summaryrefslogtreecommitdiff
path: root/thirdparty/meshoptimizer/overdrawanalyzer.cpp
blob: 8d5859ba396501d00ed334cdda4d00e3dfd0d92f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"

#include <assert.h>
#include <float.h>
#include <string.h>

// This work is based on:
// Nicolas Capens. Advanced Rasterization. 2004
namespace meshopt
{

const int kViewport = 256;

struct OverdrawBuffer
{
	float z[kViewport][kViewport][2];
	unsigned int overdraw[kViewport][kViewport][2];
};

#ifndef min
#define min(a, b) ((a) < (b) ? (a) : (b))
#endif

#ifndef max
#define max(a, b) ((a) > (b) ? (a) : (b))
#endif

static float computeDepthGradients(float& dzdx, float& dzdy, float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3)
{
	// z2 = z1 + dzdx * (x2 - x1) + dzdy * (y2 - y1)
	// z3 = z1 + dzdx * (x3 - x1) + dzdy * (y3 - y1)
	// (x2-x1 y2-y1)(dzdx) = (z2-z1)
	// (x3-x1 y3-y1)(dzdy)   (z3-z1)
	// we'll solve it with Cramer's rule
	float det = (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1);
	float invdet = (det == 0) ? 0 : 1 / det;

	dzdx = (z2 - z1) * (y3 - y1) - (y2 - y1) * (z3 - z1) * invdet;
	dzdy = (x2 - x1) * (z3 - z1) - (z2 - z1) * (x3 - x1) * invdet;

	return det;
}

// half-space fixed point triangle rasterizer
static void rasterize(OverdrawBuffer* buffer, float v1x, float v1y, float v1z, float v2x, float v2y, float v2z, float v3x, float v3y, float v3z)
{
	// compute depth gradients
	float DZx, DZy;
	float det = computeDepthGradients(DZx, DZy, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z);
	int sign = det > 0;

	// flip backfacing triangles to simplify rasterization logic
	if (sign)
	{
		// flipping v2 & v3 preserves depth gradients since they're based on v1
		float t;
		t = v2x, v2x = v3x, v3x = t;
		t = v2y, v2y = v3y, v3y = t;
		t = v2z, v2z = v3z, v3z = t;

		// flip depth since we rasterize backfacing triangles to second buffer with reverse Z; only v1z is used below
		v1z = kViewport - v1z;
		DZx = -DZx;
		DZy = -DZy;
	}

	// coordinates, 28.4 fixed point
	int X1 = int(16.0f * v1x + 0.5f);
	int X2 = int(16.0f * v2x + 0.5f);
	int X3 = int(16.0f * v3x + 0.5f);

	int Y1 = int(16.0f * v1y + 0.5f);
	int Y2 = int(16.0f * v2y + 0.5f);
	int Y3 = int(16.0f * v3y + 0.5f);

	// bounding rectangle, clipped against viewport
	// since we rasterize pixels with covered centers, min >0.5 should round up
	// as for max, due to top-left filling convention we will never rasterize right/bottom edges
	// so max >= 0.5 should round down
	int minx = max((min(X1, min(X2, X3)) + 7) >> 4, 0);
	int maxx = min((max(X1, max(X2, X3)) + 7) >> 4, kViewport);
	int miny = max((min(Y1, min(Y2, Y3)) + 7) >> 4, 0);
	int maxy = min((max(Y1, max(Y2, Y3)) + 7) >> 4, kViewport);

	// deltas, 28.4 fixed point
	int DX12 = X1 - X2;
	int DX23 = X2 - X3;
	int DX31 = X3 - X1;

	int DY12 = Y1 - Y2;
	int DY23 = Y2 - Y3;
	int DY31 = Y3 - Y1;

	// fill convention correction
	int TL1 = DY12 < 0 || (DY12 == 0 && DX12 > 0);
	int TL2 = DY23 < 0 || (DY23 == 0 && DX23 > 0);
	int TL3 = DY31 < 0 || (DY31 == 0 && DX31 > 0);

	// half edge equations, 24.8 fixed point
	// note that we offset minx/miny by half pixel since we want to rasterize pixels with covered centers
	int FX = (minx << 4) + 8;
	int FY = (miny << 4) + 8;
	int CY1 = DX12 * (FY - Y1) - DY12 * (FX - X1) + TL1 - 1;
	int CY2 = DX23 * (FY - Y2) - DY23 * (FX - X2) + TL2 - 1;
	int CY3 = DX31 * (FY - Y3) - DY31 * (FX - X3) + TL3 - 1;
	float ZY = v1z + (DZx * float(FX - X1) + DZy * float(FY - Y1)) * (1 / 16.f);

	for (int y = miny; y < maxy; y++)
	{
		int CX1 = CY1;
		int CX2 = CY2;
		int CX3 = CY3;
		float ZX = ZY;

		for (int x = minx; x < maxx; x++)
		{
			// check if all CXn are non-negative
			if ((CX1 | CX2 | CX3) >= 0)
			{
				if (ZX >= buffer->z[y][x][sign])
				{
					buffer->z[y][x][sign] = ZX;
					buffer->overdraw[y][x][sign]++;
				}
			}

			// signed left shift is UB for negative numbers so use unsigned-signed casts
			CX1 -= int(unsigned(DY12) << 4);
			CX2 -= int(unsigned(DY23) << 4);
			CX3 -= int(unsigned(DY31) << 4);
			ZX += DZx;
		}

		// signed left shift is UB for negative numbers so use unsigned-signed casts
		CY1 += int(unsigned(DX12) << 4);
		CY2 += int(unsigned(DX23) << 4);
		CY3 += int(unsigned(DX31) << 4);
		ZY += DZy;
	}
}

} // namespace meshopt

meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	using namespace meshopt;

	assert(index_count % 3 == 0);
	assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
	assert(vertex_positions_stride % sizeof(float) == 0);

	meshopt_Allocator allocator;

	size_t vertex_stride_float = vertex_positions_stride / sizeof(float);

	meshopt_OverdrawStatistics result = {};

	float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
	float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};

	for (size_t i = 0; i < vertex_count; ++i)
	{
		const float* v = vertex_positions + i * vertex_stride_float;

		for (int j = 0; j < 3; ++j)
		{
			minv[j] = min(minv[j], v[j]);
			maxv[j] = max(maxv[j], v[j]);
		}
	}

	float extent = max(maxv[0] - minv[0], max(maxv[1] - minv[1], maxv[2] - minv[2]));
	float scale = kViewport / extent;

	float* triangles = allocator.allocate<float>(index_count * 3);

	for (size_t i = 0; i < index_count; ++i)
	{
		unsigned int index = indices[i];
		assert(index < vertex_count);

		const float* v = vertex_positions + index * vertex_stride_float;

		triangles[i * 3 + 0] = (v[0] - minv[0]) * scale;
		triangles[i * 3 + 1] = (v[1] - minv[1]) * scale;
		triangles[i * 3 + 2] = (v[2] - minv[2]) * scale;
	}

	OverdrawBuffer* buffer = allocator.allocate<OverdrawBuffer>(1);

	for (int axis = 0; axis < 3; ++axis)
	{
		memset(buffer, 0, sizeof(OverdrawBuffer));

		for (size_t i = 0; i < index_count; i += 3)
		{
			const float* vn0 = &triangles[3 * (i + 0)];
			const float* vn1 = &triangles[3 * (i + 1)];
			const float* vn2 = &triangles[3 * (i + 2)];

			switch (axis)
			{
			case 0:
				rasterize(buffer, vn0[2], vn0[1], vn0[0], vn1[2], vn1[1], vn1[0], vn2[2], vn2[1], vn2[0]);
				break;
			case 1:
				rasterize(buffer, vn0[0], vn0[2], vn0[1], vn1[0], vn1[2], vn1[1], vn2[0], vn2[2], vn2[1]);
				break;
			case 2:
				rasterize(buffer, vn0[1], vn0[0], vn0[2], vn1[1], vn1[0], vn1[2], vn2[1], vn2[0], vn2[2]);
				break;
			}
		}

		for (int y = 0; y < kViewport; ++y)
			for (int x = 0; x < kViewport; ++x)
				for (int s = 0; s < 2; ++s)
				{
					unsigned int overdraw = buffer->overdraw[y][x][s];

					result.pixels_covered += overdraw > 0;
					result.pixels_shaded += overdraw;
				}
	}

	result.overdraw = result.pixels_covered ? float(result.pixels_shaded) / float(result.pixels_covered) : 0.f;

	return result;
}