summaryrefslogtreecommitdiff
path: root/thirdparty/meshoptimizer/overdrawoptimizer.cpp
blob: cc22dbcffc1af507e7d794c06aa7b02bbb9ede4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"

#include <assert.h>
#include <math.h>
#include <string.h>

// This work is based on:
// Pedro Sander, Diego Nehab and Joshua Barczak. Fast Triangle Reordering for Vertex Locality and Reduced Overdraw. 2007
namespace meshopt
{

static void calculateSortData(float* sort_data, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_positions_stride, const unsigned int* clusters, size_t cluster_count)
{
	size_t vertex_stride_float = vertex_positions_stride / sizeof(float);

	float mesh_centroid[3] = {};

	for (size_t i = 0; i < index_count; ++i)
	{
		const float* p = vertex_positions + vertex_stride_float * indices[i];

		mesh_centroid[0] += p[0];
		mesh_centroid[1] += p[1];
		mesh_centroid[2] += p[2];
	}

	mesh_centroid[0] /= index_count;
	mesh_centroid[1] /= index_count;
	mesh_centroid[2] /= index_count;

	for (size_t cluster = 0; cluster < cluster_count; ++cluster)
	{
		size_t cluster_begin = clusters[cluster] * 3;
		size_t cluster_end = (cluster + 1 < cluster_count) ? clusters[cluster + 1] * 3 : index_count;
		assert(cluster_begin < cluster_end);

		float cluster_area = 0;
		float cluster_centroid[3] = {};
		float cluster_normal[3] = {};

		for (size_t i = cluster_begin; i < cluster_end; i += 3)
		{
			const float* p0 = vertex_positions + vertex_stride_float * indices[i + 0];
			const float* p1 = vertex_positions + vertex_stride_float * indices[i + 1];
			const float* p2 = vertex_positions + vertex_stride_float * indices[i + 2];

			float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
			float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};

			float normalx = p10[1] * p20[2] - p10[2] * p20[1];
			float normaly = p10[2] * p20[0] - p10[0] * p20[2];
			float normalz = p10[0] * p20[1] - p10[1] * p20[0];

			float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);

			cluster_centroid[0] += (p0[0] + p1[0] + p2[0]) * (area / 3);
			cluster_centroid[1] += (p0[1] + p1[1] + p2[1]) * (area / 3);
			cluster_centroid[2] += (p0[2] + p1[2] + p2[2]) * (area / 3);
			cluster_normal[0] += normalx;
			cluster_normal[1] += normaly;
			cluster_normal[2] += normalz;
			cluster_area += area;
		}

		float inv_cluster_area = cluster_area == 0 ? 0 : 1 / cluster_area;

		cluster_centroid[0] *= inv_cluster_area;
		cluster_centroid[1] *= inv_cluster_area;
		cluster_centroid[2] *= inv_cluster_area;

		float cluster_normal_length = sqrtf(cluster_normal[0] * cluster_normal[0] + cluster_normal[1] * cluster_normal[1] + cluster_normal[2] * cluster_normal[2]);
		float inv_cluster_normal_length = cluster_normal_length == 0 ? 0 : 1 / cluster_normal_length;

		cluster_normal[0] *= inv_cluster_normal_length;
		cluster_normal[1] *= inv_cluster_normal_length;
		cluster_normal[2] *= inv_cluster_normal_length;

		float centroid_vector[3] = {cluster_centroid[0] - mesh_centroid[0], cluster_centroid[1] - mesh_centroid[1], cluster_centroid[2] - mesh_centroid[2]};

		sort_data[cluster] = centroid_vector[0] * cluster_normal[0] + centroid_vector[1] * cluster_normal[1] + centroid_vector[2] * cluster_normal[2];
	}
}

static void calculateSortOrderRadix(unsigned int* sort_order, const float* sort_data, unsigned short* sort_keys, size_t cluster_count)
{
	// compute sort data bounds and renormalize, using fixed point snorm
	float sort_data_max = 1e-3f;

	for (size_t i = 0; i < cluster_count; ++i)
	{
		float dpa = fabsf(sort_data[i]);

		sort_data_max = (sort_data_max < dpa) ? dpa : sort_data_max;
	}

	const int sort_bits = 11;

	for (size_t i = 0; i < cluster_count; ++i)
	{
		// note that we flip distribution since high dot product should come first
		float sort_key = 0.5f - 0.5f * (sort_data[i] / sort_data_max);

		sort_keys[i] = meshopt_quantizeUnorm(sort_key, sort_bits) & ((1 << sort_bits) - 1);
	}

	// fill histogram for counting sort
	unsigned int histogram[1 << sort_bits];
	memset(histogram, 0, sizeof(histogram));

	for (size_t i = 0; i < cluster_count; ++i)
	{
		histogram[sort_keys[i]]++;
	}

	// compute offsets based on histogram data
	size_t histogram_sum = 0;

	for (size_t i = 0; i < 1 << sort_bits; ++i)
	{
		size_t count = histogram[i];
		histogram[i] = unsigned(histogram_sum);
		histogram_sum += count;
	}

	assert(histogram_sum == cluster_count);

	// compute sort order based on offsets
	for (size_t i = 0; i < cluster_count; ++i)
	{
		sort_order[histogram[sort_keys[i]]++] = unsigned(i);
	}
}

static unsigned int updateCache(unsigned int a, unsigned int b, unsigned int c, unsigned int cache_size, unsigned int* cache_timestamps, unsigned int& timestamp)
{
	unsigned int cache_misses = 0;

	// if vertex is not in cache, put it in cache
	if (timestamp - cache_timestamps[a] > cache_size)
	{
		cache_timestamps[a] = timestamp++;
		cache_misses++;
	}

	if (timestamp - cache_timestamps[b] > cache_size)
	{
		cache_timestamps[b] = timestamp++;
		cache_misses++;
	}

	if (timestamp - cache_timestamps[c] > cache_size)
	{
		cache_timestamps[c] = timestamp++;
		cache_misses++;
	}

	return cache_misses;
}

static size_t generateHardBoundaries(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int* cache_timestamps)
{
	memset(cache_timestamps, 0, vertex_count * sizeof(unsigned int));

	unsigned int timestamp = cache_size + 1;

	size_t face_count = index_count / 3;

	size_t result = 0;

	for (size_t i = 0; i < face_count; ++i)
	{
		unsigned int m = updateCache(indices[i * 3 + 0], indices[i * 3 + 1], indices[i * 3 + 2], cache_size, &cache_timestamps[0], timestamp);

		// when all three vertices are not in the cache it's usually relatively safe to assume that this is a new patch in the mesh
		// that is disjoint from previous vertices; sometimes it might come back to reference existing vertices but that frequently
		// suggests an inefficiency in the vertex cache optimization algorithm
		// usually the first triangle has 3 misses unless it's degenerate - thus we make sure the first cluster always starts with 0
		if (i == 0 || m == 3)
		{
			destination[result++] = unsigned(i);
		}
	}

	assert(result <= index_count / 3);

	return result;
}

static size_t generateSoftBoundaries(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* clusters, size_t cluster_count, unsigned int cache_size, float threshold, unsigned int* cache_timestamps)
{
	memset(cache_timestamps, 0, vertex_count * sizeof(unsigned int));

	unsigned int timestamp = 0;

	size_t result = 0;

	for (size_t it = 0; it < cluster_count; ++it)
	{
		size_t start = clusters[it];
		size_t end = (it + 1 < cluster_count) ? clusters[it + 1] : index_count / 3;
		assert(start < end);

		// reset cache
		timestamp += cache_size + 1;

		// measure cluster ACMR
		unsigned int cluster_misses = 0;

		for (size_t i = start; i < end; ++i)
		{
			unsigned int m = updateCache(indices[i * 3 + 0], indices[i * 3 + 1], indices[i * 3 + 2], cache_size, &cache_timestamps[0], timestamp);

			cluster_misses += m;
		}

		float cluster_threshold = threshold * (float(cluster_misses) / float(end - start));

		// first cluster always starts from the hard cluster boundary
		destination[result++] = unsigned(start);

		// reset cache
		timestamp += cache_size + 1;

		unsigned int running_misses = 0;
		unsigned int running_faces = 0;

		for (size_t i = start; i < end; ++i)
		{
			unsigned int m = updateCache(indices[i * 3 + 0], indices[i * 3 + 1], indices[i * 3 + 2], cache_size, &cache_timestamps[0], timestamp);

			running_misses += m;
			running_faces += 1;

			if (float(running_misses) / float(running_faces) <= cluster_threshold)
			{
				// we have reached the target ACMR with the current triangle so we need to start a new cluster on the next one
				// note that this may mean that we add 'end` to destination for the last triangle, which will imply that the last
				// cluster is empty; however, the 'pop_back' after the loop will clean it up
				destination[result++] = unsigned(i + 1);

				// reset cache
				timestamp += cache_size + 1;

				running_misses = 0;
				running_faces = 0;
			}
		}

		// each time we reach the target ACMR we flush the cluster
		// this means that the last cluster is by definition not very good - there are frequent cases where we are left with a few triangles
		// in the last cluster, producing a very bad ACMR and significantly penalizing the overall results
		// thus we remove the last cluster boundary, merging the last complete cluster with the last incomplete one
		// there are sometimes cases when the last cluster is actually good enough - in which case the code above would have added 'end'
		// to the cluster boundary array which we need to remove anyway - this code will do that automatically
		if (destination[result - 1] != start)
		{
			result--;
		}
	}

	assert(result >= cluster_count);
	assert(result <= index_count / 3);

	return result;
}

} // namespace meshopt

void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold)
{
	using namespace meshopt;

	assert(index_count % 3 == 0);
	assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
	assert(vertex_positions_stride % sizeof(float) == 0);

	meshopt_Allocator allocator;

	// guard for empty meshes
	if (index_count == 0 || vertex_count == 0)
		return;

	// support in-place optimization
	if (destination == indices)
	{
		unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count);
		memcpy(indices_copy, indices, index_count * sizeof(unsigned int));
		indices = indices_copy;
	}

	unsigned int cache_size = 16;

	unsigned int* cache_timestamps = allocator.allocate<unsigned int>(vertex_count);

	// generate hard boundaries from full-triangle cache misses
	unsigned int* hard_clusters = allocator.allocate<unsigned int>(index_count / 3);
	size_t hard_cluster_count = generateHardBoundaries(hard_clusters, indices, index_count, vertex_count, cache_size, cache_timestamps);

	// generate soft boundaries
	unsigned int* soft_clusters = allocator.allocate<unsigned int>(index_count / 3 + 1);
	size_t soft_cluster_count = generateSoftBoundaries(soft_clusters, indices, index_count, vertex_count, hard_clusters, hard_cluster_count, cache_size, threshold, cache_timestamps);

	const unsigned int* clusters = soft_clusters;
	size_t cluster_count = soft_cluster_count;

	// fill sort data
	float* sort_data = allocator.allocate<float>(cluster_count);
	calculateSortData(sort_data, indices, index_count, vertex_positions, vertex_positions_stride, clusters, cluster_count);

	// sort clusters using sort data
	unsigned short* sort_keys = allocator.allocate<unsigned short>(cluster_count);
	unsigned int* sort_order = allocator.allocate<unsigned int>(cluster_count);
	calculateSortOrderRadix(sort_order, sort_data, sort_keys, cluster_count);

	// fill output buffer
	size_t offset = 0;

	for (size_t it = 0; it < cluster_count; ++it)
	{
		unsigned int cluster = sort_order[it];
		assert(cluster < cluster_count);

		size_t cluster_begin = clusters[cluster] * 3;
		size_t cluster_end = (cluster + 1 < cluster_count) ? clusters[cluster + 1] * 3 : index_count;
		assert(cluster_begin < cluster_end);

		memcpy(destination + offset, indices + cluster_begin, (cluster_end - cluster_begin) * sizeof(unsigned int));
		offset += cluster_end - cluster_begin;
	}

	assert(offset == index_count);
}