summaryrefslogtreecommitdiff
path: root/thirdparty/mbedtls/library/rsa_internal.c
blob: d6ba97a14baf7f4046f9164a5dddb4ea3d8a26a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
 *  Helper functions for the RSA module
 *
 *  Copyright The Mbed TLS Contributors
 *  SPDX-License-Identifier: Apache-2.0
 *
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 *  not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 */

#include "common.h"

#if defined(MBEDTLS_RSA_C)

#include "mbedtls/rsa.h"
#include "mbedtls/bignum.h"
#include "mbedtls/rsa_internal.h"

/*
 * Compute RSA prime factors from public and private exponents
 *
 * Summary of algorithm:
 * Setting F := lcm(P-1,Q-1), the idea is as follows:
 *
 * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
 *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
 *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
 *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
 *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
 *     factors of N.
 *
 * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
 *     construction still applies since (-)^K is the identity on the set of
 *     roots of 1 in Z/NZ.
 *
 * The public and private key primitives (-)^E and (-)^D are mutually inverse
 * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
 * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
 * Splitting L = 2^t * K with K odd, we have
 *
 *   DE - 1 = FL = (F/2) * (2^(t+1)) * K,
 *
 * so (F / 2) * K is among the numbers
 *
 *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
 *
 * where ord is the order of 2 in (DE - 1).
 * We can therefore iterate through these numbers apply the construction
 * of (a) and (b) above to attempt to factor N.
 *
 */
int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
                     mbedtls_mpi const *E, mbedtls_mpi const *D,
                     mbedtls_mpi *P, mbedtls_mpi *Q )
{
    int ret = 0;

    uint16_t attempt;  /* Number of current attempt  */
    uint16_t iter;     /* Number of squares computed in the current attempt */

    uint16_t order;    /* Order of 2 in DE - 1 */

    mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1     */
    mbedtls_mpi K;  /* Temporary holding the current candidate */

    const unsigned char primes[] = { 2,
           3,    5,    7,   11,   13,   17,   19,   23,
          29,   31,   37,   41,   43,   47,   53,   59,
          61,   67,   71,   73,   79,   83,   89,   97,
         101,  103,  107,  109,  113,  127,  131,  137,
         139,  149,  151,  157,  163,  167,  173,  179,
         181,  191,  193,  197,  199,  211,  223,  227,
         229,  233,  239,  241,  251
    };

    const size_t num_primes = sizeof( primes ) / sizeof( *primes );

    if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );

    if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
        mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
        mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
        mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
        mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
    {
        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
    }

    /*
     * Initializations and temporary changes
     */

    mbedtls_mpi_init( &K );
    mbedtls_mpi_init( &T );

    /* T := DE - 1 */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D,  E ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );

    if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 )
    {
        ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
        goto cleanup;
    }

    /* After this operation, T holds the largest odd divisor of DE - 1. */
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );

    /*
     * Actual work
     */

    /* Skip trying 2 if N == 1 mod 8 */
    attempt = 0;
    if( N->p[0] % 8 == 1 )
        attempt = 1;

    for( ; attempt < num_primes; ++attempt )
    {
        mbedtls_mpi_lset( &K, primes[attempt] );

        /* Check if gcd(K,N) = 1 */
        MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
        if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
            continue;

        /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
         * and check whether they have nontrivial GCD with N. */
        MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
                             Q /* temporarily use Q for storing Montgomery
                                * multiplication helper values */ ) );

        for( iter = 1; iter <= order; ++iter )
        {
            /* If we reach 1 prematurely, there's no point
             * in continuing to square K */
            if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 )
                break;

            MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
            MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );

            if( mbedtls_mpi_cmp_int( P, 1 ) ==  1 &&
                mbedtls_mpi_cmp_mpi( P, N ) == -1 )
            {
                /*
                 * Have found a nontrivial divisor P of N.
                 * Set Q := N / P.
                 */

                MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
                goto cleanup;
            }

            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
            MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
        }

        /*
         * If we get here, then either we prematurely aborted the loop because
         * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
         * be 1 if D,E,N were consistent.
         * Check if that's the case and abort if not, to avoid very long,
         * yet eventually failing, computations if N,D,E were not sane.
         */
        if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 )
        {
            break;
        }
    }

    ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;

cleanup:

    mbedtls_mpi_free( &K );
    mbedtls_mpi_free( &T );
    return( ret );
}

/*
 * Given P, Q and the public exponent E, deduce D.
 * This is essentially a modular inversion.
 */
int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
                                         mbedtls_mpi const *Q,
                                         mbedtls_mpi const *E,
                                         mbedtls_mpi *D )
{
    int ret = 0;
    mbedtls_mpi K, L;

    if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );

    if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
        mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
        mbedtls_mpi_cmp_int( E, 0 ) == 0 )
    {
        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
    }

    mbedtls_mpi_init( &K );
    mbedtls_mpi_init( &L );

    /* Temporarily put K := P-1 and L := Q-1 */
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );

    /* Temporarily put D := gcd(P-1, Q-1) */
    MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );

    /* K := LCM(P-1, Q-1) */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );

    /* Compute modular inverse of E in LCM(P-1, Q-1) */
    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );

cleanup:

    mbedtls_mpi_free( &K );
    mbedtls_mpi_free( &L );

    return( ret );
}

/*
 * Check that RSA CRT parameters are in accordance with core parameters.
 */
int mbedtls_rsa_validate_crt( const mbedtls_mpi *P,  const mbedtls_mpi *Q,
                              const mbedtls_mpi *D,  const mbedtls_mpi *DP,
                              const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
{
    int ret = 0;

    mbedtls_mpi K, L;
    mbedtls_mpi_init( &K );
    mbedtls_mpi_init( &L );

    /* Check that DP - D == 0 mod P - 1 */
    if( DP != NULL )
    {
        if( P == NULL )
        {
            ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
            goto cleanup;
        }

        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );

        if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }
    }

    /* Check that DQ - D == 0 mod Q - 1 */
    if( DQ != NULL )
    {
        if( Q == NULL )
        {
            ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
            goto cleanup;
        }

        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );

        if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }
    }

    /* Check that QP * Q - 1 == 0 mod P */
    if( QP != NULL )
    {
        if( P == NULL || Q == NULL )
        {
            ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
            goto cleanup;
        }

        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
        if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }
    }

cleanup:

    /* Wrap MPI error codes by RSA check failure error code */
    if( ret != 0 &&
        ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
        ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
    {
        ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
    }

    mbedtls_mpi_free( &K );
    mbedtls_mpi_free( &L );

    return( ret );
}

/*
 * Check that core RSA parameters are sane.
 */
int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
                                 const mbedtls_mpi *Q, const mbedtls_mpi *D,
                                 const mbedtls_mpi *E,
                                 int (*f_rng)(void *, unsigned char *, size_t),
                                 void *p_rng )
{
    int ret = 0;
    mbedtls_mpi K, L;

    mbedtls_mpi_init( &K );
    mbedtls_mpi_init( &L );

    /*
     * Step 1: If PRNG provided, check that P and Q are prime
     */

#if defined(MBEDTLS_GENPRIME)
    /*
     * When generating keys, the strongest security we support aims for an error
     * rate of at most 2^-100 and we are aiming for the same certainty here as
     * well.
     */
    if( f_rng != NULL && P != NULL &&
        ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 )
    {
        ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
        goto cleanup;
    }

    if( f_rng != NULL && Q != NULL &&
        ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 )
    {
        ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
        goto cleanup;
    }
#else
    ((void) f_rng);
    ((void) p_rng);
#endif /* MBEDTLS_GENPRIME */

    /*
     * Step 2: Check that 1 < N = P * Q
     */

    if( P != NULL && Q != NULL && N != NULL )
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
        if( mbedtls_mpi_cmp_int( N, 1 )  <= 0 ||
            mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }
    }

    /*
     * Step 3: Check and 1 < D, E < N if present.
     */

    if( N != NULL && D != NULL && E != NULL )
    {
        if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
             mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
             mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
             mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }
    }

    /*
     * Step 4: Check that D, E are inverse modulo P-1 and Q-1
     */

    if( P != NULL && Q != NULL && D != NULL && E != NULL )
    {
        if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
            mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }

        /* Compute DE-1 mod P-1 */
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
        if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }

        /* Compute DE-1 mod Q-1 */
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
        if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
        {
            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
            goto cleanup;
        }
    }

cleanup:

    mbedtls_mpi_free( &K );
    mbedtls_mpi_free( &L );

    /* Wrap MPI error codes by RSA check failure error code */
    if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
    {
        ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
    }

    return( ret );
}

int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
                            const mbedtls_mpi *D, mbedtls_mpi *DP,
                            mbedtls_mpi *DQ, mbedtls_mpi *QP )
{
    int ret = 0;
    mbedtls_mpi K;
    mbedtls_mpi_init( &K );

    /* DP = D mod P-1 */
    if( DP != NULL )
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1  ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
    }

    /* DQ = D mod Q-1 */
    if( DQ != NULL )
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1  ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
    }

    /* QP = Q^{-1} mod P */
    if( QP != NULL )
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
    }

cleanup:
    mbedtls_mpi_free( &K );

    return( ret );
}

#endif /* MBEDTLS_RSA_C */