summaryrefslogtreecommitdiff
path: root/thirdparty/meshoptimizer/clusterizer.cpp
blob: c4672ad6063e2e597e93afdae0be2f6fb0e80a56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"

#include <assert.h>
#include <float.h>
#include <math.h>
#include <string.h>

// This work is based on:
// Graham Wihlidal. Optimizing the Graphics Pipeline with Compute. 2016
// Matthaeus Chajdas. GeometryFX 1.2 - Cluster Culling. 2016
// Jack Ritter. An Efficient Bounding Sphere. 1990
namespace meshopt
{

// This must be <= 255 since index 0xff is used internally to indice a vertex that doesn't belong to a meshlet
const size_t kMeshletMaxVertices = 255;

// A reasonable limit is around 2*max_vertices or less
const size_t kMeshletMaxTriangles = 512;

struct TriangleAdjacency2
{
	unsigned int* counts;
	unsigned int* offsets;
	unsigned int* data;
};

static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
{
	size_t face_count = index_count / 3;

	// allocate arrays
	adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
	adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
	adjacency.data = allocator.allocate<unsigned int>(index_count);

	// fill triangle counts
	memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));

	for (size_t i = 0; i < index_count; ++i)
	{
		assert(indices[i] < vertex_count);

		adjacency.counts[indices[i]]++;
	}

	// fill offset table
	unsigned int offset = 0;

	for (size_t i = 0; i < vertex_count; ++i)
	{
		adjacency.offsets[i] = offset;
		offset += adjacency.counts[i];
	}

	assert(offset == index_count);

	// fill triangle data
	for (size_t i = 0; i < face_count; ++i)
	{
		unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];

		adjacency.data[adjacency.offsets[a]++] = unsigned(i);
		adjacency.data[adjacency.offsets[b]++] = unsigned(i);
		adjacency.data[adjacency.offsets[c]++] = unsigned(i);
	}

	// fix offsets that have been disturbed by the previous pass
	for (size_t i = 0; i < vertex_count; ++i)
	{
		assert(adjacency.offsets[i] >= adjacency.counts[i]);

		adjacency.offsets[i] -= adjacency.counts[i];
	}
}

static void computeBoundingSphere(float result[4], const float points[][3], size_t count)
{
	assert(count > 0);

	// find extremum points along all 3 axes; for each axis we get a pair of points with min/max coordinates
	size_t pmin[3] = {0, 0, 0};
	size_t pmax[3] = {0, 0, 0};

	for (size_t i = 0; i < count; ++i)
	{
		const float* p = points[i];

		for (int axis = 0; axis < 3; ++axis)
		{
			pmin[axis] = (p[axis] < points[pmin[axis]][axis]) ? i : pmin[axis];
			pmax[axis] = (p[axis] > points[pmax[axis]][axis]) ? i : pmax[axis];
		}
	}

	// find the pair of points with largest distance
	float paxisd2 = 0;
	int paxis = 0;

	for (int axis = 0; axis < 3; ++axis)
	{
		const float* p1 = points[pmin[axis]];
		const float* p2 = points[pmax[axis]];

		float d2 = (p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]);

		if (d2 > paxisd2)
		{
			paxisd2 = d2;
			paxis = axis;
		}
	}

	// use the longest segment as the initial sphere diameter
	const float* p1 = points[pmin[paxis]];
	const float* p2 = points[pmax[paxis]];

	float center[3] = {(p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2, (p1[2] + p2[2]) / 2};
	float radius = sqrtf(paxisd2) / 2;

	// iteratively adjust the sphere up until all points fit
	for (size_t i = 0; i < count; ++i)
	{
		const float* p = points[i];
		float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]);

		if (d2 > radius * radius)
		{
			float d = sqrtf(d2);
			assert(d > 0);

			float k = 0.5f + (radius / d) / 2;

			center[0] = center[0] * k + p[0] * (1 - k);
			center[1] = center[1] * k + p[1] * (1 - k);
			center[2] = center[2] * k + p[2] * (1 - k);
			radius = (radius + d) / 2;
		}
	}

	result[0] = center[0];
	result[1] = center[1];
	result[2] = center[2];
	result[3] = radius;
}

struct Cone
{
	float px, py, pz;
	float nx, ny, nz;
};

static float getMeshletScore(float distance2, float spread, float cone_weight, float expected_radius)
{
	float cone = 1.f - spread * cone_weight;
	float cone_clamped = cone < 1e-3f ? 1e-3f : cone;

	return (1 + sqrtf(distance2) / expected_radius * (1 - cone_weight)) * cone_clamped;
}

static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count)
{
	Cone result = acc;

	float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count);

	result.px *= center_scale;
	result.py *= center_scale;
	result.pz *= center_scale;

	float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz;
	float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length);

	result.nx *= axis_scale;
	result.ny *= axis_scale;
	result.nz *= axis_scale;

	return result;
}

static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	(void)vertex_count;

	size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
	size_t face_count = index_count / 3;

	float mesh_area = 0;

	for (size_t i = 0; i < face_count; ++i)
	{
		unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
		assert(a < vertex_count && b < vertex_count && c < vertex_count);

		const float* p0 = vertex_positions + vertex_stride_float * a;
		const float* p1 = vertex_positions + vertex_stride_float * b;
		const float* p2 = vertex_positions + vertex_stride_float * c;

		float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
		float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};

		float normalx = p10[1] * p20[2] - p10[2] * p20[1];
		float normaly = p10[2] * p20[0] - p10[0] * p20[2];
		float normalz = p10[0] * p20[1] - p10[1] * p20[0];

		float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
		float invarea = (area == 0.f) ? 0.f : 1.f / area;

		triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f;
		triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f;
		triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f;

		triangles[i].nx = normalx * invarea;
		triangles[i].ny = normaly * invarea;
		triangles[i].nz = normalz * invarea;

		mesh_area += area;
	}

	return mesh_area;
}

static void finishMeshlet(meshopt_Meshlet& meshlet, unsigned char* meshlet_triangles)
{
	size_t offset = meshlet.triangle_offset + meshlet.triangle_count * 3;

	// fill 4b padding with 0
	while (offset & 3)
		meshlet_triangles[offset++] = 0;
}

static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, unsigned char* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles)
{
	unsigned char& av = used[a];
	unsigned char& bv = used[b];
	unsigned char& cv = used[c];

	bool result = false;

	unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);

	if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
	{
		meshlets[meshlet_offset] = meshlet;

		for (size_t j = 0; j < meshlet.vertex_count; ++j)
			used[meshlet_vertices[meshlet.vertex_offset + j]] = 0xff;

		finishMeshlet(meshlet, meshlet_triangles);

		meshlet.vertex_offset += meshlet.vertex_count;
		meshlet.triangle_offset += (meshlet.triangle_count * 3 + 3) & ~3; // 4b padding
		meshlet.vertex_count = 0;
		meshlet.triangle_count = 0;

		result = true;
	}

	if (av == 0xff)
	{
		av = (unsigned char)meshlet.vertex_count;
		meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a;
	}

	if (bv == 0xff)
	{
		bv = (unsigned char)meshlet.vertex_count;
		meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b;
	}

	if (cv == 0xff)
	{
		cv = (unsigned char)meshlet.vertex_count;
		meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c;
	}

	meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = av;
	meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = bv;
	meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = cv;
	meshlet.triangle_count++;

	return result;
}

static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone* meshlet_cone, unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const unsigned char* used, float meshlet_expected_radius, float cone_weight, unsigned int* out_extra)
{
	unsigned int best_triangle = ~0u;
	unsigned int best_extra = 5;
	float best_score = FLT_MAX;

	for (size_t i = 0; i < meshlet.vertex_count; ++i)
	{
		unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];

		unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
		size_t neighbors_size = adjacency.counts[index];

		for (size_t j = 0; j < neighbors_size; ++j)
		{
			unsigned int triangle = neighbors[j];
			unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];

			unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);

			// triangles that don't add new vertices to meshlets are max. priority
			if (extra != 0)
			{
				// artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
				if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
					extra = 0;

				extra++;
			}

			// since topology-based priority is always more important than the score, we can skip scoring in some cases
			if (extra > best_extra)
				continue;

			float score = 0;

			// caller selects one of two scoring functions: geometrical (based on meshlet cone) or topological (based on remaining triangles)
			if (meshlet_cone)
			{
				const Cone& tri_cone = triangles[triangle];

				float distance2 =
				    (tri_cone.px - meshlet_cone->px) * (tri_cone.px - meshlet_cone->px) +
				    (tri_cone.py - meshlet_cone->py) * (tri_cone.py - meshlet_cone->py) +
				    (tri_cone.pz - meshlet_cone->pz) * (tri_cone.pz - meshlet_cone->pz);

				float spread = tri_cone.nx * meshlet_cone->nx + tri_cone.ny * meshlet_cone->ny + tri_cone.nz * meshlet_cone->nz;

				score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
			}
			else
			{
				// each live_triangles entry is >= 1 since it includes the current triangle we're processing
				score = float(live_triangles[a] + live_triangles[b] + live_triangles[c] - 3);
			}

			// note that topology-based priority is always more important than the score
			// this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
			if (extra < best_extra || score < best_score)
			{
				best_triangle = triangle;
				best_extra = extra;
				best_score = score;
			}
		}
	}

	if (out_extra)
		*out_extra = best_extra;

	return best_triangle;
}

struct KDNode
{
	union
	{
		float split;
		unsigned int index;
	};

	// leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point)
	// branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children
	unsigned int axis : 2;
	unsigned int children : 30;
};

static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot)
{
	size_t m = 0;

	// invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot
	for (size_t i = 0; i < count; ++i)
	{
		float v = points[indices[i] * stride + axis];

		// swap(m, i) unconditionally
		unsigned int t = indices[m];
		indices[m] = indices[i];
		indices[i] = t;

		// when v >= pivot, we swap i with m without advancing it, preserving invariants
		m += v < pivot;
	}

	return m;
}

static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count)
{
	assert(offset + count <= node_count);
	(void)node_count;

	KDNode& result = nodes[offset];

	result.index = indices[0];
	result.axis = 3;
	result.children = unsigned(count - 1);

	// all remaining points are stored in nodes immediately following the leaf
	for (size_t i = 1; i < count; ++i)
	{
		KDNode& tail = nodes[offset + i];

		tail.index = indices[i];
		tail.axis = 3;
		tail.children = ~0u >> 2; // bogus value to prevent misuse
	}

	return offset + count;
}

static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size)
{
	assert(count > 0);
	assert(offset < node_count);

	if (count <= leaf_size)
		return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);

	float mean[3] = {};
	float vars[3] = {};
	float runc = 1, runs = 1;

	// gather statistics on the points in the subtree using Welford's algorithm
	for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc)
	{
		const float* point = points + indices[i] * stride;

		for (int k = 0; k < 3; ++k)
		{
			float delta = point[k] - mean[k];
			mean[k] += delta * runs;
			vars[k] += delta * (point[k] - mean[k]);
		}
	}

	// split axis is one where the variance is largest
	unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1 : 2;

	float split = mean[axis];
	size_t middle = kdtreePartition(indices, count, points, stride, axis, split);

	// when the partition is degenerate simply consolidate the points into a single node
	if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2)
		return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);

	KDNode& result = nodes[offset];

	result.split = split;
	result.axis = axis;

	// left subtree is right after our node
	size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size);

	// distance to the right subtree is represented explicitly
	result.children = unsigned(next_offset - offset - 1);

	return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size);
}

static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit)
{
	const KDNode& node = nodes[root];

	if (node.axis == 3)
	{
		// leaf
		for (unsigned int i = 0; i <= node.children; ++i)
		{
			unsigned int index = nodes[root + i].index;

			if (emitted_flags[index])
				continue;

			const float* point = points + index * stride;

			float distance2 =
			    (point[0] - position[0]) * (point[0] - position[0]) +
			    (point[1] - position[1]) * (point[1] - position[1]) +
			    (point[2] - position[2]) * (point[2] - position[2]);
			float distance = sqrtf(distance2);

			if (distance < limit)
			{
				result = index;
				limit = distance;
			}
		}
	}
	else
	{
		// branch; we order recursion to process the node that search position is in first
		float delta = position[node.axis] - node.split;
		unsigned int first = (delta <= 0) ? 0 : node.children;
		unsigned int second = first ^ node.children;

		kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit);

		// only process the other node if it can have a match based on closest distance so far
		if (fabsf(delta) <= limit)
			kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit);
	}
}

} // namespace meshopt

size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
{
	using namespace meshopt;

	assert(index_count % 3 == 0);
	assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
	assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
	assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned

	(void)kMeshletMaxVertices;
	(void)kMeshletMaxTriangles;

	// meshlet construction is limited by max vertices and max triangles per meshlet
	// the worst case is that the input is an unindexed stream since this equally stresses both limits
	// note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle
	size_t max_vertices_conservative = max_vertices - 2;
	size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative;
	size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles;

	return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
}

size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
{
	using namespace meshopt;

	assert(index_count % 3 == 0);
	assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
	assert(vertex_positions_stride % sizeof(float) == 0);

	assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
	assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
	assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned

	assert(cone_weight >= 0 && cone_weight <= 1);

	meshopt_Allocator allocator;

	TriangleAdjacency2 adjacency = {};
	buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);

	unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
	memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));

	size_t face_count = index_count / 3;

	unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
	memset(emitted_flags, 0, face_count);

	// for each triangle, precompute centroid & normal to use for scoring
	Cone* triangles = allocator.allocate<Cone>(face_count);
	float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);

	// assuming each meshlet is a square patch, expected radius is sqrt(expected area)
	float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f;
	float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f;

	// build a kd-tree for nearest neighbor lookup
	unsigned int* kdindices = allocator.allocate<unsigned int>(face_count);
	for (size_t i = 0; i < face_count; ++i)
		kdindices[i] = unsigned(i);

	KDNode* nodes = allocator.allocate<KDNode>(face_count * 2);
	kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8);

	// index of the vertex in the meshlet, 0xff if the vertex isn't used
	unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
	memset(used, -1, vertex_count);

	meshopt_Meshlet meshlet = {};
	size_t meshlet_offset = 0;

	Cone meshlet_cone_acc = {};

	for (;;)
	{
		Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);

		unsigned int best_extra = 0;
		unsigned int best_triangle = getNeighborTriangle(meshlet, &meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight, &best_extra);

		// if the best triangle doesn't fit into current meshlet, the spatial scoring we've used is not very meaningful, so we re-select using topological scoring
		if (best_triangle != ~0u && (meshlet.vertex_count + best_extra > max_vertices || meshlet.triangle_count >= max_triangles))
		{
			best_triangle = getNeighborTriangle(meshlet, NULL, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, 0.f, NULL);
		}

		// when we run out of neighboring triangles we need to switch to spatial search; we currently just pick the closest triangle irrespective of connectivity
		if (best_triangle == ~0u)
		{
			float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
			unsigned int index = ~0u;
			float limit = FLT_MAX;

			kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, limit);

			best_triangle = index;
		}

		if (best_triangle == ~0u)
			break;

		unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2];
		assert(a < vertex_count && b < vertex_count && c < vertex_count);

		// add meshlet to the output; when the current meshlet is full we reset the accumulated bounds
		if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles))
		{
			meshlet_offset++;
			memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc));
		}

		live_triangles[a]--;
		live_triangles[b]--;
		live_triangles[c]--;

		// remove emitted triangle from adjacency data
		// this makes sure that we spend less time traversing these lists on subsequent iterations
		for (size_t k = 0; k < 3; ++k)
		{
			unsigned int index = indices[best_triangle * 3 + k];

			unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
			size_t neighbors_size = adjacency.counts[index];

			for (size_t i = 0; i < neighbors_size; ++i)
			{
				unsigned int tri = neighbors[i];

				if (tri == best_triangle)
				{
					neighbors[i] = neighbors[neighbors_size - 1];
					adjacency.counts[index]--;
					break;
				}
			}
		}

		// update aggregated meshlet cone data for scoring subsequent triangles
		meshlet_cone_acc.px += triangles[best_triangle].px;
		meshlet_cone_acc.py += triangles[best_triangle].py;
		meshlet_cone_acc.pz += triangles[best_triangle].pz;
		meshlet_cone_acc.nx += triangles[best_triangle].nx;
		meshlet_cone_acc.ny += triangles[best_triangle].ny;
		meshlet_cone_acc.nz += triangles[best_triangle].nz;

		emitted_flags[best_triangle] = 1;
	}

	if (meshlet.triangle_count)
	{
		finishMeshlet(meshlet, meshlet_triangles);

		meshlets[meshlet_offset++] = meshlet;
	}

	assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
	return meshlet_offset;
}

size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
{
	using namespace meshopt;

	assert(index_count % 3 == 0);

	assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
	assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
	assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned

	meshopt_Allocator allocator;

	// index of the vertex in the meshlet, 0xff if the vertex isn't used
	unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
	memset(used, -1, vertex_count);

	meshopt_Meshlet meshlet = {};
	size_t meshlet_offset = 0;

	for (size_t i = 0; i < index_count; i += 3)
	{
		unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
		assert(a < vertex_count && b < vertex_count && c < vertex_count);

		// appends triangle to the meshlet and writes previous meshlet to the output if full
		meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles);
	}

	if (meshlet.triangle_count)
	{
		finishMeshlet(meshlet, meshlet_triangles);

		meshlets[meshlet_offset++] = meshlet;
	}

	assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
	return meshlet_offset;
}

meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	using namespace meshopt;

	assert(index_count % 3 == 0);
	assert(index_count / 3 <= kMeshletMaxTriangles);
	assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
	assert(vertex_positions_stride % sizeof(float) == 0);

	(void)vertex_count;

	size_t vertex_stride_float = vertex_positions_stride / sizeof(float);

	// compute triangle normals and gather triangle corners
	float normals[kMeshletMaxTriangles][3];
	float corners[kMeshletMaxTriangles][3][3];
	size_t triangles = 0;

	for (size_t i = 0; i < index_count; i += 3)
	{
		unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
		assert(a < vertex_count && b < vertex_count && c < vertex_count);

		const float* p0 = vertex_positions + vertex_stride_float * a;
		const float* p1 = vertex_positions + vertex_stride_float * b;
		const float* p2 = vertex_positions + vertex_stride_float * c;

		float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
		float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};

		float normalx = p10[1] * p20[2] - p10[2] * p20[1];
		float normaly = p10[2] * p20[0] - p10[0] * p20[2];
		float normalz = p10[0] * p20[1] - p10[1] * p20[0];

		float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);

		// no need to include degenerate triangles - they will be invisible anyway
		if (area == 0.f)
			continue;

		// record triangle normals & corners for future use; normal and corner 0 define a plane equation
		normals[triangles][0] = normalx / area;
		normals[triangles][1] = normaly / area;
		normals[triangles][2] = normalz / area;
		memcpy(corners[triangles][0], p0, 3 * sizeof(float));
		memcpy(corners[triangles][1], p1, 3 * sizeof(float));
		memcpy(corners[triangles][2], p2, 3 * sizeof(float));
		triangles++;
	}

	meshopt_Bounds bounds = {};

	// degenerate cluster, no valid triangles => trivial reject (cone data is 0)
	if (triangles == 0)
		return bounds;

	// compute cluster bounding sphere; we'll use the center to determine normal cone apex as well
	float psphere[4] = {};
	computeBoundingSphere(psphere, corners[0], triangles * 3);

	float center[3] = {psphere[0], psphere[1], psphere[2]};

	// treating triangle normals as points, find the bounding sphere - the sphere center determines the optimal cone axis
	float nsphere[4] = {};
	computeBoundingSphere(nsphere, normals, triangles);

	float axis[3] = {nsphere[0], nsphere[1], nsphere[2]};
	float axislength = sqrtf(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
	float invaxislength = axislength == 0.f ? 0.f : 1.f / axislength;

	axis[0] *= invaxislength;
	axis[1] *= invaxislength;
	axis[2] *= invaxislength;

	// compute a tight cone around all normals, mindp = cos(angle/2)
	float mindp = 1.f;

	for (size_t i = 0; i < triangles; ++i)
	{
		float dp = normals[i][0] * axis[0] + normals[i][1] * axis[1] + normals[i][2] * axis[2];

		mindp = (dp < mindp) ? dp : mindp;
	}

	// fill bounding sphere info; note that below we can return bounds without cone information for degenerate cones
	bounds.center[0] = center[0];
	bounds.center[1] = center[1];
	bounds.center[2] = center[2];
	bounds.radius = psphere[3];

	// degenerate cluster, normal cone is larger than a hemisphere => trivial accept
	// note that if mindp is positive but close to 0, the triangle intersection code below gets less stable
	// we arbitrarily decide that if a normal cone is ~168 degrees wide or more, the cone isn't useful
	if (mindp <= 0.1f)
	{
		bounds.cone_cutoff = 1;
		bounds.cone_cutoff_s8 = 127;
		return bounds;
	}

	float maxt = 0;

	// we need to find the point on center-t*axis ray that lies in negative half-space of all triangles
	for (size_t i = 0; i < triangles; ++i)
	{
		// dot(center-t*axis-corner, trinormal) = 0
		// dot(center-corner, trinormal) - t * dot(axis, trinormal) = 0
		float cx = center[0] - corners[i][0][0];
		float cy = center[1] - corners[i][0][1];
		float cz = center[2] - corners[i][0][2];

		float dc = cx * normals[i][0] + cy * normals[i][1] + cz * normals[i][2];
		float dn = axis[0] * normals[i][0] + axis[1] * normals[i][1] + axis[2] * normals[i][2];

		// dn should be larger than mindp cutoff above
		assert(dn > 0.f);
		float t = dc / dn;

		maxt = (t > maxt) ? t : maxt;
	}

	// cone apex should be in the negative half-space of all cluster triangles by construction
	bounds.cone_apex[0] = center[0] - axis[0] * maxt;
	bounds.cone_apex[1] = center[1] - axis[1] * maxt;
	bounds.cone_apex[2] = center[2] - axis[2] * maxt;

	// note: this axis is the axis of the normal cone, but our test for perspective camera effectively negates the axis
	bounds.cone_axis[0] = axis[0];
	bounds.cone_axis[1] = axis[1];
	bounds.cone_axis[2] = axis[2];

	// cos(a) for normal cone is mindp; we need to add 90 degrees on both sides and invert the cone
	// which gives us -cos(a+90) = -(-sin(a)) = sin(a) = sqrt(1 - cos^2(a))
	bounds.cone_cutoff = sqrtf(1 - mindp * mindp);

	// quantize axis & cutoff to 8-bit SNORM format
	bounds.cone_axis_s8[0] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[0], 8));
	bounds.cone_axis_s8[1] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[1], 8));
	bounds.cone_axis_s8[2] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[2], 8));

	// for the 8-bit test to be conservative, we need to adjust the cutoff by measuring the max. error
	float cone_axis_s8_e0 = fabsf(bounds.cone_axis_s8[0] / 127.f - bounds.cone_axis[0]);
	float cone_axis_s8_e1 = fabsf(bounds.cone_axis_s8[1] / 127.f - bounds.cone_axis[1]);
	float cone_axis_s8_e2 = fabsf(bounds.cone_axis_s8[2] / 127.f - bounds.cone_axis[2]);

	// note that we need to round this up instead of rounding to nearest, hence +1
	int cone_cutoff_s8 = int(127 * (bounds.cone_cutoff + cone_axis_s8_e0 + cone_axis_s8_e1 + cone_axis_s8_e2) + 1);

	bounds.cone_cutoff_s8 = (cone_cutoff_s8 > 127) ? 127 : (signed char)(cone_cutoff_s8);

	return bounds;
}

meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	using namespace meshopt;

	assert(triangle_count <= kMeshletMaxTriangles);
	assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
	assert(vertex_positions_stride % sizeof(float) == 0);

	unsigned int indices[kMeshletMaxTriangles * 3];

	for (size_t i = 0; i < triangle_count * 3; ++i)
	{
		unsigned int index = meshlet_vertices[meshlet_triangles[i]];
		assert(index < vertex_count);

		indices[i] = index;
	}

	return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
}