1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
|
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
#include <assert.h>
#include <string.h>
// This work is based on:
// Fabian Giesen. Simple lossless index buffer compression & follow-up. 2013
// Conor Stokes. Vertex Cache Optimised Index Buffer Compression. 2014
namespace meshopt
{
const unsigned char kIndexHeader = 0xe0;
const unsigned char kSequenceHeader = 0xd0;
static int gEncodeIndexVersion = 0;
typedef unsigned int VertexFifo[16];
typedef unsigned int EdgeFifo[16][2];
static const unsigned int kTriangleIndexOrder[3][3] = {
{0, 1, 2},
{1, 2, 0},
{2, 0, 1},
};
static const unsigned char kCodeAuxEncodingTable[16] = {
0x00, 0x76, 0x87, 0x56, 0x67, 0x78, 0xa9, 0x86, 0x65, 0x89, 0x68, 0x98, 0x01, 0x69,
0, 0, // last two entries aren't used for encoding
};
static int rotateTriangle(unsigned int a, unsigned int b, unsigned int c, unsigned int next)
{
(void)a;
return (b == next) ? 1 : (c == next) ? 2 : 0;
}
static int getEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, unsigned int c, size_t offset)
{
for (int i = 0; i < 16; ++i)
{
size_t index = (offset - 1 - i) & 15;
unsigned int e0 = fifo[index][0];
unsigned int e1 = fifo[index][1];
if (e0 == a && e1 == b)
return (i << 2) | 0;
if (e0 == b && e1 == c)
return (i << 2) | 1;
if (e0 == c && e1 == a)
return (i << 2) | 2;
}
return -1;
}
static void pushEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, size_t& offset)
{
fifo[offset][0] = a;
fifo[offset][1] = b;
offset = (offset + 1) & 15;
}
static int getVertexFifo(VertexFifo fifo, unsigned int v, size_t offset)
{
for (int i = 0; i < 16; ++i)
{
size_t index = (offset - 1 - i) & 15;
if (fifo[index] == v)
return i;
}
return -1;
}
static void pushVertexFifo(VertexFifo fifo, unsigned int v, size_t& offset, int cond = 1)
{
fifo[offset] = v;
offset = (offset + cond) & 15;
}
static void encodeVByte(unsigned char*& data, unsigned int v)
{
// encode 32-bit value in up to 5 7-bit groups
do
{
*data++ = (v & 127) | (v > 127 ? 128 : 0);
v >>= 7;
} while (v);
}
static unsigned int decodeVByte(const unsigned char*& data)
{
unsigned char lead = *data++;
// fast path: single byte
if (lead < 128)
return lead;
// slow path: up to 4 extra bytes
// note that this loop always terminates, which is important for malformed data
unsigned int result = lead & 127;
unsigned int shift = 7;
for (int i = 0; i < 4; ++i)
{
unsigned char group = *data++;
result |= unsigned(group & 127) << shift;
shift += 7;
if (group < 128)
break;
}
return result;
}
static void encodeIndex(unsigned char*& data, unsigned int index, unsigned int last)
{
unsigned int d = index - last;
unsigned int v = (d << 1) ^ (int(d) >> 31);
encodeVByte(data, v);
}
static unsigned int decodeIndex(const unsigned char*& data, unsigned int last)
{
unsigned int v = decodeVByte(data);
unsigned int d = (v >> 1) ^ -int(v & 1);
return last + d;
}
static int getCodeAuxIndex(unsigned char v, const unsigned char* table)
{
for (int i = 0; i < 16; ++i)
if (table[i] == v)
return i;
return -1;
}
static void writeTriangle(void* destination, size_t offset, size_t index_size, unsigned int a, unsigned int b, unsigned int c)
{
if (index_size == 2)
{
static_cast<unsigned short*>(destination)[offset + 0] = (unsigned short)(a);
static_cast<unsigned short*>(destination)[offset + 1] = (unsigned short)(b);
static_cast<unsigned short*>(destination)[offset + 2] = (unsigned short)(c);
}
else
{
static_cast<unsigned int*>(destination)[offset + 0] = a;
static_cast<unsigned int*>(destination)[offset + 1] = b;
static_cast<unsigned int*>(destination)[offset + 2] = c;
}
}
} // namespace meshopt
size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count)
{
using namespace meshopt;
assert(index_count % 3 == 0);
// the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table
if (buffer_size < 1 + index_count / 3 + 16)
return 0;
int version = gEncodeIndexVersion;
buffer[0] = (unsigned char)(kIndexHeader | version);
EdgeFifo edgefifo;
memset(edgefifo, -1, sizeof(edgefifo));
VertexFifo vertexfifo;
memset(vertexfifo, -1, sizeof(vertexfifo));
size_t edgefifooffset = 0;
size_t vertexfifooffset = 0;
unsigned int next = 0;
unsigned int last = 0;
unsigned char* code = buffer + 1;
unsigned char* data = code + index_count / 3;
unsigned char* data_safe_end = buffer + buffer_size - 16;
int fecmax = version >= 1 ? 13 : 15;
// use static encoding table; it's possible to pack the result and then build an optimal table and repack
// for now we keep it simple and use the table that has been generated based on symbol frequency on a training mesh set
const unsigned char* codeaux_table = kCodeAuxEncodingTable;
for (size_t i = 0; i < index_count; i += 3)
{
// make sure we have enough space to write a triangle
// each triangle writes at most 16 bytes: 1b for codeaux and 5b for each free index
// after this we can be sure we can write without extra bounds checks
if (data > data_safe_end)
return 0;
int fer = getEdgeFifo(edgefifo, indices[i + 0], indices[i + 1], indices[i + 2], edgefifooffset);
if (fer >= 0 && (fer >> 2) < 15)
{
const unsigned int* order = kTriangleIndexOrder[fer & 3];
unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]];
// encode edge index and vertex fifo index, next or free index
int fe = fer >> 2;
int fc = getVertexFifo(vertexfifo, c, vertexfifooffset);
int fec = (fc >= 1 && fc < fecmax) ? fc : (c == next) ? (next++, 0) : 15;
if (fec == 15 && version >= 1)
{
// encode last-1 and last+1 to optimize strip-like sequences
if (c + 1 == last)
fec = 13, last = c;
if (c == last + 1)
fec = 14, last = c;
}
*code++ = (unsigned char)((fe << 4) | fec);
// note that we need to update the last index since free indices are delta-encoded
if (fec == 15)
encodeIndex(data, c, last), last = c;
// we only need to push third vertex since first two are likely already in the vertex fifo
if (fec == 0 || fec >= fecmax)
pushVertexFifo(vertexfifo, c, vertexfifooffset);
// we only need to push two new edges to edge fifo since the third one is already there
pushEdgeFifo(edgefifo, c, b, edgefifooffset);
pushEdgeFifo(edgefifo, a, c, edgefifooffset);
}
else
{
int rotation = rotateTriangle(indices[i + 0], indices[i + 1], indices[i + 2], next);
const unsigned int* order = kTriangleIndexOrder[rotation];
unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]];
// if a/b/c are 0/1/2, we emit a reset code
bool reset = false;
if (a == 0 && b == 1 && c == 2 && next > 0 && version >= 1)
{
reset = true;
next = 0;
// reset vertex fifo to make sure we don't accidentally reference vertices from that in the future
// this makes sure next continues to get incremented instead of being stuck
memset(vertexfifo, -1, sizeof(vertexfifo));
}
int fb = getVertexFifo(vertexfifo, b, vertexfifooffset);
int fc = getVertexFifo(vertexfifo, c, vertexfifooffset);
// after rotation, a is almost always equal to next, so we don't waste bits on FIFO encoding for a
int fea = (a == next) ? (next++, 0) : 15;
int feb = (fb >= 0 && fb < 14) ? (fb + 1) : (b == next) ? (next++, 0) : 15;
int fec = (fc >= 0 && fc < 14) ? (fc + 1) : (c == next) ? (next++, 0) : 15;
// we encode feb & fec in 4 bits using a table if possible, and as a full byte otherwise
unsigned char codeaux = (unsigned char)((feb << 4) | fec);
int codeauxindex = getCodeAuxIndex(codeaux, codeaux_table);
// <14 encodes an index into codeaux table, 14 encodes fea=0, 15 encodes fea=15
if (fea == 0 && codeauxindex >= 0 && codeauxindex < 14 && !reset)
{
*code++ = (unsigned char)((15 << 4) | codeauxindex);
}
else
{
*code++ = (unsigned char)((15 << 4) | 14 | fea);
*data++ = codeaux;
}
// note that we need to update the last index since free indices are delta-encoded
if (fea == 15)
encodeIndex(data, a, last), last = a;
if (feb == 15)
encodeIndex(data, b, last), last = b;
if (fec == 15)
encodeIndex(data, c, last), last = c;
// only push vertices that weren't already in fifo
if (fea == 0 || fea == 15)
pushVertexFifo(vertexfifo, a, vertexfifooffset);
if (feb == 0 || feb == 15)
pushVertexFifo(vertexfifo, b, vertexfifooffset);
if (fec == 0 || fec == 15)
pushVertexFifo(vertexfifo, c, vertexfifooffset);
// all three edges aren't in the fifo; pushing all of them is important so that we can match them for later triangles
pushEdgeFifo(edgefifo, b, a, edgefifooffset);
pushEdgeFifo(edgefifo, c, b, edgefifooffset);
pushEdgeFifo(edgefifo, a, c, edgefifooffset);
}
}
// make sure we have enough space to write codeaux table
if (data > data_safe_end)
return 0;
// add codeaux encoding table to the end of the stream; this is used for decoding codeaux *and* as padding
// we need padding for decoding to be able to assume that each triangle is encoded as <= 16 bytes of extra data
// this is enough space for aux byte + 5 bytes per varint index which is the absolute worst case for any input
for (size_t i = 0; i < 16; ++i)
{
// decoder assumes that table entries never refer to separately encoded indices
assert((codeaux_table[i] & 0xf) != 0xf && (codeaux_table[i] >> 4) != 0xf);
*data++ = codeaux_table[i];
}
// since we encode restarts as codeaux without a table reference, we need to make sure 00 is encoded as a table reference
assert(codeaux_table[0] == 0);
assert(data >= buffer + index_count / 3 + 16);
assert(data <= buffer + buffer_size);
return data - buffer;
}
size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count)
{
assert(index_count % 3 == 0);
// compute number of bits required for each index
unsigned int vertex_bits = 1;
while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits)
vertex_bits++;
// worst-case encoding is 2 header bytes + 3 varint-7 encoded index deltas
unsigned int vertex_groups = (vertex_bits + 1 + 6) / 7;
return 1 + (index_count / 3) * (2 + 3 * vertex_groups) + 16;
}
void meshopt_encodeIndexVersion(int version)
{
assert(unsigned(version) <= 1);
meshopt::gEncodeIndexVersion = version;
}
int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size)
{
using namespace meshopt;
assert(index_count % 3 == 0);
assert(index_size == 2 || index_size == 4);
// the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table
if (buffer_size < 1 + index_count / 3 + 16)
return -2;
if ((buffer[0] & 0xf0) != kIndexHeader)
return -1;
int version = buffer[0] & 0x0f;
if (version > 1)
return -1;
EdgeFifo edgefifo;
memset(edgefifo, -1, sizeof(edgefifo));
VertexFifo vertexfifo;
memset(vertexfifo, -1, sizeof(vertexfifo));
size_t edgefifooffset = 0;
size_t vertexfifooffset = 0;
unsigned int next = 0;
unsigned int last = 0;
int fecmax = version >= 1 ? 13 : 15;
// since we store 16-byte codeaux table at the end, triangle data has to begin before data_safe_end
const unsigned char* code = buffer + 1;
const unsigned char* data = code + index_count / 3;
const unsigned char* data_safe_end = buffer + buffer_size - 16;
const unsigned char* codeaux_table = data_safe_end;
for (size_t i = 0; i < index_count; i += 3)
{
// make sure we have enough data to read for a triangle
// each triangle reads at most 16 bytes of data: 1b for codeaux and 5b for each free index
// after this we can be sure we can read without extra bounds checks
if (data > data_safe_end)
return -2;
unsigned char codetri = *code++;
if (codetri < 0xf0)
{
int fe = codetri >> 4;
// fifo reads are wrapped around 16 entry buffer
unsigned int a = edgefifo[(edgefifooffset - 1 - fe) & 15][0];
unsigned int b = edgefifo[(edgefifooffset - 1 - fe) & 15][1];
int fec = codetri & 15;
// note: this is the most common path in the entire decoder
// inside this if we try to stay branchless (by using cmov/etc.) since these aren't predictable
if (fec < fecmax)
{
// fifo reads are wrapped around 16 entry buffer
unsigned int cf = vertexfifo[(vertexfifooffset - 1 - fec) & 15];
unsigned int c = (fec == 0) ? next : cf;
int fec0 = fec == 0;
next += fec0;
// output triangle
writeTriangle(destination, i, index_size, a, b, c);
// push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0);
pushEdgeFifo(edgefifo, c, b, edgefifooffset);
pushEdgeFifo(edgefifo, a, c, edgefifooffset);
}
else
{
unsigned int c = 0;
// fec - (fec ^ 3) decodes 13, 14 into -1, 1
// note that we need to update the last index since free indices are delta-encoded
last = c = (fec != 15) ? last + (fec - (fec ^ 3)) : decodeIndex(data, last);
// output triangle
writeTriangle(destination, i, index_size, a, b, c);
// push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
pushVertexFifo(vertexfifo, c, vertexfifooffset);
pushEdgeFifo(edgefifo, c, b, edgefifooffset);
pushEdgeFifo(edgefifo, a, c, edgefifooffset);
}
}
else
{
// fast path: read codeaux from the table
if (codetri < 0xfe)
{
unsigned char codeaux = codeaux_table[codetri & 15];
// note: table can't contain feb/fec=15
int feb = codeaux >> 4;
int fec = codeaux & 15;
// fifo reads are wrapped around 16 entry buffer
// also note that we increment next for all three vertices before decoding indices - this matches encoder behavior
unsigned int a = next++;
unsigned int bf = vertexfifo[(vertexfifooffset - feb) & 15];
unsigned int b = (feb == 0) ? next : bf;
int feb0 = feb == 0;
next += feb0;
unsigned int cf = vertexfifo[(vertexfifooffset - fec) & 15];
unsigned int c = (fec == 0) ? next : cf;
int fec0 = fec == 0;
next += fec0;
// output triangle
writeTriangle(destination, i, index_size, a, b, c);
// push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
pushVertexFifo(vertexfifo, a, vertexfifooffset);
pushVertexFifo(vertexfifo, b, vertexfifooffset, feb0);
pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0);
pushEdgeFifo(edgefifo, b, a, edgefifooffset);
pushEdgeFifo(edgefifo, c, b, edgefifooffset);
pushEdgeFifo(edgefifo, a, c, edgefifooffset);
}
else
{
// slow path: read a full byte for codeaux instead of using a table lookup
unsigned char codeaux = *data++;
int fea = codetri == 0xfe ? 0 : 15;
int feb = codeaux >> 4;
int fec = codeaux & 15;
// reset: codeaux is 0 but encoded as not-a-table
if (codeaux == 0)
next = 0;
// fifo reads are wrapped around 16 entry buffer
// also note that we increment next for all three vertices before decoding indices - this matches encoder behavior
unsigned int a = (fea == 0) ? next++ : 0;
unsigned int b = (feb == 0) ? next++ : vertexfifo[(vertexfifooffset - feb) & 15];
unsigned int c = (fec == 0) ? next++ : vertexfifo[(vertexfifooffset - fec) & 15];
// note that we need to update the last index since free indices are delta-encoded
if (fea == 15)
last = a = decodeIndex(data, last);
if (feb == 15)
last = b = decodeIndex(data, last);
if (fec == 15)
last = c = decodeIndex(data, last);
// output triangle
writeTriangle(destination, i, index_size, a, b, c);
// push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
pushVertexFifo(vertexfifo, a, vertexfifooffset);
pushVertexFifo(vertexfifo, b, vertexfifooffset, (feb == 0) | (feb == 15));
pushVertexFifo(vertexfifo, c, vertexfifooffset, (fec == 0) | (fec == 15));
pushEdgeFifo(edgefifo, b, a, edgefifooffset);
pushEdgeFifo(edgefifo, c, b, edgefifooffset);
pushEdgeFifo(edgefifo, a, c, edgefifooffset);
}
}
}
// we should've read all data bytes and stopped at the boundary between data and codeaux table
if (data != data_safe_end)
return -3;
return 0;
}
size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count)
{
using namespace meshopt;
// the minimum valid encoding is header, 1 byte per index and a 4-byte tail
if (buffer_size < 1 + index_count + 4)
return 0;
int version = gEncodeIndexVersion;
buffer[0] = (unsigned char)(kSequenceHeader | version);
unsigned int last[2] = {};
unsigned int current = 0;
unsigned char* data = buffer + 1;
unsigned char* data_safe_end = buffer + buffer_size - 4;
for (size_t i = 0; i < index_count; ++i)
{
// make sure we have enough data to write
// each index writes at most 5 bytes of data; there's a 4 byte tail after data_safe_end
// after this we can be sure we can write without extra bounds checks
if (data >= data_safe_end)
return 0;
unsigned int index = indices[i];
// this is a heuristic that switches between baselines when the delta grows too large
// we want the encoded delta to fit into one byte (7 bits), but 2 bits are used for sign and baseline index
// for now we immediately switch the baseline when delta grows too large - this can be adjusted arbitrarily
int cd = int(index - last[current]);
current ^= ((cd < 0 ? -cd : cd) >= 30);
// encode delta from the last index
unsigned int d = index - last[current];
unsigned int v = (d << 1) ^ (int(d) >> 31);
// note: low bit encodes the index of the last baseline which will be used for reconstruction
encodeVByte(data, (v << 1) | current);
// update last for the next iteration that uses it
last[current] = index;
}
// make sure we have enough space to write tail
if (data > data_safe_end)
return 0;
for (int k = 0; k < 4; ++k)
*data++ = 0;
return data - buffer;
}
size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count)
{
// compute number of bits required for each index
unsigned int vertex_bits = 1;
while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits)
vertex_bits++;
// worst-case encoding is 1 varint-7 encoded index delta for a K bit value and an extra bit
unsigned int vertex_groups = (vertex_bits + 1 + 1 + 6) / 7;
return 1 + index_count * vertex_groups + 4;
}
int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size)
{
using namespace meshopt;
// the minimum valid encoding is header, 1 byte per index and a 4-byte tail
if (buffer_size < 1 + index_count + 4)
return -2;
if ((buffer[0] & 0xf0) != kSequenceHeader)
return -1;
int version = buffer[0] & 0x0f;
if (version > 1)
return -1;
const unsigned char* data = buffer + 1;
const unsigned char* data_safe_end = buffer + buffer_size - 4;
unsigned int last[2] = {};
for (size_t i = 0; i < index_count; ++i)
{
// make sure we have enough data to read
// each index reads at most 5 bytes of data; there's a 4 byte tail after data_safe_end
// after this we can be sure we can read without extra bounds checks
if (data >= data_safe_end)
return -2;
unsigned int v = decodeVByte(data);
// decode the index of the last baseline
unsigned int current = v & 1;
v >>= 1;
// reconstruct index as a delta
unsigned int d = (v >> 1) ^ -int(v & 1);
unsigned int index = last[current] + d;
// update last for the next iteration that uses it
last[current] = index;
if (index_size == 2)
{
static_cast<unsigned short*>(destination)[i] = (unsigned short)(index);
}
else
{
static_cast<unsigned int*>(destination)[i] = index;
}
}
// we should've read all data bytes and stopped at the boundary between data and tail
if (data != data_safe_end)
return -3;
return 0;
}
|