summaryrefslogtreecommitdiff
path: root/thirdparty/meshoptimizer/meshoptimizer.h
blob: fde00f9c82b6249edac24c4d325ffd6a24fd5cab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
/**
 * meshoptimizer - version 0.15
 *
 * Copyright (C) 2016-2020, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
 * Report bugs and download new versions at https://github.com/zeux/meshoptimizer
 *
 * This library is distributed under the MIT License. See notice at the end of this file.
 */
#pragma once

#include <assert.h>
#include <stddef.h>

/* Version macro; major * 1000 + minor * 10 + patch */
#define MESHOPTIMIZER_VERSION 150 /* 0.15 */

/* If no API is defined, assume default */
#ifndef MESHOPTIMIZER_API
#define MESHOPTIMIZER_API
#endif

/* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */
#define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API

/* C interface */
#ifdef __cplusplus
extern "C" {
#endif

/**
 * Vertex attribute stream, similar to glVertexPointer
 * Each element takes size bytes, with stride controlling the spacing between successive elements.
 */
struct meshopt_Stream
{
	const void* data;
	size_t size;
	size_t stride;
};

/**
 * Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices
 * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence.
 * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer.
 * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized.
 *
 * destination must contain enough space for the resulting remap table (vertex_count elements)
 * indices can be NULL if the input is unindexed
 */
MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);

/**
 * Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices
 * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence.
 * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer.
 * To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream.
 * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized.
 *
 * destination must contain enough space for the resulting remap table (vertex_count elements)
 * indices can be NULL if the input is unindexed
 */
MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);

/**
 * Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap
 *
 * destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap)
 * vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap
 */
MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap);

/**
 * Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 * indices can be NULL if the input is unindexed
 */
MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap);

/**
 * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary
 * All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer.
 * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering.
 * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized.
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 */
MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride);

/**
 * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary
 * All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer.
 * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering.
 * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized.
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 */
MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);

/**
 * Vertex transform cache optimizer
 * Reorders indices to reduce the number of GPU vertex shader invocations
 * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 */
MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);

/**
 * Vertex transform cache optimizer for strip-like caches
 * Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective
 * However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 */
MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);

/**
 * Vertex transform cache optimizer for FIFO caches
 * Reorders indices to reduce the number of GPU vertex shader invocations
 * Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache
 * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 * cache_size should be less than the actual GPU cache size to avoid cache thrashing
 */
MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size);

/**
 * Overdraw optimizer
 * Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw
 * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 * indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!)
 * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
 * threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently
 */
MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold);

/**
 * Vertex fetch cache optimizer
 * Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing
 * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused
 * This functions works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream.
 *
 * destination must contain enough space for the resulting vertex buffer (vertex_count elements)
 * indices is used both as an input and as an output index buffer
 */
MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);

/**
 * Vertex fetch cache optimizer
 * Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing
 * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused
 * The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer
 *
 * destination must contain enough space for the resulting remap table (vertex_count elements)
 */
MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count);

/**
 * Index buffer encoder
 * Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original.
 * Input index buffer must represent a triangle list.
 * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
 * For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first.
 *
 * buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size)
 */
MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count);
MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count);

/**
 * Experimental: Set index encoder format version
 * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+)
 */
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeIndexVersion(int version);

/**
 * Index buffer decoder
 * Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer
 * Returns 0 if decoding was successful, and an error code otherwise
 * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices).
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 */
MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size);

/**
 * Experimental: Index sequence encoder
 * Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original.
 * Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better.
 * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
 *
 * buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size)
 */
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count);

/**
 * Index sequence decoder
 * Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence
 * Returns 0 if decoding was successful, and an error code otherwise
 * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices).
 *
 * destination must contain enough space for the resulting index sequence (index_count elements)
 */
MESHOPTIMIZER_EXPERIMENTAL int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size);

/**
 * Vertex buffer encoder
 * Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original.
 * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
 * This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream.
 * Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized.
 *
 * buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size)
 */
MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size);
MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size);

/**
 * Experimental: Set vertex encoder format version
 * version must specify the data format version to encode; valid values are 0 (decodable by all library versions)
 */
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeVertexVersion(int version);

/**
 * Vertex buffer decoder
 * Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer
 * Returns 0 if decoding was successful, and an error code otherwise
 * The decoder is safe to use for untrusted input, but it may produce garbage data.
 *
 * destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes)
 */
MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size);

/**
 * Vertex buffer filters
 * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place.
 * count must be aligned by 4 and stride is fixed for each function to facilitate SIMD implementation.
 *
 * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f.
 * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is.
 *
 * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit (4 <= K <= 16) component encoding and a 2-bit component index indicating which component to reconstruct.
 * Each component is stored as an 16-bit integer; stride must be equal to 8.
 *
 * meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M.
 * Each 32-bit component is decoded in isolation; stride must be divisible by 4.
 */
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t vertex_count, size_t vertex_size);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t vertex_count, size_t vertex_size);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t vertex_count, size_t vertex_size);

/**
 * Experimental: Mesh simplifier
 * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible
 * The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error.
 * If not all attributes from the input mesh are required, it's recommended to reindex the mesh using meshopt_generateShadowIndexBuffer prior to simplification.
 * Returns the number of indices after simplification, with destination containing new index data
 * The resulting index buffer references vertices from the original vertex buffer.
 * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
 *
 * destination must contain enough space for the *source* index buffer (since optimization is iterative, this means index_count elements - *not* target_index_count!)
 * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
 */
// -- GODOT start --
//MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplify(unsigned int *destination, const unsigned int *indices, size_t index_count, const float *vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float *r_resulting_error);
// -- GODOT end --

/**
 * Experimental: Mesh simplifier (sloppy)
 * Reduces the number of triangles in the mesh, sacrificing mesh apperance for simplification performance
 * The algorithm doesn't preserve mesh topology but is always able to reach target triangle count.
 * Returns the number of indices after simplification, with destination containing new index data
 * The resulting index buffer references vertices from the original vertex buffer.
 * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
 *
 * destination must contain enough space for the target index buffer
 * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
 */
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count);

/**
 * Experimental: Point cloud simplifier
 * Reduces the number of points in the cloud to reach the given target
 * Returns the number of points after simplification, with destination containing new index data
 * The resulting index buffer references vertices from the original vertex buffer.
 * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
 *
 * destination must contain enough space for the target index buffer
 * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
 */
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count);

/**
 * Mesh stripifier
 * Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles
 * Returns the number of indices in the resulting strip, with destination containing new index data
 * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
 * Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance.
 *
 * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound
 * restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles
 */
MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index);
MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count);

/**
 * Mesh unstripifier
 * Converts a triangle strip to a triangle list
 * Returns the number of indices in the resulting list, with destination containing new index data
 *
 * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound
 */
MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index);
MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count);

struct meshopt_VertexCacheStatistics
{
	unsigned int vertices_transformed;
	unsigned int warps_executed;
	float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */
	float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */
};

/**
 * Vertex transform cache analyzer
 * Returns cache hit statistics using a simplified FIFO model
 * Results may not match actual GPU performance
 */
MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size);

struct meshopt_OverdrawStatistics
{
	unsigned int pixels_covered;
	unsigned int pixels_shaded;
	float overdraw; /* shaded pixels / covered pixels; best case 1.0 */
};

/**
 * Overdraw analyzer
 * Returns overdraw statistics using a software rasterizer
 * Results may not match actual GPU performance
 *
 * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
 */
MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);

struct meshopt_VertexFetchStatistics
{
	unsigned int bytes_fetched;
	float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */
};

/**
 * Vertex fetch cache analyzer
 * Returns cache hit statistics using a simplified direct mapped model
 * Results may not match actual GPU performance
 */
MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size);

struct meshopt_Meshlet
{
	unsigned int vertices[64];
	unsigned char indices[126][3];
	unsigned char triangle_count;
	unsigned char vertex_count;
};

/**
 * Experimental: Meshlet builder
 * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
 * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
 * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
 *
 * destination must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
 * max_vertices and max_triangles can't exceed limits statically declared in meshopt_Meshlet (max_vertices <= 64, max_triangles <= 126)
 */
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);

struct meshopt_Bounds
{
	/* bounding sphere, useful for frustum and occlusion culling */
	float center[3];
	float radius;

	/* normal cone, useful for backface culling */
	float cone_apex[3];
	float cone_axis[3];
	float cone_cutoff; /* = cos(angle/2) */

	/* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */
	signed char cone_axis_s8[3];
	signed char cone_cutoff_s8;
};

/**
 * Experimental: Cluster bounds generator
 * Creates bounding volumes that can be used for frustum, backface and occlusion culling.
 *
 * For backface culling with orthographic projection, use the following formula to reject backfacing clusters:
 *   dot(view, cone_axis) >= cone_cutoff
 *
 * For perspective projection, you can the formula that needs cone apex in addition to axis & cutoff:
 *   dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff
 *
 * Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead:
 *   dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position)
 * or an equivalent formula that doesn't have a singularity at center = camera_position:
 *   dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius
 *
 * The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere
 * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable.
 *
 * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
 * index_count should be less than or equal to 256*3 (the function assumes clusters of limited size)
 */
MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const struct meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);

/**
 * Experimental: Spatial sorter
 * Generates a remap table that can be used to reorder points for spatial locality.
 * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer.
 *
 * destination must contain enough space for the resulting remap table (vertex_count elements)
 */
MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);

/**
 * Experimental: Spatial sorter
 * Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache.
 *
 * destination must contain enough space for the resulting index buffer (index_count elements)
 * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
 */
MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);

/**
 * Set allocation callbacks
 * These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library.
 * Note that all algorithms only allocate memory for temporary use.
 * allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first.
 */
MESHOPTIMIZER_API void meshopt_setAllocator(void* (*allocate)(size_t), void (*deallocate)(void*));

#ifdef __cplusplus
} /* extern "C" */
#endif

/* Quantization into commonly supported data formats */
#ifdef __cplusplus
/**
 * Quantize a float in [0..1] range into an N-bit fixed point unorm value
 * Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion
 * Maximum reconstruction error: 1/2^(N+1)
 */
inline int meshopt_quantizeUnorm(float v, int N);

/**
 * Quantize a float in [-1..1] range into an N-bit fixed point snorm value
 * Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions)
 * Maximum reconstruction error: 1/2^N
 */
inline int meshopt_quantizeSnorm(float v, int N);

/**
 * Quantize a float into half-precision floating point value
 * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest
 * Representable magnitude range: [6e-5; 65504]
 * Maximum relative reconstruction error: 5e-4
 */
inline unsigned short meshopt_quantizeHalf(float v);

/**
 * Quantize a float into a floating point value with a limited number of significant mantissa bits
 * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest
 * Assumes N is in a valid mantissa precision range, which is 1..23
 */
inline float meshopt_quantizeFloat(float v, int N);
#endif

/**
 * C++ template interface
 *
 * These functions mirror the C interface the library provides, providing template-based overloads so that
 * the caller can use an arbitrary type for the index data, both for input and output.
 * When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not,
 * the wrappers end up allocating memory and copying index data to convert from one type to another.
 */
#if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
template <typename T>
inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
template <typename T>
inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
template <typename T>
inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap);
template <typename T>
inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride);
template <typename T>
inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count);
template <typename T>
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count);
template <typename T>
inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size);
template <typename T>
inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold);
template <typename T>
inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count);
template <typename T>
inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size);
template <typename T>
inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count);
template <typename T>
inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size);
template <typename T>
inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count);
template <typename T>
inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size);
template <typename T>
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error);
template <typename T>
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count);
template <typename T>
inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index);
template <typename T>
inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index);
template <typename T>
inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size);
template <typename T>
inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
template <typename T>
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
template <typename T>
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
template <typename T>
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
template <typename T>
inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
#endif

/* Inline implementation */
#ifdef __cplusplus
inline int meshopt_quantizeUnorm(float v, int N)
{
	const float scale = float((1 << N) - 1);

	v = (v >= 0) ? v : 0;
	v = (v <= 1) ? v : 1;

	return int(v * scale + 0.5f);
}

inline int meshopt_quantizeSnorm(float v, int N)
{
	const float scale = float((1 << (N - 1)) - 1);

	float round = (v >= 0 ? 0.5f : -0.5f);

	v = (v >= -1) ? v : -1;
	v = (v <= +1) ? v : +1;

	return int(v * scale + round);
}

inline unsigned short meshopt_quantizeHalf(float v)
{
	union { float f; unsigned int ui; } u = {v};
	unsigned int ui = u.ui;

	int s = (ui >> 16) & 0x8000;
	int em = ui & 0x7fffffff;

	/* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */
	int h = (em - (112 << 23) + (1 << 12)) >> 13;

	/* underflow: flush to zero; 113 encodes exponent -14 */
	h = (em < (113 << 23)) ? 0 : h;

	/* overflow: infinity; 143 encodes exponent 16 */
	h = (em >= (143 << 23)) ? 0x7c00 : h;

	/* NaN; note that we convert all types of NaN to qNaN */
	h = (em > (255 << 23)) ? 0x7e00 : h;

	return (unsigned short)(s | h);
}

inline float meshopt_quantizeFloat(float v, int N)
{
	union { float f; unsigned int ui; } u = {v};
	unsigned int ui = u.ui;

	const int mask = (1 << (23 - N)) - 1;
	const int round = (1 << (23 - N)) >> 1;

	int e = ui & 0x7f800000;
	unsigned int rui = (ui + round) & ~mask;

	/* round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0 */
	ui = e == 0x7f800000 ? ui : rui;

	/* flush denormals to zero */
	ui = e == 0 ? 0 : ui;

	u.ui = ui;
	return u.f;
}
#endif

/* Internal implementation helpers */
#ifdef __cplusplus
class meshopt_Allocator
{
public:
	template <typename T>
	struct StorageT
	{
		static void* (*allocate)(size_t);
		static void (*deallocate)(void*);
	};

	typedef StorageT<void> Storage;

	meshopt_Allocator()
		: blocks()
		, count(0)
	{
	}

	~meshopt_Allocator()
	{
		for (size_t i = count; i > 0; --i)
			Storage::deallocate(blocks[i - 1]);
	}

	template <typename T> T* allocate(size_t size)
	{
		assert(count < sizeof(blocks) / sizeof(blocks[0]));
		T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T)));
		blocks[count++] = result;
		return result;
	}

private:
	void* blocks[24];
	size_t count;
};

// This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker
template <typename T> void* (*meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new;
template <typename T> void (*meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete;
#endif

/* Inline implementation for C++ templated wrappers */
#if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)>
struct meshopt_IndexAdapter;

template <typename T>
struct meshopt_IndexAdapter<T, false>
{
	T* result;
	unsigned int* data;
	size_t count;

	meshopt_IndexAdapter(T* result_, const T* input, size_t count_)
	    : result(result_)
	    , data(0)
	    , count(count_)
	{
		size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int);

		data = static_cast<unsigned int*>(meshopt_Allocator::Storage::allocate(size));

		if (input)
		{
			for (size_t i = 0; i < count; ++i)
				data[i] = input[i];
		}
	}

	~meshopt_IndexAdapter()
	{
		if (result)
		{
			for (size_t i = 0; i < count; ++i)
				result[i] = T(data[i]);
		}

		meshopt_Allocator::Storage::deallocate(data);
	}
};

template <typename T>
struct meshopt_IndexAdapter<T, true>
{
	unsigned int* data;

	meshopt_IndexAdapter(T* result, const T* input, size_t)
	    : data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input)))
	{
	}
};

template <typename T>
inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
{
	meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);

	return meshopt_generateVertexRemap(destination, indices ? in.data : 0, index_count, vertices, vertex_count, vertex_size);
}

template <typename T>
inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
{
	meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);

	return meshopt_generateVertexRemapMulti(destination, indices ? in.data : 0, index_count, vertex_count, streams, stream_count);
}

template <typename T>
inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap)
{
	meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_remapIndexBuffer(out.data, indices ? in.data : 0, index_count, remap);
}

template <typename T>
inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride);
}

template <typename T>
inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count);
}

template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count);
}

template <typename T>
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count);
}

template <typename T>
inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size);
}

template <typename T>
inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold);
}

template <typename T>
inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count);
}

template <typename T>
inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
{
	meshopt_IndexAdapter<T> inout(indices, indices, index_count);

	return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size);
}

template <typename T>
inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count);
}

template <typename T>
inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size)
{
	char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1];
	(void)index_size_valid;

	return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size);
}

template <typename T>
inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count);
}

template <typename T>
inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size)
{
	char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1];
	(void)index_size_valid;

	return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size);
}

template <typename T>
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error);
}

template <typename T>
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, target_index_count);

	return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count);
}

template <typename T>
inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, (index_count / 3) * 5);

	return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index));
}

template <typename T>
inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, (index_count - 2) * 3);

	return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index));
}

template <typename T>
inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size);
}

template <typename T>
inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}

template <typename T>
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size);
}

template <typename T>
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_buildMeshlets(destination, in.data, index_count, vertex_count, max_vertices, max_triangles);
}

template <typename T>
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);

	return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}

template <typename T>
inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	meshopt_IndexAdapter<T> in(0, indices, index_count);
	meshopt_IndexAdapter<T> out(destination, 0, index_count);

	meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
#endif

/**
 * Copyright (c) 2016-2020 Arseny Kapoulkine
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */