this, this, amount);
return *this;
}
static inline R128 operator|(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r |= rhs;
}
static inline R128 operator&(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r &= rhs;
}
static inline R128 operator^(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r ^= rhs;
}
static inline R128 operator+(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r += rhs;
}
static inline R128 operator-(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r -= rhs;
}
static inline R128 operator*(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r *= rhs;
}
static inline R128 operator/(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r /= rhs;
}
static inline R128 operator%(const R128 &lhs, const R128 &rhs)
{
R128 r(lhs);
return r %= rhs;
}
static inline R128 operator<<(const R128 &lhs, int amount)
{
R128 r(lhs);
return r <<= amount;
}
static inline R128 operator>>(const R128 &lhs, int amount)
{
R128 r(lhs);
return r >>= amount;
}
static inline bool operator<(const R128 &lhs, const R128 &rhs)
{
return r128Cmp(&lhs, &rhs) < 0;
}
static inline bool operator>(const R128 &lhs, const R128 &rhs)
{
return r128Cmp(&lhs, &rhs) > 0;
}
static inline bool operator<=(const R128 &lhs, const R128 &rhs)
{
return r128Cmp(&lhs, &rhs) <= 0;
}
static inline bool operator>=(const R128 &lhs, const R128 &rhs)
{
return r128Cmp(&lhs, &rhs) >= 0;
}
static inline bool operator==(const R128 &lhs, const R128 &rhs)
{
return lhs.lo == rhs.lo && lhs.hi == rhs.hi;
}
static inline bool operator!=(const R128 &lhs, const R128 &rhs)
{
return lhs.lo != rhs.lo || lhs.hi != rhs.hi;
}
#endif //__cplusplus
#endif //H_R128_H
#ifdef R128_IMPLEMENTATION
#ifdef R128_DEBUG_VIS
# define R128_DEBUG_SET(x) r128ToString(R128_last, sizeof(R128_last), x)
#else
# define R128_DEBUG_SET(x)
#endif
#define R128_SET2(x, l, h) do { (x)->lo = (R128_U64)(l); (x)->hi = (R128_U64)(h); } while(0)
#define R128_R0(x) ((R128_U32)(x)->lo)
#define R128_R2(x) ((R128_U32)(x)->hi)
#if defined(_M_IX86)
// workaround: MSVC x86's handling of 64-bit values is not great
# define R128_SET4(x, r0, r1, r2, r3) do { \
((R128_U32*)&(x)->lo)[0] = (R128_U32)(r0); \
((R128_U32*)&(x)->lo)[1] = (R128_U32)(r1); \
((R128_U32*)&(x)->hi)[0] = (R128_U32)(r2); \
((R128_U32*)&(x)->hi)[1] = (R128_U32)(r3); \
} while(0)
# define R128_R1(x) (((R128_U32*)&(x)->lo)[1])
# define R128_R3(x) (((R128_U32*)&(x)->hi)[1])
#else
# define R128_SET4(x, r0, r1, r2, r3) do { (x)->lo = (R128_U64)(r0) | ((R128_U64)(r1) << 32); \
(x)->hi = (R128_U64)(r2) | ((R128_U64)(r3) << 32); } while(0)
# define R128_R1(x) ((R128_U32)((x)->lo >> 32))
# define R128_R3(x) ((R128_U32)((x)->hi >> 32))
#endif
#if defined(_M_X64)
# define R128_INTEL 1
# define R128_64BIT 1
# ifndef R128_STDC_ONLY
# include <intrin.h>
# endif
#elif defined(__x86_64__)
# define R128_INTEL 1
# define R128_64BIT 1
# ifndef R128_STDC_ONLY
# include <x86intrin.h>
# endif
#elif defined(_M_IX86)
# define R128_INTEL 1
# ifndef R128_STDC_ONLY
# include <intrin.h>
# endif
#elif defined(__i386__)
# define R128_INTEL 1
# ifndef R128_STDC_ONLY
# include <x86intrin.h>
# endif
#elif defined(_M_ARM)
# ifndef R128_STDC_ONLY
# include <intrin.h>
# endif
#elif defined(_M_ARM64)
# define R128_64BIT 1
# ifndef R128_STDC_ONLY
# include <intrin.h>
# endif
#elif defined(__aarch64__)
# define R128_64BIT 1
#endif
#ifndef R128_INTEL
# define R128_INTEL 0
#endif
#ifndef R128_64BIT
# define R128_64BIT 0
#endif
#ifndef R128_ASSERT
# include <assert.h>
# define R128_ASSERT(x) assert(x)
#endif
#include <stdlib.h> // for NULL
static const R128ToStringFormat R128__defaultFormat = {
R128ToStringSign_Default,
0,
-1,
0,
0,
0
};
const R128 R128_min = { 0, R128_LIT_U64(0x8000000000000000) };
const R128 R128_max = { R128_LIT_U64(0xffffffffffffffff), R128_LIT_U64(0x7fffffffffffffff) };
const R128 R128_smallest = { 1, 0 };
const R128 R128_zero = { 0, 0 };
const R128 R128_one = { 0, 1 };
char R128_decimal = '.';
#ifdef R128_DEBUG_VIS
char R128_last[42];
#endif
static int r128__clz64(R128_U64 x)
{
#if defined(R128_STDC_ONLY)
R128_U64 n = 64, y;
y = x >> 32; if (y) { n -= 32; x = y; }
y = x >> 16; if (y) { n -= 16; x = y; }
y = x >> 8; if (y) { n -= 8; x = y; }
y = x >> 4; if (y) { n -= 4; x = y; }
y = x >> 2; if (y) { n -= 2; x = y; }
y = x >> 1; if (y) { n -= 1; x = y; }
return (int)(n - x);
#elif defined(_M_X64) || defined(_M_ARM64)
unsigned long idx;
if (_BitScanReverse64(&idx, x)) {
return 63 - (int)idx;
} else {
return 64;
}
#elif defined(_MSC_VER)
unsigned long idx;
if (_BitScanReverse(&idx, (R128_U32)(x >> 32))) {
return 31 - (int)idx;
} else if (_BitScanReverse(&idx, (R128_U32)x)) {
return 63 - (int)idx;
} else {
return 64;
}
#else
return x ? __builtin_clzll(x) : 64;
#endif
}
#if !R128_64BIT
// 32*32->64
static R128_U64 r128__umul64(R128_U32 a, R128_U32 b)
{
# if defined(_M_IX86) && !defined(R128_STDC_ONLY) && !defined(__MINGW32__)
return __emulu(a, b);
# elif defined(_M_ARM) && !defined(R128_STDC_ONLY)
return _arm_umull(a, b);
# else
return a * (R128_U64)b;
# endif
}
// 64/32->32
static R128_U32 r128__udiv64(R128_U32 nlo, R128_U32 nhi, R128_U32 d, R128_U32 *rem)
{
# if defined(_M_IX86) && (_MSC_VER >= 1920) && !defined(R128_STDC_ONLY)
unsigned __int64 n = ((unsigned __int64)nhi << 32) | nlo;
return _udiv64(n, d, rem);
# elif defined(_M_IX86) && !defined(R128_STDC_ONLY) && !defined(__MINGW32__)
__asm {
mov eax, nlo
mov edx, nhi
div d
mov ecx, rem
mov dword ptr [ecx], edx
}
# elif defined(__i386__) && !defined(R128_STDC_ONLY)
R128_U32 q, r;
__asm("divl %4"
: "=a"(q), "=d"(r)
: "a"(nlo), "d"(nhi), "X"(d));
*rem = r;
return q;
# else
R128_U64 n64 = ((R128_U64)nhi << 32) | nlo;
*rem = (R128_U32)(n64 % d);
return (R128_U32)(n64 / d);
# endif
}
#elif !defined(_M_X64) || defined(R128_STDC_ONLY)
#define r128__umul64(a, b) ((a) * (R128_U64)(b))
static R128_U32 r128__udiv64(R128_U32 nlo, R128_U32 nhi, R128_U32 d, R128_U32 *rem)
{
R128_U64 n64 = ((R128_U64)nhi << 32) | nlo;
*rem = (R128_U32)(n64 % d);
return (R128_U32)(n64 / d);
}
#endif //!R128_64BIT
static void r128__neg(R128 *dst, const R128 *src)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(src != NULL);
#if R128_INTEL && !defined(R128_STDC_ONLY)
{
unsigned char carry = 0;
# if R128_64BIT
carry = _addcarry_u64(carry, ~src->lo, 1, &dst->lo);
carry = _addcarry_u64(carry, ~src->hi, 0, &dst->hi);
# else
R128_U32 r0, r1, r2, r3;
carry = _addcarry_u32(carry, ~R128_R0(src), 1, &r0);
carry = _addcarry_u32(carry, ~R128_R1(src), 0, &r1);
carry = _addcarry_u32(carry, ~R128_R2(src), 0, &r2);
carry = _addcarry_u32(carry, ~R128_R3(src), 0, &r3);
R128_SET4(dst, r0, r1, r2, r3);
# endif //R128_64BIT
}
#else
if (src->lo) {
dst->lo = ~src->lo + 1;
dst->hi = ~src->hi;
} else {
dst->lo = 0;
dst->hi = ~src->hi + 1;
}
#endif //R128_INTEL
}
// 64*64->128
static void r128__umul128(R128 *dst, R128_U64 a, R128_U64 b)
{
#if defined(_M_X64) && !defined(R128_STDC_ONLY)
dst->lo = _umul128(a, b, &dst->hi);
#elif R128_64BIT && !defined(_MSC_VER) && !defined(R128_STDC_ONLY)
unsigned __int128 p0 = a * (unsigned __int128)b;
dst->hi = (R128_U64)(p0 >> 64);
dst->lo = (R128_U64)p0;
#else
R128_U32 alo = (R128_U32)a;
R128_U32 ahi = (R128_U32)(a >> 32);
R128_U32 blo = (R128_U32)b;
R128_U32 bhi = (R128_U32)(b >> 32);
R128_U64 p0, p1, p2, p3;
p0 = r128__umul64(alo, blo);
p1 = r128__umul64(alo, bhi);
p2 = r128__umul64(ahi, blo);
p3 = r128__umul64(ahi, bhi);
{
#if R128_INTEL && !defined(R128_STDC_ONLY)
R128_U32 r0, r1, r2, r3;
unsigned char carry;
r0 = (R128_U32)(p0);
r1 = (R128_U32)(p0 >> 32);
r2 = (R128_U32)(p1 >> 32);
r3 = (R128_U32)(p3 >> 32);
carry = _addcarry_u32(0, r1, (R128_U32)p1, &r1);
carry = _addcarry_u32(carry, r2, (R128_U32)(p2 >> 32), &r2);
_addcarry_u32(carry, r3, 0, &r3);
carry = _addcarry_u32(0, r1, (R128_U32)p2, &r1);
carry = _addcarry_u32(carry, r2, (R128_U32)p3, &r2);
_addcarry_u32(carry, r3, 0, &r3);
R128_SET4(dst, r0, r1, r2, r3);
#else
R128_U64 carry, lo, hi;
carry = ((R128_U64)(R128_U32)p1 + (R128_U64)(R128_U32)p2 + (p0 >> 32)) >> 32;
lo = p0 + ((p1 + p2) << 32);
hi = p3 + ((R128_U32)(p1 >> 32) + (R128_U32)(p2 >> 32)) + carry;
R128_SET2(dst, lo, hi);
#endif
}
#endif
}
// 128/64->64
#if defined(_M_X64) && (_MSC_VER < 1920) && !defined(R128_STDC_ONLY) && !defined(__MINGW32__)
// MSVC x64 provides neither inline assembly nor (pre-2019) a div intrinsic, so we do fake
// "inline assembly" to avoid long division or outline assembly.
#pragma code_seg(".text")
__declspec(allocate(".text")) static const unsigned char r128__udiv128Code[] = {
0x48, 0x8B, 0xC1, //mov rax, rcx
0x49, 0xF7, 0xF0, //div rax, r8
0x49, 0x89, 0x11, //mov qword ptr [r9], rdx
0xC3 //ret
};
typedef R128_U64 (*r128__udiv128Proc)(R128_U64 nlo, R128_U64 nhi, R128_U64 d, R128_U64 *rem);
static const r128__udiv128Proc r128__udiv128 = (r128__udiv128Proc)(void*)r128__udiv128Code;
#else
static R128_U64 r128__udiv128(R128_U64 nlo, R128_U64 nhi, R128_U64 d, R128_U64 *rem)
{
#if defined(_M_X64) && !defined(R128_STDC_ONLY) && !defined(__MINGW32__)
return _udiv128(nhi, nlo, d, rem);
#elif defined(__x86_64__) && !defined(R128_STDC_ONLY)
R128_U64 q, r;
__asm("divq %4"
: "=a"(q), "=d"(r)
: "a"(nlo), "d"(nhi), "X"(d));
*rem = r;
return q;
#else
R128_U64 tmp;
R128_U32 d0, d1;
R128_U32 n3, n2, n1, n0;
R128_U32 q0, q1;
R128_U32 r;
int shift;
R128_ASSERT(d != 0); //division by zero
R128_ASSERT(nhi < d); //overflow
// normalize
shift = r128__clz64(d);
if (shift) {
R128 tmp128;
R128_SET2(&tmp128, nlo, nhi);
r128Shl(&tmp128, &tmp128, shift);
n3 = R128_R3(&tmp128);
n2 = R128_R2(&tmp128);
n1 = R128_R1(&tmp128);
n0 = R128_R0(&tmp128);
d <<= shift;
} else {
n3 = (R128_U32)(nhi >> 32);
n2 = (R128_U32)nhi;
n1 = (R128_U32)(nlo >> 32);
n0 = (R128_U32)nlo;
}
d1 = (R128_U32)(d >> 32);
d0 = (R128_U32)d;
// first digit
R128_ASSERT(n3 <= d1);
if (n3 < d1) {
q1 = r128__udiv64(n2, n3, d1, &r);
} else {
q1 = 0xffffffffu;
r = n2 + d1;
}
refine1:
if (r128__umul64(q1, d0) > ((R128_U64)r << 32) + n1) {
--q1;
if (r < ~d1 + 1) {
r += d1;
goto refine1;
}
}
tmp = ((R128_U64)n2 << 32) + n1 - (r128__umul64(q1, d0) + (r128__umul64(q1, d1) << 32));
n2 = (R128_U32)(tmp >> 32);
n1 = (R128_U32)tmp;
// second digit
R128_ASSERT(n2 <= d1);
if (n2 < d1) {
q0 = r128__udiv64(n1, n2, d1, &r);
} else {
q0 = 0xffffffffu;
r = n1 + d1;
}
refine0:
if (r128__umul64(q0, d0) > ((R128_U64)r << 32) + n0) {
--q0;
if (r < ~d1 + 1) {
r += d1;
goto refine0;
}
}
tmp = ((R128_U64)n1 << 32) + n0 - (r128__umul64(q0, d0) + (r128__umul64(q0, d1) << 32));
n1 = (R128_U32)(tmp >> 32);
n0 = (R128_U32)tmp;
*rem = (((R128_U64)n1 << 32) + n0) >> shift;
return ((R128_U64)q1 << 32) + q0;
#endif
}
#endif
static int r128__ucmp(const R128 *a, const R128 *b)
{
if (a->hi != b->hi) {
if (a->hi > b->hi) {
return 1;
} else {
return -1;
}
} else {
if (a->lo == b->lo) {
return 0;
} else if (a->lo > b->lo) {
return 1;
} else {
return -1;
}
}
}
static void r128__umul(R128 *dst, const R128 *a, const R128 *b)
{
#if defined(_M_X64) && !defined(R128_STDC_ONLY)
R128_U64 t0, t1;
R128_U64 lo, hi = 0;
unsigned char carry;
t0 = _umul128(a->lo, b->lo, &t1);
carry = _addcarry_u64(0, t1, t0 >> 63, &lo);
_addcarry_u64(carry, hi, hi, &hi);
t0 = _umul128(a->lo, b->hi, &t1);
carry = _addcarry_u64(0, lo, t0, &lo);
_addcarry_u64(carry, hi, t1, &hi);
t0 = _umul128(a->hi, b->lo, &t1);
carry = _addcarry_u64(0, lo, t0, &lo);
_addcarry_u64(carry, hi, t1, &hi);
t0 = _umul128(a->hi, b->hi, &t1);
hi += t0;
R128_SET2(dst, lo, hi);
#elif defined(__x86_64__) && !defined(R128_STDC_ONLY)
unsigned __int128 p0, p1, p2, p3;
p0 = a->lo * (unsigned __int128)b->lo;
p1 = a->lo * (unsigned __int128)b->hi;
p2 = a->hi * (unsigned __int128)b->lo;
p3 = a->hi * (unsigned __int128)b->hi;
p0 = (p3 << 64) + p2 + p1 + (p0 >> 64) + ((R128_U64)p0 >> 63);
dst->lo = (R128_U64)p0;
dst->hi = (R128_U64)(p0 >> 64);
#else
R128 p0, p1, p2, p3, round;
r128__umul128(&p0, a->lo, b->lo);
round.hi = 0; round.lo = p0.lo >> 63;
p0.lo = p0.hi; p0.hi = 0; //r128Shr(&p0, &p0, 64);
r128Add(&p0, &p0, &round);
r128__umul128(&p1, a->hi, b->lo);
r128Add(&p0, &p0, &p1);
r128__umul128(&p2, a->lo, b->hi);
r128Add(&p0, &p0, &p2);
r128__umul128(&p3, a->hi, b->hi);
p3.hi = p3.lo; p3.lo = 0; //r128Shl(&p3, &p3, 64);
r128Add(&p0, &p0, &p3);
R128_SET2(dst, p0.lo, p0.hi);
#endif
}
// Shift d left until the high bit is set, and shift n left by the same amount.
// returns non-zero on overflow.
static int r128__norm(R128 *n, R128 *d, R128_U64 *n2)
{
R128_U64 d0, d1;
R128_U64 n0, n1;
int shift;
d1 = d->hi;
d0 = d->lo;
n1 = n->hi;
n0 = n->lo;
if (d1) {
shift = r128__clz64(d1);
if (shift) {
d1 = (d1 << shift) | (d0 >> (64 - shift));
d0 = d0 << shift;
*n2 = n1 >> (64 - shift);
n1 = (n1 << shift) | (n0 >> (64 - shift));
n0 = n0 << shift;
} else {
*n2 = 0;
}
} else {
shift = r128__clz64(d0);
if (r128__clz64(n1) <= shift) {
return 1; // overflow
}
if (shift) {
d1 = d0 << shift;
d0 = 0;
*n2 = (n1 << shift) | (n0 >> (64 - shift));
n1 = n0 << shift;
n0 = 0;
} else {
d1 = d0;
d0 = 0;
*n2 = n1;
n1 = n0;
n0 = 0;
}
}
R128_SET2(n, n0, n1);
R128_SET2(d, d0, d1);
return 0;
}
static void r128__udiv(R128 *quotient, const R128 *dividend, const R128 *divisor)
{
R128 tmp;
R128_U64 d0, d1;
R128_U64 n1, n2, n3;
R128 q;
R128_ASSERT(dividend != NULL);
R128_ASSERT(divisor != NULL);
R128_ASSERT(quotient != NULL);
R128_ASSERT(divisor->hi != 0 || divisor->lo != 0); // divide by zero
// scale dividend and normalize
{
R128 n, d;
R128_SET2(&n, dividend->lo, dividend->hi);
R128_SET2(&d, divisor->lo, divisor->hi);
if (r128__norm(&n, &d, &n3)) {
R128_SET2(quotient, R128_max.lo, R128_max.hi);
return;
}
d1 = d.hi;
d0 = d.lo;
n2 = n.hi;
n1 = n.lo;
}
// first digit
R128_ASSERT(n3 <= d1);
{
R128 t0, t1;
t0.lo = n1;
if (n3 < d1) {
q.hi = r128__udiv128(n2, n3, d1, &t0.hi);
} else {
q.hi = R128_LIT_U64(0xffffffffffffffff);
t0.hi = n2 + d1;
}
refine1:
r128__umul128(&t1, q.hi, d0);
if (r128__ucmp(&t1, &t0) > 0) {
--q.hi;
if (t0.hi < ~d1 + 1) {
t0.hi += d1;
goto refine1;
}
}
}
{
R128 t0, t1, t2;
t0.hi = n2;
t0.lo = n1;
r128__umul128(&t1, q.hi, d0);
r128__umul128(&t2, q.hi, d1);
t2.hi = t2.lo; t2.lo = 0; //r128Shl(&t2, &t2, 64);
r128Add(&tmp, &t1, &t2);
r128Sub(&tmp, &t0, &tmp);
}
n2 = tmp.hi;
n1 = tmp.lo;
// second digit
R128_ASSERT(n2 <= d1);
{
R128 t0, t1;
t0.lo = 0;
if (n2 < d1) {
q.lo = r128__udiv128(n1, n2, d1, &t0.hi);
} else {
q.lo = R128_LIT_U64(0xffffffffffffffff);
t0.hi = n1 + d1;
}
refine0:
r128__umul128(&t1, q.lo, d0);
if (r128__ucmp(&t1, &t0) > 0) {
--q.lo;
if (t0.hi < ~d1 + 1) {
t0.hi += d1;
goto refine0;
}
}
}
R128_SET2(quotient, q.lo, q.hi);
}
static R128_U64 r128__umod(R128 *n, R128 *d)
{
R128_U64 d0, d1;
R128_U64 n3, n2, n1;
R128_U64 q;
R128_ASSERT(d != NULL);
R128_ASSERT(n != NULL);
R128_ASSERT(d->hi != 0 || d->lo != 0); // divide by zero
if (r128__norm(n, d, &n3)) {
return R128_LIT_U64(0xffffffffffffffff);
}
d1 = d->hi;
d0 = d->lo;
n2 = n->hi;
n1 = n->lo;
R128_ASSERT(n3 < d1);
{
R128 t0, t1;
t0.lo = n1;
q = r128__udiv128(n2, n3, d1, &t0.hi);
refine1:
r128__umul128(&t1, q, d0);
if (r128__ucmp(&t1, &t0) > 0) {
--q;
if (t0.hi < ~d1 + 1) {
t0.hi += d1;
goto refine1;
}
}
}
return q;
}
static int r128__format(char *dst, size_t dstSize, const R128 *v, const R128ToStringFormat *format)
{
char buf[128];
R128 tmp;
R128_U64 whole;
char *cursor, *decimal, *dstp = dst;
int sign = 0;
int fullPrecision = 1;
int width, precision;
int padCnt, trail = 0;
R128_ASSERT(dst != NULL && dstSize > 0);
R128_ASSERT(v != NULL);
R128_ASSERT(format != NULL);
--dstSize;
R128_SET2(&tmp, v->lo, v->hi);
if (r128IsNeg(&tmp)) {
r128__neg(&tmp, &tmp);
sign = 1;
}
width = format->width;
if (width < 0) {
width = 0;
}
precision = format->precision;
if (precision < 0) {
// print a maximum of 20 digits
fullPrecision = 0;
precision = 20;
} else if (precision > sizeof(buf) - 21) {
trail = precision - (sizeof(buf) - 21);
precision -= trail;
}
whole = tmp.hi;
decimal = cursor = buf;
// fractional part first in case a carry into the whole part is required
if (tmp.lo || format->decimal) {
while (tmp.lo || (fullPrecision && precision)) {
if ((int)(cursor - buf) == precision) {
if ((R128_S64)tmp.lo < 0) {
// round up, propagate carry backwards
char *c;
for (c = cursor - 1; c >= buf; --c) {
char d = ++*c;
if (d <= '9') {
goto endfrac;
} else {
*c = '0';
}
}
// carry out into the whole part
whole++;
}
break;
}
r128__umul128(&tmp, tmp.lo, 10);
*cursor++ = (char)tmp.hi + '0';
}
endfrac:
if (format->decimal || precision) {
decimal = cursor;
*cursor++ = R128_decimal;
}
}
// whole part
do {
char digit = (char)(whole % 10);
whole /= 10;
*cursor++ = digit + '0';
} while (whole);
#define R128__WRITE(c) do { if (dstp < dst + dstSize) *dstp = c; ++dstp; } while(0)
padCnt = width - (int)(cursor - buf) - 1;
// left padding
if (!format->leftAlign) {
char padChar = format->zeroPad ? '0' : ' ';
if (format->zeroPad) {
if (sign) {
R128__WRITE('-');
} else if (format->sign == R128ToStringSign_Plus) {
R128__WRITE('+');
} else if (format->sign == R128ToStringSign_Space) {
R128__WRITE(' ');
} else {
++padCnt;
}
}
for (; padCnt > 0; --padCnt) {
R128__WRITE(padChar);
}
}
if (format->leftAlign || !format->zeroPad) {
if (sign) {
R128__WRITE('-');
} else if (format->sign == R128ToStringSign_Plus) {
R128__WRITE('+');
} else if (format->sign == R128ToStringSign_Space) {
R128__WRITE(' ');
} else {
++padCnt;
}
}
{
char *i;
// reverse the whole part
for (i = cursor - 1; i >= decimal; --i) {
R128__WRITE(*i);
}
// copy the fractional part
for (i = buf; i < decimal; ++i) {
R128__WRITE(*i);
}
}
// right padding
if (format->leftAlign) {
char padChar = format->zeroPad ? '0' : ' ';
for (; padCnt > 0; --padCnt) {
R128__WRITE(padChar);
}
}
// trailing zeroes for very large precision
while (trail--) {
R128__WRITE('0');
}
#undef R128__WRITE
if (dstp <= dst + dstSize) {
*dstp = '\0';
} else {
dst[dstSize] = '\0';
}
return (int)(dstp - dst);
}
void r128FromInt(R128 *dst, R128_S64 v)
{
R128_ASSERT(dst != NULL);
dst->lo = 0;
dst->hi = (R128_U64)v;
R128_DEBUG_SET(dst);
}
void r128FromFloat(R128 *dst, double v)
{
R128_ASSERT(dst != NULL);
if (v < -9223372036854775808.0) {
r128Copy(dst, &R128_min);
} else if (v >= 9223372036854775808.0) {
r128Copy(dst, &R128_max);
} else {
R128 r;
int sign = 0;
if (v < 0) {
v = -v;
sign = 1;
}
r.hi = (R128_U64)(R128_S64)v;
v -= (R128_S64)v;
r.lo = (R128_U64)(v * 18446744073709551616.0);
if (sign) {
r128__neg(&r, &r);
}
r128Copy(dst, &r);
}
}
void r128FromString(R128 *dst, const char *s, char **endptr)
{
R128_U64 lo = 0, hi = 0;
R128_U64 base = 10;
int sign = 0;
R128_ASSERT(dst != NULL);
R128_ASSERT(s != NULL);
R128_SET2(dst, 0, 0);
// consume whitespace
for (;;) {
if (*s == ' ' || *s == '\t' || *s == '\r' || *s == '\n' || *s == '\v') {
++s;
} else {
break;
}
}
// sign
if (*s == '-') {
sign = 1;
++s;
} else if (*s == '+') {
++s;
}
// parse base prefix
if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
base = 16;
s += 2;
}
// whole part
for (;; ++s) {
R128_U64 digit;
if ('0' <= *s && *s <= '9') {
digit = *s - '0';
} else if (base == 16 && 'a' <= *s && *s <= 'f') {
digit = *s - 'a' + 10;
} else if (base == 16 && 'A' <= *s && *s <= 'F') {
digit = *s - 'A' + 10;
} else {
break;
}
hi = hi * base + digit;
}
// fractional part
if (*s == R128_decimal) {
const char *exp = ++s;
// find the last digit and work backwards
for (;; ++s) {
if ('0' <= *s && *s <= '9') {
} else if (base == 16 && ('a' <= *s && *s <= 'f')) {
} else if (base == 16 && ('A' <= *s && *s <= 'F')) {
} else {
break;
}
}
for (--s; s >= exp; --s) {
R128_U64 digit, unused;
if ('0' <= *s && *s <= '9') {
digit = *s - '0';
} else if ('a' <= *s && *s <= 'f') {
digit = *s - 'a' + 10;
} else {
digit = *s - 'A' + 10;
}
lo = r128__udiv128(lo, digit, base, &unused);
}
}
R128_SET2(dst, lo, hi);
if (sign) {
r128__neg(dst, dst);
}
if (endptr) {
*endptr = (char *) s;
}
}
R128_S64 r128ToInt(const R128 *v)
{
R128_ASSERT(v != NULL);
return (R128_S64)v->hi;
}
double r128ToFloat(const R128 *v)
{
R128 tmp;
int sign = 0;
double d;
R128_ASSERT(v != NULL);
R128_SET2(&tmp, v->lo, v->hi);
if (r128IsNeg(&tmp)) {
r128__neg(&tmp, &tmp);
sign = 1;
}
d = tmp.hi + tmp.lo * (1 / 18446744073709551616.0);
if (sign) {
d = -d;
}
return d;
}
int r128ToStringOpt(char *dst, size_t dstSize, const R128 *v, const R128ToStringFormat *opt)
{
return r128__format(dst, dstSize, v, opt);
}
int r128ToStringf(char *dst, size_t dstSize, const char *format, const R128 *v)
{
R128ToStringFormat opts;
R128_ASSERT(dst != NULL && dstSize);
R128_ASSERT(format != NULL);
R128_ASSERT(v != NULL);
opts.sign = R128__defaultFormat.sign;
opts.precision = R128__defaultFormat.precision;
opts.zeroPad = R128__defaultFormat.zeroPad;
opts.decimal = R128__defaultFormat.decimal;
opts.leftAlign = R128__defaultFormat.leftAlign;
if (*format == '%') {
++format;
}
// flags field
for (;; ++format) {
if (*format == ' ' && opts.sign != R128ToStringSign_Plus) {
opts.sign = R128ToStringSign_Space;
} else if (*format == '+') {
opts.sign = R128ToStringSign_Plus;
} else if (*format == '0') {
opts.zeroPad = 1;
} else if (*format == '-') {
opts.leftAlign = 1;
} else if (*format == '#') {
opts.decimal = 1;
} else {
break;
}
}
// width field
opts.width = 0;
for (;;) {
if ('0' <= *format && *format <= '9') {
opts.width = opts.width * 10 + *format++ - '0';
} else {
break;
}
}
// precision field
if (*format == '.') {
opts.precision = 0;
++format;
for (;;) {
if ('0' <= *format && *format <= '9') {
opts.precision = opts.precision * 10 + *format++ - '0';
} else {
break;
}
}
}
return r128__format(dst, dstSize, v, &opts);
}
int r128ToString(char *dst, size_t dstSize, const R128 *v)
{
return r128__format(dst, dstSize, v, &R128__defaultFormat);
}
void r128Copy(R128 *dst, const R128 *src)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(src != NULL);
dst->lo = src->lo;
dst->hi = src->hi;
R128_DEBUG_SET(dst);
}
void r128Neg(R128 *dst, const R128 *src)
{
r128__neg(dst, src);
R128_DEBUG_SET(dst);
}
void r128Not(R128 *dst, const R128 *src)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(src != NULL);
dst->lo = ~src->lo;
dst->hi = ~src->hi;
R128_DEBUG_SET(dst);
}
void r128Or(R128 *dst, const R128 *a, const R128 *b)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
dst->lo = a->lo | b->lo;
dst->hi = a->hi | b->hi;
R128_DEBUG_SET(dst);
}
void r128And(R128 *dst, const R128 *a, const R128 *b)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
dst->lo = a->lo & b->lo;
dst->hi = a->hi & b->hi;
R128_DEBUG_SET(dst);
}
void r128Xor(R128 *dst, const R128 *a, const R128 *b)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
dst->lo = a->lo ^ b->lo;
dst->hi = a->hi ^ b->hi;
R128_DEBUG_SET(dst);
}
void r128Shl(R128 *dst, const R128 *src, int amount)
{
R128_U64 r[4];
R128_ASSERT(dst != NULL);
R128_ASSERT(src != NULL);
#if defined(_M_IX86) && !defined(R128_STDC_ONLY) && !defined(__MINGW32__)
__asm {
// load src
mov edx, dword ptr[src]
mov ecx, amount
mov edi, dword ptr[edx]
mov esi, dword ptr[edx + 4]
mov ebx, dword ptr[edx + 8]
mov eax, dword ptr[edx + 12]
// shift mod 32
shld eax, ebx, cl
shld ebx, esi, cl
shld esi, edi, cl
shl edi, cl
// clear out low 12 bytes of stack
xor edx, edx
mov dword ptr[r], edx
mov dword ptr[r + 4], edx
mov dword ptr[r + 8], edx
// store shifted amount offset by count/32 bits
shr ecx, 5
and ecx, 3
mov dword ptr[r + ecx * 4 + 0], edi
mov dword ptr[r + ecx * 4 + 4], esi
mov dword ptr[r + ecx * 4 + 8], ebx
mov dword ptr[r + ecx * 4 + 12], eax
}
#else
r[0] = src->lo;
r[1] = src->hi;
amount &= 127;
if (amount >= 64) {
r[1] = r[0] << (amount - 64);
r[0] = 0;
} else if (amount) {
# ifdef _M_X64
r[1] = __shiftleft128(r[0], r[1], (char) amount);
# else
r[1] = (r[1] << amount) | (r[0] >> (64 - amount));
# endif
r[0] = r[0] << amount;
}
#endif //_M_IX86
dst->lo = r[0];
dst->hi = r[1];
R128_DEBUG_SET(dst);
}
void r128Shr(R128 *dst, const R128 *src, int amount)
{
R128_U64 r[4];
R128_ASSERT(dst != NULL);
R128_ASSERT(src != NULL);
#if defined(_M_IX86) && !defined(R128_STDC_ONLY) && !defined(__MINGW32__)
__asm {
// load src
mov edx, dword ptr[src]
mov ecx, amount
mov edi, dword ptr[edx]
mov esi, dword ptr[edx + 4]
mov ebx, dword ptr[edx + 8]
mov eax, dword ptr[edx + 12]
// shift mod 32
shrd edi, esi, cl
shrd esi, ebx, cl
shrd ebx, eax, cl
shr eax, cl
// clear out high 12 bytes of stack
xor edx, edx
mov dword ptr[r + 20], edx
mov dword ptr[r + 24], edx
mov dword ptr[r + 28], edx
// store shifted amount offset by -count/32 bits
shr ecx, 5
and ecx, 3
neg ecx
mov dword ptr[r + ecx * 4 + 16], edi
mov dword ptr[r + ecx * 4 + 20], esi
mov dword ptr[r + ecx * 4 + 24], ebx
mov dword ptr[r + ecx * 4 + 28], eax
}
#else
r[2] = src->lo;
r[3] = src->hi;
amount &= 127;
if (amount >= 64) {
r[2] = r[3] >> (amount - 64);
r[3] = 0;
} else if (amount) {
#ifdef _M_X64
r[2] = __shiftright128(r[2], r[3], (char) amount);
#else
r[2] = (r[2] >> amount) | (r[3] << (64 - amount));
#endif
r[3] = r[3] >> amount;
}
#endif
dst->lo = r[2];
dst->hi = r[3];
R128_DEBUG_SET(dst);
}
void r128Sar(R128 *dst, const R128 *src, int amount)
{
R128_U64 r[4];
R128_ASSERT(dst != NULL);
R128_ASSERT(src != NULL);
#if defined(_M_IX86) && !defined(R128_STDC_ONLY) && !defined(__MINGW32__)
__asm {
// load src
mov edx, dword ptr[src]
mov ecx, amount
mov edi, dword ptr[edx]
mov esi, dword ptr[edx + 4]
mov ebx, dword ptr[edx + 8]
mov eax, dword ptr[edx + 12]
// shift mod 32
shrd edi, esi, cl
shrd esi, ebx, cl
shrd ebx, eax, cl
sar eax, cl
// copy sign to high 12 bytes of stack
cdq
mov dword ptr[r + 20], edx
mov dword ptr[r + 24], edx
mov dword ptr[r + 28], edx
// store shifted amount offset by -count/32 bits
shr ecx, 5
and ecx, 3
neg ecx
mov dword ptr[r + ecx * 4 + 16], edi
mov dword ptr[r + ecx * 4 + 20], esi
mov dword ptr[r + ecx * 4 + 24], ebx
mov dword ptr[r + ecx * 4 + 28], eax
}
#else
r[2] = src->lo;
r[3] = src->hi;
amount &= 127;
if (amount >= 64) {
r[2] = (R128_U64)((R128_S64)r[3] >> (amount - 64));
r[3] = (R128_U64)((R128_S64)r[3] >> 63);
} else if (amount) {
r[2] = (r[2] >> amount) | (R128_U64)((R128_S64)r[3] << (64 - amount));
r[3] = (R128_U64)((R128_S64)r[3] >> amount);
}
#endif
dst->lo = r[2];
dst->hi = r[3];
R128_DEBUG_SET(dst);
}
void r128Add(R128 *dst, const R128 *a, const R128 *b)
{
unsigned char carry = 0;
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
#if R128_INTEL && !defined(R128_STDC_ONLY)
# if R128_64BIT
carry = _addcarry_u64(carry, a->lo, b->lo, &dst->lo);
carry = _addcarry_u64(carry, a->hi, b->hi, &dst->hi);
# else
R128_U32 r0, r1, r2, r3;
carry = _addcarry_u32(carry, R128_R0(a), R128_R0(b), &r0);
carry = _addcarry_u32(carry, R128_R1(a), R128_R1(b), &r1);
carry = _addcarry_u32(carry, R128_R2(a), R128_R2(b), &r2);
carry = _addcarry_u32(carry, R128_R3(a), R128_R3(b), &r3);
R128_SET4(dst, r0, r1, r2, r3);
# endif //R128_64BIT
#else
{
R128_U64 r = a->lo + b->lo;
carry = r < a->lo;
dst->lo = r;
dst->hi = a->hi + b->hi + carry;
}
#endif //R128_INTEL
R128_DEBUG_SET(dst);
}
void r128Sub(R128 *dst, const R128 *a, const R128 *b)
{
unsigned char borrow = 0;
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
#if R128_INTEL && !defined(R128_STDC_ONLY)
# if R128_64BIT
borrow = _subborrow_u64(borrow, a->lo, b->lo, &dst->lo);
borrow = _subborrow_u64(borrow, a->hi, b->hi, &dst->hi);
# else
R128_U32 r0, r1, r2, r3;
borrow = _subborrow_u32(borrow, R128_R0(a), R128_R0(b), &r0);
borrow = _subborrow_u32(borrow, R128_R1(a), R128_R1(b), &r1);
borrow = _subborrow_u32(borrow, R128_R2(a), R128_R2(b), &r2);
borrow = _subborrow_u32(borrow, R128_R3(a), R128_R3(b), &r3);
R128_SET4(dst, r0, r1, r2, r3);
# endif //R128_64BIT
#else
{
R128_U64 r = a->lo - b->lo;
borrow = r > a->lo;
dst->lo = r;
dst->hi = a->hi - b->hi - borrow;
}
#endif //R128_INTEL
R128_DEBUG_SET(dst);
}
void r128Mul(R128 *dst, const R128 *a, const R128 *b)
{
int sign = 0;
R128 ta, tb, tc;
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
R128_SET2(&ta, a->lo, a->hi);
R128_SET2(&tb, b->lo, b->hi);
if (r128IsNeg(&ta)) {
r128__neg(&ta, &ta);
sign = !sign;
}
if (r128IsNeg(&tb)) {
r128__neg(&tb, &tb);
sign = !sign;
}
r128__umul(&tc, &ta, &tb);
if (sign) {
r128__neg(&tc, &tc);
}
r128Copy(dst, &tc);
}
void r128Div(R128 *dst, const R128 *a, const R128 *b)
{
int sign = 0;
R128 tn, td, tq;
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
R128_SET2(&tn, a->lo, a->hi);
R128_SET2(&td, b->lo, b->hi);
if (r128IsNeg(&tn)) {
r128__neg(&tn, &tn);
sign = !sign;
}
if (td.lo == 0 && td.hi == 0) {
// divide by zero
if (sign) {
r128Copy(dst, &R128_min);
} else {
r128Copy(dst, &R128_max);
}
return;
} else if (r128IsNeg(&td)) {
r128__neg(&td, &td);
sign = !sign;
}
r128__udiv(&tq, &tn, &td);
if (sign) {
r128__neg(&tq, &tq);
}
r128Copy(dst, &tq);
}
void r128Mod(R128 *dst, const R128 *a, const R128 *b)
{
int sign = 0;
R128 tn, td, tq;
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
R128_SET2(&tn, a->lo, a->hi);
R128_SET2(&td, b->lo, b->hi);
if (r128IsNeg(&tn)) {
r128__neg(&tn, &tn);
sign = !sign;
}
if (td.lo == 0 && td.hi == 0) {
// divide by zero
if (sign) {
r128Copy(dst, &R128_min);
} else {
r128Copy(dst, &R128_max);
}
return;
} else if (r128IsNeg(&td)) {
r128__neg(&td, &td);
sign = !sign;
}
tq.hi = r128__umod(&tn, &td);
tq.lo = 0;
if (sign) {
tq.hi = ~tq.hi + 1;
}
r128Mul(&tq, &tq, b);
r128Sub(dst, a, &tq);
}
void r128Rsqrt(R128 *dst, const R128 *v)
{
static const R128 threeHalves = { R128_LIT_U64(0x8000000000000000), 1 };
R128 x, est;
int i;
if ((R128_S64)v->hi < 0) {
r128Copy(dst, &R128_min);
return;
}
R128_SET2(&x, v->lo, v->hi);
// get initial estimate
if (x.hi) {
int shift = (64 + r128__clz64(x.hi)) >> 1;
est.lo = R128_LIT_U64(1) << shift;
est.hi = 0;
} else if (x.lo) {
int shift = r128__clz64(x.lo) >> 1;
est.hi = R128_LIT_U64(1) << shift;
est.lo = 0;
} else {
R128_SET2(dst, 0, 0);
return;
}
// x /= 2
r128Shr(&x, &x, 1);
// Newton-Raphson iterate
for (i = 0; i < 7; ++i) {
R128 newEst;
// newEst = est * (threeHalves - (x / 2) * est * est);
r128__umul(&newEst, &est, &est);
r128__umul(&newEst, &newEst, &x);
r128Sub(&newEst, &threeHalves, &newEst);
r128__umul(&newEst, &est, &newEst);
if (newEst.lo == est.lo && newEst.hi == est.hi) {
break;
}
R128_SET2(&est, newEst.lo, newEst.hi);
}
r128Copy(dst, &est);
}
void r128Sqrt(R128 *dst, const R128 *v)
{
R128 x, est;
int i;
if ((R128_S64)v->hi < 0) {
r128Copy(dst, &R128_min);
return;
}
R128_SET2(&x, v->lo, v->hi);
// get initial estimate
if (x.hi) {
int shift = (63 - r128__clz64(x.hi)) >> 1;
r128Shr(&est, &x, shift);
} else if (x.lo) {
int shift = (1 + r128__clz64(x.lo)) >> 1;
r128Shl(&est, &x, shift);
} else {
R128_SET2(dst, 0, 0);
return;
}
// Newton-Raphson iterate
for (i = 0; i < 7; ++i) {
R128 newEst;
// newEst = (est + x / est) / 2
r128__udiv(&newEst, &x, &est);
r128Add(&newEst, &newEst, &est);
r128Shr(&newEst, &newEst, 1);
if (newEst.lo == est.lo && newEst.hi == est.hi) {
break;
}
R128_SET2(&est, newEst.lo, newEst.hi);
}
r128Copy(dst, &est);
}
int r128Cmp(const R128 *a, const R128 *b)
{
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
if (a->hi == b->hi) {
if (a->lo == b->lo) {
return 0;
} else if (a->lo > b->lo) {
return 1;
} else {
return -1;
}
} else if ((R128_S64)a->hi > (R128_S64)b->hi) {
return 1;
} else {
return -1;
}
}
int r128IsNeg(const R128 *v)
{
R128_ASSERT(v != NULL);
return (R128_S64)v->hi < 0;
}
void r128Min(R128 *dst, const R128 *a, const R128 *b)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
if (r128Cmp(a, b) < 0) {
r128Copy(dst, a);
} else {
r128Copy(dst, b);
}
}
void r128Max(R128 *dst, const R128 *a, const R128 *b)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(a != NULL);
R128_ASSERT(b != NULL);
if (r128Cmp(a, b) > 0) {
r128Copy(dst, a);
} else {
r128Copy(dst, b);
}
}
void r128Floor(R128 *dst, const R128 *v)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(v != NULL);
if ((R128_S64)v->hi < 0) {
dst->hi = v->hi - (v->lo != 0);
} else {
dst->hi = v->hi;
}
dst->lo = 0;
R128_DEBUG_SET(dst);
}
void r128Ceil(R128 *dst, const R128 *v)
{
R128_ASSERT(dst != NULL);
R128_ASSERT(v != NULL);
if ((R128_S64)v->hi > 0) {
dst->hi = v->hi + (v->lo != 0);
} else {
dst->hi = v->hi;
}
dst->lo = 0;
R128_DEBUG_SET(dst);
}
#endif //R128_IMPLEMENTATION
|