summaryrefslogtreecommitdiff
path: root/thirdparty/mbedtls/library/ecp.c
blob: 7ea8b1676a136ebad07e2bc8a01886f269f8c4eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
/*
 *  Elliptic curves over GF(p): generic functions
 *
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
 *
 *  This file is provided under the Apache License 2.0, or the
 *  GNU General Public License v2.0 or later.
 *
 *  **********
 *  Apache License 2.0:
 *
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 *  not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *  **********
 *
 *  **********
 *  GNU General Public License v2.0 or later:
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *  **********
 *
 *  This file is part of mbed TLS (https://tls.mbed.org)
 */

/*
 * References:
 *
 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
 * RFC 4492 for the related TLS structures and constants
 * RFC 7748 for the Curve448 and Curve25519 curve definitions
 *
 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
 *
 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
 *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
 *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
 *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
 *
 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
 *     render ECC resistant against Side Channel Attacks. IACR Cryptology
 *     ePrint Archive, 2004, vol. 2004, p. 342.
 *     <http://eprint.iacr.org/2004/342.pdf>
 */

#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif

/**
 * \brief Function level alternative implementation.
 *
 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
 * replace certain functions in this module. The alternative implementations are
 * typically hardware accelerators and need to activate the hardware before the
 * computation starts and deactivate it after it finishes. The
 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
 * this purpose.
 *
 * To preserve the correct functionality the following conditions must hold:
 *
 * - The alternative implementation must be activated by
 *   mbedtls_internal_ecp_init() before any of the replaceable functions is
 *   called.
 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
 *   implementation is activated.
 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
 *   implementation is activated.
 * - Public functions must not return while the alternative implementation is
 *   activated.
 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
 *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
 *   \endcode ensures that the alternative implementation supports the current
 *   group.
 */
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
#endif

#if defined(MBEDTLS_ECP_C)

#include "mbedtls/ecp.h"
#include "mbedtls/threading.h"
#include "mbedtls/platform_util.h"

#include <string.h>

#if !defined(MBEDTLS_ECP_ALT)

/* Parameter validation macros based on platform_util.h */
#define ECP_VALIDATE_RET( cond )    \
    MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
#define ECP_VALIDATE( cond )        \
    MBEDTLS_INTERNAL_VALIDATE( cond )

#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdlib.h>
#include <stdio.h>
#define mbedtls_printf     printf
#define mbedtls_calloc    calloc
#define mbedtls_free       free
#endif

#include "mbedtls/ecp_internal.h"

#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
#if defined(MBEDTLS_HMAC_DRBG_C)
#include "mbedtls/hmac_drbg.h"
#elif defined(MBEDTLS_CTR_DRBG_C)
#include "mbedtls/ctr_drbg.h"
#elif defined(MBEDTLS_SHA512_C)
#include "mbedtls/sha512.h"
#elif defined(MBEDTLS_SHA256_C)
#include "mbedtls/sha256.h"
#else
#error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
#endif
#endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */

#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
    !defined(inline) && !defined(__cplusplus)
#define inline __inline
#endif

#if defined(MBEDTLS_SELF_TEST)
/*
 * Counts of point addition and doubling, and field multiplications.
 * Used to test resistance of point multiplication to simple timing attacks.
 */
static unsigned long add_count, dbl_count, mul_count;
#endif

#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
/*
 * Currently ecp_mul() takes a RNG function as an argument, used for
 * side-channel protection, but it can be NULL. The initial reasoning was
 * that people will pass non-NULL RNG when they care about side-channels, but
 * unfortunately we have some APIs that call ecp_mul() with a NULL RNG, with
 * no opportunity for the user to do anything about it.
 *
 * The obvious strategies for addressing that include:
 * - change those APIs so that they take RNG arguments;
 * - require a global RNG to be available to all crypto modules.
 *
 * Unfortunately those would break compatibility. So what we do instead is
 * have our own internal DRBG instance, seeded from the secret scalar.
 *
 * The following is a light-weight abstraction layer for doing that with
 * HMAC_DRBG (first choice) or CTR_DRBG.
 */

#if defined(MBEDTLS_HMAC_DRBG_C)

/* DRBG context type */
typedef mbedtls_hmac_drbg_context ecp_drbg_context;

/* DRBG context init */
static inline void ecp_drbg_init( ecp_drbg_context *ctx )
{
    mbedtls_hmac_drbg_init( ctx );
}

/* DRBG context free */
static inline void ecp_drbg_free( ecp_drbg_context *ctx )
{
    mbedtls_hmac_drbg_free( ctx );
}

/* DRBG function */
static inline int ecp_drbg_random( void *p_rng,
                                   unsigned char *output, size_t output_len )
{
    return( mbedtls_hmac_drbg_random( p_rng, output, output_len ) );
}

/* DRBG context seeding */
static int ecp_drbg_seed( ecp_drbg_context *ctx,
                   const mbedtls_mpi *secret, size_t secret_len )
{
    int ret;
    unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];
    /* The list starts with strong hashes */
    const mbedtls_md_type_t md_type = mbedtls_md_list()[0];
    const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_type );

    MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( secret,
                                               secret_bytes, secret_len ) );

    ret = mbedtls_hmac_drbg_seed_buf( ctx, md_info, secret_bytes, secret_len );

cleanup:
    mbedtls_platform_zeroize( secret_bytes, secret_len );

    return( ret );
}

#elif defined(MBEDTLS_CTR_DRBG_C)

/* DRBG context type */
typedef mbedtls_ctr_drbg_context ecp_drbg_context;

/* DRBG context init */
static inline void ecp_drbg_init( ecp_drbg_context *ctx )
{
    mbedtls_ctr_drbg_init( ctx );
}

/* DRBG context free */
static inline void ecp_drbg_free( ecp_drbg_context *ctx )
{
    mbedtls_ctr_drbg_free( ctx );
}

/* DRBG function */
static inline int ecp_drbg_random( void *p_rng,
                                   unsigned char *output, size_t output_len )
{
    return( mbedtls_ctr_drbg_random( p_rng, output, output_len ) );
}

/*
 * Since CTR_DRBG doesn't have a seed_buf() function the way HMAC_DRBG does,
 * we need to pass an entropy function when seeding. So we use a dummy
 * function for that, and pass the actual entropy as customisation string.
 * (During seeding of CTR_DRBG the entropy input and customisation string are
 * concatenated before being used to update the secret state.)
 */
static int ecp_ctr_drbg_null_entropy(void *ctx, unsigned char *out, size_t len)
{
    (void) ctx;
    memset( out, 0, len );
    return( 0 );
}

/* DRBG context seeding */
static int ecp_drbg_seed( ecp_drbg_context *ctx,
                   const mbedtls_mpi *secret, size_t secret_len )
{
    int ret;
    unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];

    MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( secret,
                                               secret_bytes, secret_len ) );

    ret = mbedtls_ctr_drbg_seed( ctx, ecp_ctr_drbg_null_entropy, NULL,
                                 secret_bytes, secret_len );

cleanup:
    mbedtls_platform_zeroize( secret_bytes, secret_len );

    return( ret );
}

#elif defined(MBEDTLS_SHA512_C) || defined(MBEDTLS_SHA256_C)

/* This will be used in the self-test function */
#define ECP_ONE_STEP_KDF

/*
 * We need to expand secret data (the scalar) into a longer stream of bytes.
 *
 * We'll use the One-Step KDF from NIST SP 800-56C, with option 1 (H is a hash
 * function) and empty FixedInfo. (Though we'll make it fit the DRBG API for
 * convenience, this is not a full-fledged DRBG, but we don't need one here.)
 *
 * We need a basic hash abstraction layer to use whatever SHA-2 is available.
 */
#if defined(MBEDTLS_SHA512_C)

#define HASH_FUNC( in, ilen, out )  mbedtls_sha512_ret( in, ilen, out, 0 );
#define HASH_BLOCK_BYTES            ( 512 / 8 )

#elif defined(MBEDTLS_SHA256_C)

#define HASH_FUNC( in, ilen, out )  mbedtls_sha256_ret( in, ilen, out, 0 );
#define HASH_BLOCK_BYTES            ( 256 / 8 )

#endif /* SHA512/SHA256 abstraction */

/*
 * State consists of a 32-bit counter plus the secret value.
 *
 * We stored them concatenated in a single buffer as that's what will get
 * passed to the hash function.
 */
typedef struct {
    size_t total_len;
    uint8_t buf[4 + MBEDTLS_ECP_MAX_BYTES];
} ecp_drbg_context;

static void ecp_drbg_init( ecp_drbg_context *ctx )
{
    memset( ctx, 0, sizeof( ecp_drbg_context ) );
}

static void ecp_drbg_free( ecp_drbg_context *ctx )
{
    mbedtls_platform_zeroize( ctx, sizeof( ecp_drbg_context ) );
}

static int ecp_drbg_seed( ecp_drbg_context *ctx,
                   const mbedtls_mpi *secret, size_t secret_len )
{
    ctx->total_len = 4 + secret_len;
    memset( ctx->buf, 0, 4);
    return( mbedtls_mpi_write_binary( secret, ctx->buf + 4, secret_len ) );
}

static int ecp_drbg_random( void *p_rng, unsigned char *output, size_t output_len )
{
    ecp_drbg_context *ctx = p_rng;
    int ret;
    size_t len_done = 0;
    uint8_t tmp[HASH_BLOCK_BYTES];

    while( len_done < output_len )
    {
        uint8_t use_len;

        /* This function is only called for coordinate randomisation, which
         * happens only twice in a scalar multiplication. Each time needs a
         * random value in the range [2, p-1], and gets it by drawing len(p)
         * bytes from this function, and retrying up to 10 times if unlucky.
         *
         * So for the largest curve, each scalar multiplication draws at most
         * 20 * 66 bytes. The minimum block size is 32 (SHA-256), so with
         * rounding that means a most 20 * 3 blocks.
         *
         * Since we don't need to draw more that 255 blocks, don't bother
         * with carry propagation and just return an error instead. We can
         * change that it we even need to draw more blinding values.
         */
        ctx->buf[3] += 1;
        if( ctx->buf[3] == 0 )
            return( MBEDTLS_ERR_ECP_RANDOM_FAILED );

        ret = HASH_FUNC( ctx->buf, ctx->total_len, tmp );
        if( ret != 0 )
            return( ret );

        if( output_len - len_done > HASH_BLOCK_BYTES )
            use_len = HASH_BLOCK_BYTES;
        else
            use_len = output_len - len_done;

        memcpy( output + len_done, tmp, use_len );
        len_done += use_len;
    }

    mbedtls_platform_zeroize( tmp, sizeof( tmp ) );

    return( 0 );
}

#else /* DRBG/SHA modules */
#error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
#endif /* DRBG/SHA modules */
#endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */

#if defined(MBEDTLS_ECP_RESTARTABLE)
/*
 * Maximum number of "basic operations" to be done in a row.
 *
 * Default value 0 means that ECC operations will not yield.
 * Note that regardless of the value of ecp_max_ops, always at
 * least one step is performed before yielding.
 *
 * Setting ecp_max_ops=1 can be suitable for testing purposes
 * as it will interrupt computation at all possible points.
 */
static unsigned ecp_max_ops = 0;

/*
 * Set ecp_max_ops
 */
void mbedtls_ecp_set_max_ops( unsigned max_ops )
{
    ecp_max_ops = max_ops;
}

/*
 * Check if restart is enabled
 */
int mbedtls_ecp_restart_is_enabled( void )
{
    return( ecp_max_ops != 0 );
}

/*
 * Restart sub-context for ecp_mul_comb()
 */
struct mbedtls_ecp_restart_mul
{
    mbedtls_ecp_point R;    /* current intermediate result                  */
    size_t i;               /* current index in various loops, 0 outside    */
    mbedtls_ecp_point *T;   /* table for precomputed points                 */
    unsigned char T_size;   /* number of points in table T                  */
    enum {                  /* what were we doing last time we returned?    */
        ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
        ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
        ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
        ecp_rsm_pre_add,        /* precompute remaining points by adding    */
        ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
        ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
        ecp_rsm_final_norm,     /* do the final normalization               */
    } state;
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    ecp_drbg_context drbg_ctx;
    unsigned char drbg_seeded;
#endif
};

/*
 * Init restart_mul sub-context
 */
static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
{
    mbedtls_ecp_point_init( &ctx->R );
    ctx->i = 0;
    ctx->T = NULL;
    ctx->T_size = 0;
    ctx->state = ecp_rsm_init;
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    ecp_drbg_init( &ctx->drbg_ctx );
    ctx->drbg_seeded = 0;
#endif
}

/*
 * Free the components of a restart_mul sub-context
 */
static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
{
    unsigned char i;

    if( ctx == NULL )
        return;

    mbedtls_ecp_point_free( &ctx->R );

    if( ctx->T != NULL )
    {
        for( i = 0; i < ctx->T_size; i++ )
            mbedtls_ecp_point_free( ctx->T + i );
        mbedtls_free( ctx->T );
    }

#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    ecp_drbg_free( &ctx->drbg_ctx );
#endif

    ecp_restart_rsm_init( ctx );
}

/*
 * Restart context for ecp_muladd()
 */
struct mbedtls_ecp_restart_muladd
{
    mbedtls_ecp_point mP;       /* mP value                             */
    mbedtls_ecp_point R;        /* R intermediate result                */
    enum {                      /* what should we do next?              */
        ecp_rsma_mul1 = 0,      /* first multiplication                 */
        ecp_rsma_mul2,          /* second multiplication                */
        ecp_rsma_add,           /* addition                             */
        ecp_rsma_norm,          /* normalization                        */
    } state;
};

/*
 * Init restart_muladd sub-context
 */
static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
{
    mbedtls_ecp_point_init( &ctx->mP );
    mbedtls_ecp_point_init( &ctx->R );
    ctx->state = ecp_rsma_mul1;
}

/*
 * Free the components of a restart_muladd sub-context
 */
static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
{
    if( ctx == NULL )
        return;

    mbedtls_ecp_point_free( &ctx->mP );
    mbedtls_ecp_point_free( &ctx->R );

    ecp_restart_ma_init( ctx );
}

/*
 * Initialize a restart context
 */
void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
{
    ECP_VALIDATE( ctx != NULL );
    ctx->ops_done = 0;
    ctx->depth = 0;
    ctx->rsm = NULL;
    ctx->ma = NULL;
}

/*
 * Free the components of a restart context
 */
void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
{
    if( ctx == NULL )
        return;

    ecp_restart_rsm_free( ctx->rsm );
    mbedtls_free( ctx->rsm );

    ecp_restart_ma_free( ctx->ma );
    mbedtls_free( ctx->ma );

    mbedtls_ecp_restart_init( ctx );
}

/*
 * Check if we can do the next step
 */
int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
                              mbedtls_ecp_restart_ctx *rs_ctx,
                              unsigned ops )
{
    ECP_VALIDATE_RET( grp != NULL );

    if( rs_ctx != NULL && ecp_max_ops != 0 )
    {
        /* scale depending on curve size: the chosen reference is 256-bit,
         * and multiplication is quadratic. Round to the closest integer. */
        if( grp->pbits >= 512 )
            ops *= 4;
        else if( grp->pbits >= 384 )
            ops *= 2;

        /* Avoid infinite loops: always allow first step.
         * Because of that, however, it's not generally true
         * that ops_done <= ecp_max_ops, so the check
         * ops_done > ecp_max_ops below is mandatory. */
        if( ( rs_ctx->ops_done != 0 ) &&
            ( rs_ctx->ops_done > ecp_max_ops ||
              ops > ecp_max_ops - rs_ctx->ops_done ) )
        {
            return( MBEDTLS_ERR_ECP_IN_PROGRESS );
        }

        /* update running count */
        rs_ctx->ops_done += ops;
    }

    return( 0 );
}

/* Call this when entering a function that needs its own sub-context */
#define ECP_RS_ENTER( SUB )   do {                                      \
    /* reset ops count for this call if top-level */                    \
    if( rs_ctx != NULL && rs_ctx->depth++ == 0 )                        \
        rs_ctx->ops_done = 0;                                           \
                                                                        \
    /* set up our own sub-context if needed */                          \
    if( mbedtls_ecp_restart_is_enabled() &&                             \
        rs_ctx != NULL && rs_ctx->SUB == NULL )                         \
    {                                                                   \
        rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) );      \
        if( rs_ctx->SUB == NULL )                                       \
            return( MBEDTLS_ERR_ECP_ALLOC_FAILED );                     \
                                                                        \
        ecp_restart_## SUB ##_init( rs_ctx->SUB );                      \
    }                                                                   \
} while( 0 )

/* Call this when leaving a function that needs its own sub-context */
#define ECP_RS_LEAVE( SUB )   do {                                      \
    /* clear our sub-context when not in progress (done or error) */    \
    if( rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
        ret != MBEDTLS_ERR_ECP_IN_PROGRESS )                            \
    {                                                                   \
        ecp_restart_## SUB ##_free( rs_ctx->SUB );                      \
        mbedtls_free( rs_ctx->SUB );                                    \
        rs_ctx->SUB = NULL;                                             \
    }                                                                   \
                                                                        \
    if( rs_ctx != NULL )                                                \
        rs_ctx->depth--;                                                \
} while( 0 )

#else /* MBEDTLS_ECP_RESTARTABLE */

#define ECP_RS_ENTER( sub )     (void) rs_ctx;
#define ECP_RS_LEAVE( sub )     (void) rs_ctx;

#endif /* MBEDTLS_ECP_RESTARTABLE */

#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
    defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
    defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
    defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
#define ECP_SHORTWEIERSTRASS
#endif

#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
    defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
#define ECP_MONTGOMERY
#endif

/*
 * Curve types: internal for now, might be exposed later
 */
typedef enum
{
    ECP_TYPE_NONE = 0,
    ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */
    ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */
} ecp_curve_type;

/*
 * List of supported curves:
 *  - internal ID
 *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
 *  - size in bits
 *  - readable name
 *
 * Curves are listed in order: largest curves first, and for a given size,
 * fastest curves first. This provides the default order for the SSL module.
 *
 * Reminder: update profiles in x509_crt.c when adding a new curves!
 */
static const mbedtls_ecp_curve_info ecp_supported_curves[] =
{
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
#endif
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
#endif
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
#endif
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
#endif
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
#endif
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
#endif
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
#endif
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
#endif
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
#endif
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
#endif
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
#endif
    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
};

#define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
                        sizeof( ecp_supported_curves[0] )

static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];

/*
 * List of supported curves and associated info
 */
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
{
    return( ecp_supported_curves );
}

/*
 * List of supported curves, group ID only
 */
const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
{
    static int init_done = 0;

    if( ! init_done )
    {
        size_t i = 0;
        const mbedtls_ecp_curve_info *curve_info;

        for( curve_info = mbedtls_ecp_curve_list();
             curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
             curve_info++ )
        {
            ecp_supported_grp_id[i++] = curve_info->grp_id;
        }
        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;

        init_done = 1;
    }

    return( ecp_supported_grp_id );
}

/*
 * Get the curve info for the internal identifier
 */
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
{
    const mbedtls_ecp_curve_info *curve_info;

    for( curve_info = mbedtls_ecp_curve_list();
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
         curve_info++ )
    {
        if( curve_info->grp_id == grp_id )
            return( curve_info );
    }

    return( NULL );
}

/*
 * Get the curve info from the TLS identifier
 */
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
{
    const mbedtls_ecp_curve_info *curve_info;

    for( curve_info = mbedtls_ecp_curve_list();
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
         curve_info++ )
    {
        if( curve_info->tls_id == tls_id )
            return( curve_info );
    }

    return( NULL );
}

/*
 * Get the curve info from the name
 */
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
{
    const mbedtls_ecp_curve_info *curve_info;

    if( name == NULL )
        return( NULL );

    for( curve_info = mbedtls_ecp_curve_list();
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
         curve_info++ )
    {
        if( strcmp( curve_info->name, name ) == 0 )
            return( curve_info );
    }

    return( NULL );
}

/*
 * Get the type of a curve
 */
static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
{
    if( grp->G.X.p == NULL )
        return( ECP_TYPE_NONE );

    if( grp->G.Y.p == NULL )
        return( ECP_TYPE_MONTGOMERY );
    else
        return( ECP_TYPE_SHORT_WEIERSTRASS );
}

/*
 * Initialize (the components of) a point
 */
void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
{
    ECP_VALIDATE( pt != NULL );

    mbedtls_mpi_init( &pt->X );
    mbedtls_mpi_init( &pt->Y );
    mbedtls_mpi_init( &pt->Z );
}

/*
 * Initialize (the components of) a group
 */
void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
{
    ECP_VALIDATE( grp != NULL );

    grp->id = MBEDTLS_ECP_DP_NONE;
    mbedtls_mpi_init( &grp->P );
    mbedtls_mpi_init( &grp->A );
    mbedtls_mpi_init( &grp->B );
    mbedtls_ecp_point_init( &grp->G );
    mbedtls_mpi_init( &grp->N );
    grp->pbits = 0;
    grp->nbits = 0;
    grp->h = 0;
    grp->modp = NULL;
    grp->t_pre = NULL;
    grp->t_post = NULL;
    grp->t_data = NULL;
    grp->T = NULL;
    grp->T_size = 0;
}

/*
 * Initialize (the components of) a key pair
 */
void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
{
    ECP_VALIDATE( key != NULL );

    mbedtls_ecp_group_init( &key->grp );
    mbedtls_mpi_init( &key->d );
    mbedtls_ecp_point_init( &key->Q );
}

/*
 * Unallocate (the components of) a point
 */
void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
{
    if( pt == NULL )
        return;

    mbedtls_mpi_free( &( pt->X ) );
    mbedtls_mpi_free( &( pt->Y ) );
    mbedtls_mpi_free( &( pt->Z ) );
}

/*
 * Unallocate (the components of) a group
 */
void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
{
    size_t i;

    if( grp == NULL )
        return;

    if( grp->h != 1 )
    {
        mbedtls_mpi_free( &grp->P );
        mbedtls_mpi_free( &grp->A );
        mbedtls_mpi_free( &grp->B );
        mbedtls_ecp_point_free( &grp->G );
        mbedtls_mpi_free( &grp->N );
    }

    if( grp->T != NULL )
    {
        for( i = 0; i < grp->T_size; i++ )
            mbedtls_ecp_point_free( &grp->T[i] );
        mbedtls_free( grp->T );
    }

    mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
}

/*
 * Unallocate (the components of) a key pair
 */
void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
{
    if( key == NULL )
        return;

    mbedtls_ecp_group_free( &key->grp );
    mbedtls_mpi_free( &key->d );
    mbedtls_ecp_point_free( &key->Q );
}

/*
 * Copy the contents of a point
 */
int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
{
    int ret;
    ECP_VALIDATE_RET( P != NULL );
    ECP_VALIDATE_RET( Q != NULL );

    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );

cleanup:
    return( ret );
}

/*
 * Copy the contents of a group object
 */
int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
{
    ECP_VALIDATE_RET( dst != NULL );
    ECP_VALIDATE_RET( src != NULL );

    return( mbedtls_ecp_group_load( dst, src->id ) );
}

/*
 * Set point to zero
 */
int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
{
    int ret;
    ECP_VALIDATE_RET( pt != NULL );

    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );

cleanup:
    return( ret );
}

/*
 * Tell if a point is zero
 */
int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
{
    ECP_VALIDATE_RET( pt != NULL );

    return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
}

/*
 * Compare two points lazily
 */
int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
                           const mbedtls_ecp_point *Q )
{
    ECP_VALIDATE_RET( P != NULL );
    ECP_VALIDATE_RET( Q != NULL );

    if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
        mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
        mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
    {
        return( 0 );
    }

    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}

/*
 * Import a non-zero point from ASCII strings
 */
int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
                           const char *x, const char *y )
{
    int ret;
    ECP_VALIDATE_RET( P != NULL );
    ECP_VALIDATE_RET( x != NULL );
    ECP_VALIDATE_RET( y != NULL );

    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );

cleanup:
    return( ret );
}

/*
 * Export a point into unsigned binary data (SEC1 2.3.3)
 */
int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
                                    const mbedtls_ecp_point *P,
                                    int format, size_t *olen,
                                    unsigned char *buf, size_t buflen )
{
    int ret = 0;
    size_t plen;
    ECP_VALIDATE_RET( grp  != NULL );
    ECP_VALIDATE_RET( P    != NULL );
    ECP_VALIDATE_RET( olen != NULL );
    ECP_VALIDATE_RET( buf  != NULL );
    ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
                      format == MBEDTLS_ECP_PF_COMPRESSED );

    /*
     * Common case: P == 0
     */
    if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
    {
        if( buflen < 1 )
            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );

        buf[0] = 0x00;
        *olen = 1;

        return( 0 );
    }

    plen = mbedtls_mpi_size( &grp->P );

    if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
    {
        *olen = 2 * plen + 1;

        if( buflen < *olen )
            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );

        buf[0] = 0x04;
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
    }
    else if( format == MBEDTLS_ECP_PF_COMPRESSED )
    {
        *olen = plen + 1;

        if( buflen < *olen )
            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );

        buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
    }

cleanup:
    return( ret );
}

/*
 * Import a point from unsigned binary data (SEC1 2.3.4)
 */
int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
                                   mbedtls_ecp_point *pt,
                                   const unsigned char *buf, size_t ilen )
{
    int ret;
    size_t plen;
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( pt  != NULL );
    ECP_VALIDATE_RET( buf != NULL );

    if( ilen < 1 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    if( buf[0] == 0x00 )
    {
        if( ilen == 1 )
            return( mbedtls_ecp_set_zero( pt ) );
        else
            return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
    }

    plen = mbedtls_mpi_size( &grp->P );

    if( buf[0] != 0x04 )
        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );

    if( ilen != 2 * plen + 1 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );

cleanup:
    return( ret );
}

/*
 * Import a point from a TLS ECPoint record (RFC 4492)
 *      struct {
 *          opaque point <1..2^8-1>;
 *      } ECPoint;
 */
int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
                                mbedtls_ecp_point *pt,
                                const unsigned char **buf, size_t buf_len )
{
    unsigned char data_len;
    const unsigned char *buf_start;
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( pt  != NULL );
    ECP_VALIDATE_RET( buf != NULL );
    ECP_VALIDATE_RET( *buf != NULL );

    /*
     * We must have at least two bytes (1 for length, at least one for data)
     */
    if( buf_len < 2 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    data_len = *(*buf)++;
    if( data_len < 1 || data_len > buf_len - 1 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    /*
     * Save buffer start for read_binary and update buf
     */
    buf_start = *buf;
    *buf += data_len;

    return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
}

/*
 * Export a point as a TLS ECPoint record (RFC 4492)
 *      struct {
 *          opaque point <1..2^8-1>;
 *      } ECPoint;
 */
int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
                         int format, size_t *olen,
                         unsigned char *buf, size_t blen )
{
    int ret;
    ECP_VALIDATE_RET( grp  != NULL );
    ECP_VALIDATE_RET( pt   != NULL );
    ECP_VALIDATE_RET( olen != NULL );
    ECP_VALIDATE_RET( buf  != NULL );
    ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
                      format == MBEDTLS_ECP_PF_COMPRESSED );

    /*
     * buffer length must be at least one, for our length byte
     */
    if( blen < 1 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
                    olen, buf + 1, blen - 1) ) != 0 )
        return( ret );

    /*
     * write length to the first byte and update total length
     */
    buf[0] = (unsigned char) *olen;
    ++*olen;

    return( 0 );
}

/*
 * Set a group from an ECParameters record (RFC 4492)
 */
int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
                                const unsigned char **buf, size_t len )
{
    int ret;
    mbedtls_ecp_group_id grp_id;
    ECP_VALIDATE_RET( grp  != NULL );
    ECP_VALIDATE_RET( buf  != NULL );
    ECP_VALIDATE_RET( *buf != NULL );

    if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
        return( ret );

    return( mbedtls_ecp_group_load( grp, grp_id ) );
}

/*
 * Read a group id from an ECParameters record (RFC 4492) and convert it to
 * mbedtls_ecp_group_id.
 */
int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
                                   const unsigned char **buf, size_t len )
{
    uint16_t tls_id;
    const mbedtls_ecp_curve_info *curve_info;
    ECP_VALIDATE_RET( grp  != NULL );
    ECP_VALIDATE_RET( buf  != NULL );
    ECP_VALIDATE_RET( *buf != NULL );

    /*
     * We expect at least three bytes (see below)
     */
    if( len < 3 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    /*
     * First byte is curve_type; only named_curve is handled
     */
    if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    /*
     * Next two bytes are the namedcurve value
     */
    tls_id = *(*buf)++;
    tls_id <<= 8;
    tls_id |= *(*buf)++;

    if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );

    *grp = curve_info->grp_id;

    return( 0 );
}

/*
 * Write the ECParameters record corresponding to a group (RFC 4492)
 */
int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
                         unsigned char *buf, size_t blen )
{
    const mbedtls_ecp_curve_info *curve_info;
    ECP_VALIDATE_RET( grp  != NULL );
    ECP_VALIDATE_RET( buf  != NULL );
    ECP_VALIDATE_RET( olen != NULL );

    if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    /*
     * We are going to write 3 bytes (see below)
     */
    *olen = 3;
    if( blen < *olen )
        return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );

    /*
     * First byte is curve_type, always named_curve
     */
    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;

    /*
     * Next two bytes are the namedcurve value
     */
    buf[0] = curve_info->tls_id >> 8;
    buf[1] = curve_info->tls_id & 0xFF;

    return( 0 );
}

/*
 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
 * See the documentation of struct mbedtls_ecp_group.
 *
 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
 */
static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
{
    int ret;

    if( grp->modp == NULL )
        return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );

    /* N->s < 0 is a much faster test, which fails only if N is 0 */
    if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
        mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
    {
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
    }

    MBEDTLS_MPI_CHK( grp->modp( N ) );

    /* N->s < 0 is a much faster test, which fails only if N is 0 */
    while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );

    while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
        /* we known P, N and the result are positive */
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );

cleanup:
    return( ret );
}

/*
 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
 *
 * In order to guarantee that, we need to ensure that operands of
 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
 * bring the result back to this range.
 *
 * The following macros are shortcuts for doing that.
 */

/*
 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
 */
#if defined(MBEDTLS_SELF_TEST)
#define INC_MUL_COUNT   mul_count++;
#else
#define INC_MUL_COUNT
#endif

#define MOD_MUL( N )                                                    \
    do                                                                  \
    {                                                                   \
        MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) );                       \
        INC_MUL_COUNT                                                   \
    } while( 0 )

/*
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
 * N->s < 0 is a very fast test, which fails only if N is 0
 */
#define MOD_SUB( N )                                                    \
    while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 )           \
        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )

/*
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
 * We known P, N and the result are positive, so sub_abs is correct, and
 * a bit faster.
 */
#define MOD_ADD( N )                                                    \
    while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 )                  \
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )

#if defined(ECP_SHORTWEIERSTRASS)
/*
 * For curves in short Weierstrass form, we do all the internal operations in
 * Jacobian coordinates.
 *
 * For multiplication, we'll use a comb method with coutermeasueres against
 * SPA, hence timing attacks.
 */

/*
 * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
 * Cost: 1N := 1I + 3M + 1S
 */
static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
{
    int ret;
    mbedtls_mpi Zi, ZZi;

    if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
        return( 0 );

#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */

    mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );

    /*
     * X = X / Z^2  mod p
     */
    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );

    /*
     * Y = Y / Z^3  mod p
     */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );

    /*
     * Z = 1
     */
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );

cleanup:

    mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );

    return( ret );
}

/*
 * Normalize jacobian coordinates of an array of (pointers to) points,
 * using Montgomery's trick to perform only one inversion mod P.
 * (See for example Cohen's "A Course in Computational Algebraic Number
 * Theory", Algorithm 10.3.4.)
 *
 * Warning: fails (returning an error) if one of the points is zero!
 * This should never happen, see choice of w in ecp_mul_comb().
 *
 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
 */
static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
                                   mbedtls_ecp_point *T[], size_t T_size )
{
    int ret;
    size_t i;
    mbedtls_mpi *c, u, Zi, ZZi;

    if( T_size < 2 )
        return( ecp_normalize_jac( grp, *T ) );

#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
#endif

    if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
        return( MBEDTLS_ERR_ECP_ALLOC_FAILED );

    for( i = 0; i < T_size; i++ )
        mbedtls_mpi_init( &c[i] );

    mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );

    /*
     * c[i] = Z_0 * ... * Z_i
     */
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
    for( i = 1; i < T_size; i++ )
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
        MOD_MUL( c[i] );
    }

    /*
     * u = 1 / (Z_0 * ... * Z_n) mod P
     */
    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );

    for( i = T_size - 1; ; i-- )
    {
        /*
         * Zi = 1 / Z_i mod p
         * u = 1 / (Z_0 * ... * Z_i) mod P
         */
        if( i == 0 ) {
            MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
        }
        else
        {
            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );
            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );
        }

        /*
         * proceed as in normalize()
         */
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );

        /*
         * Post-precessing: reclaim some memory by shrinking coordinates
         * - not storing Z (always 1)
         * - shrinking other coordinates, but still keeping the same number of
         *   limbs as P, as otherwise it will too likely be regrown too fast.
         */
        MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
        mbedtls_mpi_free( &T[i]->Z );

        if( i == 0 )
            break;
    }

cleanup:

    mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
    for( i = 0; i < T_size; i++ )
        mbedtls_mpi_free( &c[i] );
    mbedtls_free( c );

    return( ret );
}

/*
 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
 */
static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
                            mbedtls_ecp_point *Q,
                            unsigned char inv )
{
    int ret;
    unsigned char nonzero;
    mbedtls_mpi mQY;

    mbedtls_mpi_init( &mQY );

    /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
    nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
    MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );

cleanup:
    mbedtls_mpi_free( &mQY );

    return( ret );
}

/*
 * Point doubling R = 2 P, Jacobian coordinates
 *
 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
 *
 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
 *
 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
 *
 * Cost: 1D := 3M + 4S          (A ==  0)
 *             4M + 4S          (A == -3)
 *             3M + 6S + 1a     otherwise
 */
static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
                           const mbedtls_ecp_point *P )
{
    int ret;
    mbedtls_mpi M, S, T, U;

#if defined(MBEDTLS_SELF_TEST)
    dbl_count++;
#endif

#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */

    mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );

    /* Special case for A = -3 */
    if( grp->A.p == NULL )
    {
        /* M = 3(X + Z^2)(X - Z^2) */
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X,  &S      ) ); MOD_ADD( T );
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X,  &S      ) ); MOD_SUB( U );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
    }
    else
    {
        /* M = 3.X^2 */
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &P->X   ) ); MOD_MUL( S );
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );

        /* Optimize away for "koblitz" curves with A = 0 */
        if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
        {
            /* M += A.Z^4 */
            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T );
            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A ) ); MOD_MUL( S );
            MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M );
        }
    }

    /* S = 4.X.Y^2 */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y,  &P->Y   ) ); MOD_MUL( T );
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &T      ) ); MOD_MUL( S );
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S );

    /* U = 8.Y^4 */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U );
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );

    /* T = M^2 - 2.S */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );

    /* S = M(S - T) - U */
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S );

    /* U = 2.Y.Z */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y,  &P->Z   ) ); MOD_MUL( U );
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );

    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );

cleanup:
    mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );

    return( ret );
}

/*
 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
 *
 * The coordinates of Q must be normalized (= affine),
 * but those of P don't need to. R is not normalized.
 *
 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
 * None of these cases can happen as intermediate step in ecp_mul_comb():
 * - at each step, P, Q and R are multiples of the base point, the factor
 *   being less than its order, so none of them is zero;
 * - Q is an odd multiple of the base point, P an even multiple,
 *   due to the choice of precomputed points in the modified comb method.
 * So branches for these cases do not leak secret information.
 *
 * We accept Q->Z being unset (saving memory in tables) as meaning 1.
 *
 * Cost: 1A := 8M + 3S
 */
static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
{
    int ret;
    mbedtls_mpi T1, T2, T3, T4, X, Y, Z;

#if defined(MBEDTLS_SELF_TEST)
    add_count++;
#endif

#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */

    /*
     * Trivial cases: P == 0 or Q == 0 (case 1)
     */
    if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
        return( mbedtls_ecp_copy( R, Q ) );

    if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
        return( mbedtls_ecp_copy( R, P ) );

    /*
     * Make sure Q coordinates are normalized
     */
    if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
    mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );

    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );

    /* Special cases (2) and (3) */
    if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
    {
        if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
        {
            ret = ecp_double_jac( grp, R, P );
            goto cleanup;
        }
        else
        {
            ret = mbedtls_ecp_set_zero( R );
            goto cleanup;
        }
    }

    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );

    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );

cleanup:

    mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
    mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );

    return( ret );
}

/*
 * Randomize jacobian coordinates:
 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
 * This is sort of the reverse operation of ecp_normalize_jac().
 *
 * This countermeasure was first suggested in [2].
 */
static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
    int ret;
    mbedtls_mpi l, ll;
    size_t p_size;
    int count = 0;

#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */

    p_size = ( grp->pbits + 7 ) / 8;
    mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );

    /* Generate l such that 1 < l < p */
    do
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );

        while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );

        if( count++ > 10 )
        {
            ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
            goto cleanup;
        }
    }
    while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );

    /* Z = l * Z */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );

    /* X = l^2 * X */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );

    /* Y = l^3 * Y */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );

cleanup:
    mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );

    return( ret );
}

/*
 * Check and define parameters used by the comb method (see below for details)
 */
#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
#endif

/* d = ceil( n / w ) */
#define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2

/* number of precomputed points */
#define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )

/*
 * Compute the representation of m that will be used with our comb method.
 *
 * The basic comb method is described in GECC 3.44 for example. We use a
 * modified version that provides resistance to SPA by avoiding zero
 * digits in the representation as in [3]. We modify the method further by
 * requiring that all K_i be odd, which has the small cost that our
 * representation uses one more K_i, due to carries, but saves on the size of
 * the precomputed table.
 *
 * Summary of the comb method and its modifications:
 *
 * - The goal is to compute m*P for some w*d-bit integer m.
 *
 * - The basic comb method splits m into the w-bit integers
 *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
 *   index has residue i modulo d, and computes m * P as
 *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
 *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
 *
 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
 *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
 *   thereby successively converting it into a form where all summands
 *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
 *
 * - More generally, even if x[i+1] != 0, we can first transform the sum as
 *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
 *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
 *   Performing and iterating this procedure for those x[i] that are even
 *   (keeping track of carry), we can transform the original sum into one of the form
 *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
 *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
 *   which is why we are only computing half of it in the first place in
 *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
 *
 * - For the sake of compactness, only the seven low-order bits of x[i]
 *   are used to represent its absolute value (K_i in the paper), and the msb
 *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
 *   if s_i == -1;
 *
 * Calling conventions:
 * - x is an array of size d + 1
 * - w is the size, ie number of teeth, of the comb, and must be between
 *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
 *   (the result will be incorrect if these assumptions are not satisfied)
 */
static void ecp_comb_recode_core( unsigned char x[], size_t d,
                                  unsigned char w, const mbedtls_mpi *m )
{
    size_t i, j;
    unsigned char c, cc, adjust;

    memset( x, 0, d+1 );

    /* First get the classical comb values (except for x_d = 0) */
    for( i = 0; i < d; i++ )
        for( j = 0; j < w; j++ )
            x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;

    /* Now make sure x_1 .. x_d are odd */
    c = 0;
    for( i = 1; i <= d; i++ )
    {
        /* Add carry and update it */
        cc   = x[i] & c;
        x[i] = x[i] ^ c;
        c = cc;

        /* Adjust if needed, avoiding branches */
        adjust = 1 - ( x[i] & 0x01 );
        c   |= x[i] & ( x[i-1] * adjust );
        x[i] = x[i] ^ ( x[i-1] * adjust );
        x[i-1] |= adjust << 7;
    }
}

/*
 * Precompute points for the adapted comb method
 *
 * Assumption: T must be able to hold 2^{w - 1} elements.
 *
 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
 *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
 *
 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
 *
 * Note: Even comb values (those where P would be omitted from the
 *       sum defining T[i] above) are not needed in our adaption
 *       the comb method. See ecp_comb_recode_core().
 *
 * This function currently works in four steps:
 * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
 * (2) [norm_dbl] Normalization of coordinates of these T[i]
 * (3) [add]      Computation of all T[i]
 * (4) [norm_add] Normalization of all T[i]
 *
 * Step 1 can be interrupted but not the others; together with the final
 * coordinate normalization they are the largest steps done at once, depending
 * on the window size. Here are operation counts for P-256:
 *
 * step     (2)     (3)     (4)
 * w = 5    142     165     208
 * w = 4    136      77     160
 * w = 3    130      33     136
 * w = 2    124      11     124
 *
 * So if ECC operations are blocking for too long even with a low max_ops
 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
 * to minimize maximum blocking time.
 */
static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
                                unsigned char w, size_t d,
                                mbedtls_ecp_restart_ctx *rs_ctx )
{
    int ret;
    unsigned char i;
    size_t j = 0;
    const unsigned char T_size = 1U << ( w - 1 );
    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
    {
        if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
            goto dbl;
        if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
            goto norm_dbl;
        if( rs_ctx->rsm->state == ecp_rsm_pre_add )
            goto add;
        if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
            goto norm_add;
    }
#else
    (void) rs_ctx;
#endif

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
    {
        rs_ctx->rsm->state = ecp_rsm_pre_dbl;

        /* initial state for the loop */
        rs_ctx->rsm->i = 0;
    }

dbl:
#endif
    /*
     * Set T[0] = P and
     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
     */
    MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
        j = rs_ctx->rsm->i;
    else
#endif
        j = 0;

    for( ; j < d * ( w - 1 ); j++ )
    {
        MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );

        i = 1U << ( j / d );
        cur = T + i;

        if( j % d == 0 )
            MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );

        MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
    }

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
        rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;

norm_dbl:
#endif
    /*
     * Normalize current elements in T. As T has holes,
     * use an auxiliary array of pointers to elements in T.
     */
    j = 0;
    for( i = 1; i < T_size; i <<= 1 )
        TT[j++] = T + i;

    MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );

    MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
        rs_ctx->rsm->state = ecp_rsm_pre_add;

add:
#endif
    /*
     * Compute the remaining ones using the minimal number of additions
     * Be careful to update T[2^l] only after using it!
     */
    MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );

    for( i = 1; i < T_size; i <<= 1 )
    {
        j = i;
        while( j-- )
            MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
    }

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
        rs_ctx->rsm->state = ecp_rsm_pre_norm_add;

norm_add:
#endif
    /*
     * Normalize final elements in T. Even though there are no holes now, we
     * still need the auxiliary array for homogeneity with the previous
     * call. Also, skip T[0] which is already normalised, being a copy of P.
     */
    for( j = 0; j + 1 < T_size; j++ )
        TT[j] = T + j + 1;

    MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );

    MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );

cleanup:
#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
    {
        if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
            rs_ctx->rsm->i = j;
    }
#endif

    return( ret );
}

/*
 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
 *
 * See ecp_comb_recode_core() for background
 */
static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
                            const mbedtls_ecp_point T[], unsigned char T_size,
                            unsigned char i )
{
    int ret;
    unsigned char ii, j;

    /* Ignore the "sign" bit and scale down */
    ii =  ( i & 0x7Fu ) >> 1;

    /* Read the whole table to thwart cache-based timing attacks */
    for( j = 0; j < T_size; j++ )
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
    }

    /* Safely invert result if i is "negative" */
    MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );

cleanup:
    return( ret );
}

/*
 * Core multiplication algorithm for the (modified) comb method.
 * This part is actually common with the basic comb method (GECC 3.44)
 *
 * Cost: d A + d D + 1 R
 */
static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
                              const mbedtls_ecp_point T[], unsigned char T_size,
                              const unsigned char x[], size_t d,
                              int (*f_rng)(void *, unsigned char *, size_t),
                              void *p_rng,
                              mbedtls_ecp_restart_ctx *rs_ctx )
{
    int ret;
    mbedtls_ecp_point Txi;
    size_t i;

    mbedtls_ecp_point_init( &Txi );

#if !defined(MBEDTLS_ECP_RESTARTABLE)
    (void) rs_ctx;
#endif

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
        rs_ctx->rsm->state != ecp_rsm_comb_core )
    {
        rs_ctx->rsm->i = 0;
        rs_ctx->rsm->state = ecp_rsm_comb_core;
    }

    /* new 'if' instead of nested for the sake of the 'else' branch */
    if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
    {
        /* restore current index (R already pointing to rs_ctx->rsm->R) */
        i = rs_ctx->rsm->i;
    }
    else
#endif
    {
        /* Start with a non-zero point and randomize its coordinates */
        i = d;
        MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
        if( f_rng != 0 )
#endif
            MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
    }

    while( i != 0 )
    {
        MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
        --i;

        MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
        MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
        MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
    }

cleanup:

    mbedtls_ecp_point_free( &Txi );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
    {
        rs_ctx->rsm->i = i;
        /* no need to save R, already pointing to rs_ctx->rsm->R */
    }
#endif

    return( ret );
}

/*
 * Recode the scalar to get constant-time comb multiplication
 *
 * As the actual scalar recoding needs an odd scalar as a starting point,
 * this wrapper ensures that by replacing m by N - m if necessary, and
 * informs the caller that the result of multiplication will be negated.
 *
 * This works because we only support large prime order for Short Weierstrass
 * curves, so N is always odd hence either m or N - m is.
 *
 * See ecp_comb_recode_core() for background.
 */
static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
                                   const mbedtls_mpi *m,
                                   unsigned char k[COMB_MAX_D + 1],
                                   size_t d,
                                   unsigned char w,
                                   unsigned char *parity_trick )
{
    int ret;
    mbedtls_mpi M, mm;

    mbedtls_mpi_init( &M );
    mbedtls_mpi_init( &mm );

    /* N is always odd (see above), just make extra sure */
    if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );

    /* do we need the parity trick? */
    *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );

    /* execute parity fix in constant time */
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );

    /* actual scalar recoding */
    ecp_comb_recode_core( k, d, w, &M );

cleanup:
    mbedtls_mpi_free( &mm );
    mbedtls_mpi_free( &M );

    return( ret );
}

/*
 * Perform comb multiplication (for short Weierstrass curves)
 * once the auxiliary table has been pre-computed.
 *
 * Scalar recoding may use a parity trick that makes us compute -m * P,
 * if that is the case we'll need to recover m * P at the end.
 */
static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
                                mbedtls_ecp_point *R,
                                const mbedtls_mpi *m,
                                const mbedtls_ecp_point *T,
                                unsigned char T_size,
                                unsigned char w,
                                size_t d,
                                int (*f_rng)(void *, unsigned char *, size_t),
                                void *p_rng,
                                mbedtls_ecp_restart_ctx *rs_ctx )
{
    int ret;
    unsigned char parity_trick;
    unsigned char k[COMB_MAX_D + 1];
    mbedtls_ecp_point *RR = R;

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
    {
        RR = &rs_ctx->rsm->R;

        if( rs_ctx->rsm->state == ecp_rsm_final_norm )
            goto final_norm;
    }
#endif

    MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
                                            &parity_trick ) );
    MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
                                        f_rng, p_rng, rs_ctx ) );
    MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
        rs_ctx->rsm->state = ecp_rsm_final_norm;

final_norm:
    MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
#endif
    /*
     * Knowledge of the jacobian coordinates may leak the last few bits of the
     * scalar [1], and since our MPI implementation isn't constant-flow,
     * inversion (used for coordinate normalization) may leak the full value
     * of its input via side-channels [2].
     *
     * [1] https://eprint.iacr.org/2003/191
     * [2] https://eprint.iacr.org/2020/055
     *
     * Avoid the leak by randomizing coordinates before we normalize them.
     */
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    if( f_rng != 0 )
#endif
        MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, RR, f_rng, p_rng ) );

    MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL )
        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
#endif

cleanup:
    return( ret );
}

/*
 * Pick window size based on curve size and whether we optimize for base point
 */
static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
                                           unsigned char p_eq_g )
{
    unsigned char w;

    /*
     * Minimize the number of multiplications, that is minimize
     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
     * (see costs of the various parts, with 1S = 1M)
     */
    w = grp->nbits >= 384 ? 5 : 4;

    /*
     * If P == G, pre-compute a bit more, since this may be re-used later.
     * Just adding one avoids upping the cost of the first mul too much,
     * and the memory cost too.
     */
    if( p_eq_g )
        w++;

    /*
     * Make sure w is within bounds.
     * (The last test is useful only for very small curves in the test suite.)
     */
    if( w > MBEDTLS_ECP_WINDOW_SIZE )
        w = MBEDTLS_ECP_WINDOW_SIZE;
    if( w >= grp->nbits )
        w = 2;

    return( w );
}

/*
 * Multiplication using the comb method - for curves in short Weierstrass form
 *
 * This function is mainly responsible for administrative work:
 * - managing the restart context if enabled
 * - managing the table of precomputed points (passed between the below two
 *   functions): allocation, computation, ownership tranfer, freeing.
 *
 * It delegates the actual arithmetic work to:
 *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
 *
 * See comments on ecp_comb_recode_core() regarding the computation strategy.
 */
static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
                         int (*f_rng)(void *, unsigned char *, size_t),
                         void *p_rng,
                         mbedtls_ecp_restart_ctx *rs_ctx )
{
    int ret;
    unsigned char w, p_eq_g, i;
    size_t d;
    unsigned char T_size = 0, T_ok = 0;
    mbedtls_ecp_point *T = NULL;
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    ecp_drbg_context drbg_ctx;

    ecp_drbg_init( &drbg_ctx );
#endif

    ECP_RS_ENTER( rsm );

#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    if( f_rng == NULL )
    {
        /* Adjust pointers */
        f_rng = &ecp_drbg_random;
#if defined(MBEDTLS_ECP_RESTARTABLE)
        if( rs_ctx != NULL && rs_ctx->rsm != NULL )
            p_rng = &rs_ctx->rsm->drbg_ctx;
        else
#endif
            p_rng = &drbg_ctx;

        /* Initialize internal DRBG if necessary */
#if defined(MBEDTLS_ECP_RESTARTABLE)
        if( rs_ctx == NULL || rs_ctx->rsm == NULL ||
            rs_ctx->rsm->drbg_seeded == 0 )
#endif
        {
            const size_t m_len = ( grp->nbits + 7 ) / 8;
            MBEDTLS_MPI_CHK( ecp_drbg_seed( p_rng, m, m_len ) );
        }
#if defined(MBEDTLS_ECP_RESTARTABLE)
        if( rs_ctx != NULL && rs_ctx->rsm != NULL )
            rs_ctx->rsm->drbg_seeded = 1;
#endif
    }
#endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */

    /* Is P the base point ? */
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
    p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
               mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
#else
    p_eq_g = 0;
#endif

    /* Pick window size and deduce related sizes */
    w = ecp_pick_window_size( grp, p_eq_g );
    T_size = 1U << ( w - 1 );
    d = ( grp->nbits + w - 1 ) / w;

    /* Pre-computed table: do we have it already for the base point? */
    if( p_eq_g && grp->T != NULL )
    {
        /* second pointer to the same table, will be deleted on exit */
        T = grp->T;
        T_ok = 1;
    }
    else
#if defined(MBEDTLS_ECP_RESTARTABLE)
    /* Pre-computed table: do we have one in progress? complete? */
    if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
    {
        /* transfer ownership of T from rsm to local function */
        T = rs_ctx->rsm->T;
        rs_ctx->rsm->T = NULL;
        rs_ctx->rsm->T_size = 0;

        /* This effectively jumps to the call to mul_comb_after_precomp() */
        T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
    }
    else
#endif
    /* Allocate table if we didn't have any */
    {
        T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
        if( T == NULL )
        {
            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
            goto cleanup;
        }

        for( i = 0; i < T_size; i++ )
            mbedtls_ecp_point_init( &T[i] );

        T_ok = 0;
    }

    /* Compute table (or finish computing it) if not done already */
    if( !T_ok )
    {
        MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );

        if( p_eq_g )
        {
            /* almost transfer ownership of T to the group, but keep a copy of
             * the pointer to use for calling the next function more easily */
            grp->T = T;
            grp->T_size = T_size;
        }
    }

    /* Actual comb multiplication using precomputed points */
    MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
                                                 T, T_size, w, d,
                                                 f_rng, p_rng, rs_ctx ) );

cleanup:

#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    ecp_drbg_free( &drbg_ctx );
#endif

    /* does T belong to the group? */
    if( T == grp->T )
        T = NULL;

    /* does T belong to the restart context? */
#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
    {
        /* transfer ownership of T from local function to rsm */
        rs_ctx->rsm->T_size = T_size;
        rs_ctx->rsm->T = T;
        T = NULL;
    }
#endif

    /* did T belong to us? then let's destroy it! */
    if( T != NULL )
    {
        for( i = 0; i < T_size; i++ )
            mbedtls_ecp_point_free( &T[i] );
        mbedtls_free( T );
    }

    /* don't free R while in progress in case R == P */
#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
#endif
    /* prevent caller from using invalid value */
    if( ret != 0 )
        mbedtls_ecp_point_free( R );

    ECP_RS_LEAVE( rsm );

    return( ret );
}

#endif /* ECP_SHORTWEIERSTRASS */

#if defined(ECP_MONTGOMERY)
/*
 * For Montgomery curves, we do all the internal arithmetic in projective
 * coordinates. Import/export of points uses only the x coordinates, which is
 * internaly represented as X / Z.
 *
 * For scalar multiplication, we'll use a Montgomery ladder.
 */

/*
 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
 * Cost: 1M + 1I
 */
static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
{
    int ret;

#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */

    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );

cleanup:
    return( ret );
}

/*
 * Randomize projective x/z coordinates:
 * (X, Z) -> (l X, l Z) for random l
 * This is sort of the reverse operation of ecp_normalize_mxz().
 *
 * This countermeasure was first suggested in [2].
 * Cost: 2M
 */
static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
    int ret;
    mbedtls_mpi l;
    size_t p_size;
    int count = 0;

#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */

    p_size = ( grp->pbits + 7 ) / 8;
    mbedtls_mpi_init( &l );

    /* Generate l such that 1 < l < p */
    do
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );

        while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );

        if( count++ > 10 )
        {
            ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
            goto cleanup;
        }
    }
    while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );

    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );

cleanup:
    mbedtls_mpi_free( &l );

    return( ret );
}

/*
 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
 * for Montgomery curves in x/z coordinates.
 *
 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
 * with
 * d =  X1
 * P = (X2, Z2)
 * Q = (X3, Z3)
 * R = (X4, Z4)
 * S = (X5, Z5)
 * and eliminating temporary variables tO, ..., t4.
 *
 * Cost: 5M + 4S
 */
static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,
                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
                               const mbedtls_mpi *d )
{
    int ret;
    mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;

#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
    if( mbedtls_internal_ecp_grp_capable( grp ) )
        return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */

    mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
    mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
    mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );

    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X );
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z );
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z );

cleanup:
    mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
    mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
    mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );

    return( ret );
}

/*
 * Multiplication with Montgomery ladder in x/z coordinates,
 * for curves in Montgomery form
 */
static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
                        int (*f_rng)(void *, unsigned char *, size_t),
                        void *p_rng )
{
    int ret;
    size_t i;
    unsigned char b;
    mbedtls_ecp_point RP;
    mbedtls_mpi PX;
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    ecp_drbg_context drbg_ctx;

    ecp_drbg_init( &drbg_ctx );
#endif
    mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );

#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    if( f_rng == NULL )
    {
        const size_t m_len = ( grp->nbits + 7 ) / 8;
        MBEDTLS_MPI_CHK( ecp_drbg_seed( &drbg_ctx, m, m_len ) );
        f_rng = &ecp_drbg_random;
        p_rng = &drbg_ctx;
    }
#endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */

    /* Save PX and read from P before writing to R, in case P == R */
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
    MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );

    /* Set R to zero in modified x/z coordinates */
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
    mbedtls_mpi_free( &R->Y );

    /* RP.X might be sligtly larger than P, so reduce it */
    MOD_ADD( RP.X );

    /* Randomize coordinates of the starting point */
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    if( f_rng != NULL )
#endif
        MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );

    /* Loop invariant: R = result so far, RP = R + P */
    i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
    while( i-- > 0 )
    {
        b = mbedtls_mpi_get_bit( m, i );
        /*
         *  if (b) R = 2R + P else R = 2R,
         * which is:
         *  if (b) double_add( RP, R, RP, R )
         *  else   double_add( R, RP, R, RP )
         * but using safe conditional swaps to avoid leaks
         */
        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
        MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
    }

    /*
     * Knowledge of the projective coordinates may leak the last few bits of the
     * scalar [1], and since our MPI implementation isn't constant-flow,
     * inversion (used for coordinate normalization) may leak the full value
     * of its input via side-channels [2].
     *
     * [1] https://eprint.iacr.org/2003/191
     * [2] https://eprint.iacr.org/2020/055
     *
     * Avoid the leak by randomizing coordinates before we normalize them.
     */
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    if( f_rng != NULL )
#endif
        MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, R, f_rng, p_rng ) );

    MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );

cleanup:
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
    ecp_drbg_free( &drbg_ctx );
#endif

    mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );

    return( ret );
}

#endif /* ECP_MONTGOMERY */

/*
 * Restartable multiplication R = m * P
 */
int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
             const mbedtls_mpi *m, const mbedtls_ecp_point *P,
             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
             mbedtls_ecp_restart_ctx *rs_ctx )
{
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
    char is_grp_capable = 0;
#endif
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( R   != NULL );
    ECP_VALIDATE_RET( m   != NULL );
    ECP_VALIDATE_RET( P   != NULL );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    /* reset ops count for this call if top-level */
    if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
        rs_ctx->ops_done = 0;
#endif

#if defined(MBEDTLS_ECP_INTERNAL_ALT)
    if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
        MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */

#if defined(MBEDTLS_ECP_RESTARTABLE)
    /* skip argument check when restarting */
    if( rs_ctx == NULL || rs_ctx->rsm == NULL )
#endif
    {
        /* check_privkey is free */
        MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );

        /* Common sanity checks */
        MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
        MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
    }

    ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
#if defined(ECP_MONTGOMERY)
    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
        MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
#endif
#if defined(ECP_SHORTWEIERSTRASS)
    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
        MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
#endif

cleanup:

#if defined(MBEDTLS_ECP_INTERNAL_ALT)
    if( is_grp_capable )
        mbedtls_internal_ecp_free( grp );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL )
        rs_ctx->depth--;
#endif

    return( ret );
}

/*
 * Multiplication R = m * P
 */
int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
             const mbedtls_mpi *m, const mbedtls_ecp_point *P,
             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( R   != NULL );
    ECP_VALIDATE_RET( m   != NULL );
    ECP_VALIDATE_RET( P   != NULL );
    return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
}

#if defined(ECP_SHORTWEIERSTRASS)
/*
 * Check that an affine point is valid as a public key,
 * short weierstrass curves (SEC1 3.2.3.1)
 */
static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
{
    int ret;
    mbedtls_mpi YY, RHS;

    /* pt coordinates must be normalized for our checks */
    if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
        mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
        mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
        mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
        return( MBEDTLS_ERR_ECP_INVALID_KEY );

    mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );

    /*
     * YY = Y^2
     * RHS = X (X^2 + A) + B = X^3 + A X + B
     */
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  );
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS );

    /* Special case for A = -3 */
    if( grp->A.p == NULL )
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
    }
    else
    {
        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS );
    }

    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS );
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS );

    if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;

cleanup:

    mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );

    return( ret );
}
#endif /* ECP_SHORTWEIERSTRASS */

/*
 * R = m * P with shortcuts for m == 1 and m == -1
 * NOT constant-time - ONLY for short Weierstrass!
 */
static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
                                      mbedtls_ecp_point *R,
                                      const mbedtls_mpi *m,
                                      const mbedtls_ecp_point *P,
                                      mbedtls_ecp_restart_ctx *rs_ctx )
{
    int ret;

    if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
    {
        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
    }
    else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
    {
        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
        if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
    }
    else
    {
        MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
                                                      NULL, NULL, rs_ctx ) );
    }

cleanup:
    return( ret );
}

/*
 * Restartable linear combination
 * NOT constant-time
 */
int mbedtls_ecp_muladd_restartable(
             mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
             const mbedtls_mpi *m, const mbedtls_ecp_point *P,
             const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
             mbedtls_ecp_restart_ctx *rs_ctx )
{
    int ret;
    mbedtls_ecp_point mP;
    mbedtls_ecp_point *pmP = &mP;
    mbedtls_ecp_point *pR = R;
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
    char is_grp_capable = 0;
#endif
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( R   != NULL );
    ECP_VALIDATE_RET( m   != NULL );
    ECP_VALIDATE_RET( P   != NULL );
    ECP_VALIDATE_RET( n   != NULL );
    ECP_VALIDATE_RET( Q   != NULL );

    if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );

    mbedtls_ecp_point_init( &mP );

    ECP_RS_ENTER( ma );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->ma != NULL )
    {
        /* redirect intermediate results to restart context */
        pmP = &rs_ctx->ma->mP;
        pR  = &rs_ctx->ma->R;

        /* jump to next operation */
        if( rs_ctx->ma->state == ecp_rsma_mul2 )
            goto mul2;
        if( rs_ctx->ma->state == ecp_rsma_add )
            goto add;
        if( rs_ctx->ma->state == ecp_rsma_norm )
            goto norm;
    }
#endif /* MBEDTLS_ECP_RESTARTABLE */

    MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->ma != NULL )
        rs_ctx->ma->state = ecp_rsma_mul2;

mul2:
#endif
    MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR,  n, Q, rs_ctx ) );

#if defined(MBEDTLS_ECP_INTERNAL_ALT)
    if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
        MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->ma != NULL )
        rs_ctx->ma->state = ecp_rsma_add;

add:
#endif
    MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
    MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->ma != NULL )
        rs_ctx->ma->state = ecp_rsma_norm;

norm:
#endif
    MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
    MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );

#if defined(MBEDTLS_ECP_RESTARTABLE)
    if( rs_ctx != NULL && rs_ctx->ma != NULL )
        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
#endif

cleanup:
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
    if( is_grp_capable )
        mbedtls_internal_ecp_free( grp );
#endif /* MBEDTLS_ECP_INTERNAL_ALT */

    mbedtls_ecp_point_free( &mP );

    ECP_RS_LEAVE( ma );

    return( ret );
}

/*
 * Linear combination
 * NOT constant-time
 */
int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
             const mbedtls_mpi *m, const mbedtls_ecp_point *P,
             const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
{
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( R   != NULL );
    ECP_VALIDATE_RET( m   != NULL );
    ECP_VALIDATE_RET( P   != NULL );
    ECP_VALIDATE_RET( n   != NULL );
    ECP_VALIDATE_RET( Q   != NULL );
    return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
}

#if defined(ECP_MONTGOMERY)
/*
 * Check validity of a public key for Montgomery curves with x-only schemes
 */
static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
{
    /* [Curve25519 p. 5] Just check X is the correct number of bytes */
    /* Allow any public value, if it's too big then we'll just reduce it mod p
     * (RFC 7748 sec. 5 para. 3). */
    if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
        return( MBEDTLS_ERR_ECP_INVALID_KEY );

    return( 0 );
}
#endif /* ECP_MONTGOMERY */

/*
 * Check that a point is valid as a public key
 */
int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
                              const mbedtls_ecp_point *pt )
{
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( pt  != NULL );

    /* Must use affine coordinates */
    if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
        return( MBEDTLS_ERR_ECP_INVALID_KEY );

#if defined(ECP_MONTGOMERY)
    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
        return( ecp_check_pubkey_mx( grp, pt ) );
#endif
#if defined(ECP_SHORTWEIERSTRASS)
    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
        return( ecp_check_pubkey_sw( grp, pt ) );
#endif
    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}

/*
 * Check that an mbedtls_mpi is valid as a private key
 */
int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
                               const mbedtls_mpi *d )
{
    ECP_VALIDATE_RET( grp != NULL );
    ECP_VALIDATE_RET( d   != NULL );

#if defined(ECP_MONTGOMERY)
    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
    {
        /* see RFC 7748 sec. 5 para. 5 */
        if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
            mbedtls_mpi_get_bit( d, 1 ) != 0 ||
            mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
            return( MBEDTLS_ERR_ECP_INVALID_KEY );

        /* see [Curve25519] page 5 */
        if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
            return( MBEDTLS_ERR_ECP_INVALID_KEY );

        return( 0 );
    }
#endif /* ECP_MONTGOMERY */
#if defined(ECP_SHORTWEIERSTRASS)
    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
    {
        /* see SEC1 3.2 */
        if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
            mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
            return( MBEDTLS_ERR_ECP_INVALID_KEY );
        else
            return( 0 );
    }
#endif /* ECP_SHORTWEIERSTRASS */

    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}

/*
 * Generate a private key
 */
int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
                     mbedtls_mpi *d,
                     int (*f_rng)(void *, unsigned char *, size_t),
                     void *p_rng )
{
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    size_t n_size;

    ECP_VALIDATE_RET( grp   != NULL );
    ECP_VALIDATE_RET( d     != NULL );
    ECP_VALIDATE_RET( f_rng != NULL );

    n_size = ( grp->nbits + 7 ) / 8;

#if defined(ECP_MONTGOMERY)
    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
    {
        /* [M225] page 5 */
        size_t b;

        do {
            MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
        } while( mbedtls_mpi_bitlen( d ) == 0);

        /* Make sure the most significant bit is nbits */
        b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
        if( b > grp->nbits )
            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
        else
            MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );

        /* Make sure the last two bits are unset for Curve448, three bits for
           Curve25519 */
        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
        if( grp->nbits == 254 )
        {
            MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
        }
    }
#endif /* ECP_MONTGOMERY */

#if defined(ECP_SHORTWEIERSTRASS)
    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
    {
        /* SEC1 3.2.1: Generate d such that 1 <= n < N */
        int count = 0;
        unsigned cmp = 0;

        /*
         * Match the procedure given in RFC 6979 (deterministic ECDSA):
         * - use the same byte ordering;
         * - keep the leftmost nbits bits of the generated octet string;
         * - try until result is in the desired range.
         * This also avoids any biais, which is especially important for ECDSA.
         */
        do
        {
            MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );

            /*
             * Each try has at worst a probability 1/2 of failing (the msb has
             * a probability 1/2 of being 0, and then the result will be < N),
             * so after 30 tries failure probability is a most 2**(-30).
             *
             * For most curves, 1 try is enough with overwhelming probability,
             * since N starts with a lot of 1s in binary, but some curves
             * such as secp224k1 are actually very close to the worst case.
             */
            if( ++count > 30 )
                return( MBEDTLS_ERR_ECP_RANDOM_FAILED );

            ret = mbedtls_mpi_lt_mpi_ct( d, &grp->N, &cmp );
            if( ret != 0 )
            {
                goto cleanup;
            }
        }
        while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || cmp != 1 );
    }
#endif /* ECP_SHORTWEIERSTRASS */

cleanup:
    return( ret );
}

/*
 * Generate a keypair with configurable base point
 */
int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
                     const mbedtls_ecp_point *G,
                     mbedtls_mpi *d, mbedtls_ecp_point *Q,
                     int (*f_rng)(void *, unsigned char *, size_t),
                     void *p_rng )
{
    int ret;
    ECP_VALIDATE_RET( grp   != NULL );
    ECP_VALIDATE_RET( d     != NULL );
    ECP_VALIDATE_RET( G     != NULL );
    ECP_VALIDATE_RET( Q     != NULL );
    ECP_VALIDATE_RET( f_rng != NULL );

    MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );

cleanup:
    return( ret );
}

/*
 * Generate key pair, wrapper for conventional base point
 */
int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
                             mbedtls_mpi *d, mbedtls_ecp_point *Q,
                             int (*f_rng)(void *, unsigned char *, size_t),
                             void *p_rng )
{
    ECP_VALIDATE_RET( grp   != NULL );
    ECP_VALIDATE_RET( d     != NULL );
    ECP_VALIDATE_RET( Q     != NULL );
    ECP_VALIDATE_RET( f_rng != NULL );

    return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
}

/*
 * Generate a keypair, prettier wrapper
 */
int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
    int ret;
    ECP_VALIDATE_RET( key   != NULL );
    ECP_VALIDATE_RET( f_rng != NULL );

    if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
        return( ret );

    return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
}

/*
 * Check a public-private key pair
 */
int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
{
    int ret;
    mbedtls_ecp_point Q;
    mbedtls_ecp_group grp;
    ECP_VALIDATE_RET( pub != NULL );
    ECP_VALIDATE_RET( prv != NULL );

    if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
        pub->grp.id != prv->grp.id ||
        mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
        mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
        mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
    {
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
    }

    mbedtls_ecp_point_init( &Q );
    mbedtls_ecp_group_init( &grp );

    /* mbedtls_ecp_mul() needs a non-const group... */
    mbedtls_ecp_group_copy( &grp, &prv->grp );

    /* Also checks d is valid */
    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );

    if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
        mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
        mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
    {
        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
        goto cleanup;
    }

cleanup:
    mbedtls_ecp_point_free( &Q );
    mbedtls_ecp_group_free( &grp );

    return( ret );
}

#if defined(MBEDTLS_SELF_TEST)

#if defined(ECP_ONE_STEP_KDF)
/*
 * There are no test vectors from NIST for the One-Step KDF in SP 800-56C,
 * but unofficial ones can be found at:
 * https://github.com/patrickfav/singlestep-kdf/wiki/NIST-SP-800-56C-Rev1:-Non-Official-Test-Vectors
 *
 * We only use the ones with empty fixedInfo, and for brevity's sake, only
 * 40-bytes output (with SHA-256 that's more than one block, and with SHA-512
 * less than one block).
 */
#if defined(MBEDTLS_SHA512_C)

static const uint8_t test_kdf_z[16] = {
    0x3b, 0xa9, 0x79, 0xe9, 0xbc, 0x5e, 0x3e, 0xc7,
    0x61, 0x30, 0x36, 0xb6, 0xf5, 0x1c, 0xd5, 0xaa,
};
static const uint8_t test_kdf_out[40] = {
    0x3e, 0xf6, 0xda, 0xf9, 0x51, 0x60, 0x70, 0x5f,
    0xdf, 0x21, 0xcd, 0xab, 0xac, 0x25, 0x7b, 0x05,
    0xfe, 0xc1, 0xab, 0x7c, 0xc9, 0x68, 0x43, 0x25,
    0x8a, 0xfc, 0x40, 0x6e, 0x5b, 0xf7, 0x98, 0x27,
    0x10, 0xfa, 0x7b, 0x93, 0x52, 0xd4, 0x16, 0xaa,
};

#elif defined(MBEDTLS_SHA256_C)

static const uint8_t test_kdf_z[16] = {
    0xc8, 0x3e, 0x35, 0x8e, 0x99, 0xa6, 0x89, 0xc6,
    0x7d, 0xb4, 0xfe, 0x39, 0xcf, 0x8f, 0x26, 0xe1,
};
static const uint8_t test_kdf_out[40] = {
    0x7d, 0xf6, 0x41, 0xf8, 0x3c, 0x47, 0xdc, 0x28,
    0x5f, 0x7f, 0xaa, 0xde, 0x05, 0x64, 0xd6, 0x25,
    0x00, 0x6a, 0x47, 0xd9, 0x1e, 0xa4, 0xa0, 0x8c,
    0xd7, 0xf7, 0x0c, 0x99, 0xaa, 0xa0, 0x72, 0x66,
    0x69, 0x0e, 0x25, 0xaa, 0xa1, 0x63, 0x14, 0x79,
};

#endif

static int ecp_kdf_self_test( void )
{
    int ret;
    ecp_drbg_context kdf_ctx;
    mbedtls_mpi scalar;
    uint8_t out[sizeof( test_kdf_out )];

    ecp_drbg_init( &kdf_ctx );
    mbedtls_mpi_init( &scalar );
    memset( out, 0, sizeof( out ) );

    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &scalar,
                        test_kdf_z, sizeof( test_kdf_z ) ) );

    MBEDTLS_MPI_CHK( ecp_drbg_seed( &kdf_ctx,
                                    &scalar, sizeof( test_kdf_z ) ) );

    MBEDTLS_MPI_CHK( ecp_drbg_random( &kdf_ctx, out, sizeof( out ) ) );

    if( memcmp( out, test_kdf_out, sizeof( out ) ) != 0 )
        ret = -1;

cleanup:
    ecp_drbg_free( &kdf_ctx );
    mbedtls_mpi_free( &scalar );

    return( ret );
}
#endif /* ECP_ONE_STEP_KDF */

/*
 * Checkup routine
 */
int mbedtls_ecp_self_test( int verbose )
{
    int ret;
    size_t i;
    mbedtls_ecp_group grp;
    mbedtls_ecp_point R, P;
    mbedtls_mpi m;
    unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
    /* exponents especially adapted for secp192r1 */
    const char *exponents[] =
    {
        "000000000000000000000000000000000000000000000001", /* one */
        "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
        "400000000000000000000000000000000000000000000000", /* one and zeros */
        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
        "555555555555555555555555555555555555555555555555", /* 101010... */
    };

    mbedtls_ecp_group_init( &grp );
    mbedtls_ecp_point_init( &R );
    mbedtls_ecp_point_init( &P );
    mbedtls_mpi_init( &m );

    /* Use secp192r1 if available, or any available curve */
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
    MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
#else
    MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
#endif

    if( verbose != 0 )
        mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " );

    /* Do a dummy multiplication first to trigger precomputation */
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );

    add_count = 0;
    dbl_count = 0;
    mul_count = 0;
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );

    for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
    {
        add_c_prev = add_count;
        dbl_c_prev = dbl_count;
        mul_c_prev = mul_count;
        add_count = 0;
        dbl_count = 0;
        mul_count = 0;

        MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );

        if( add_count != add_c_prev ||
            dbl_count != dbl_c_prev ||
            mul_count != mul_c_prev )
        {
            if( verbose != 0 )
                mbedtls_printf( "failed (%u)\n", (unsigned int) i );

            ret = 1;
            goto cleanup;
        }
    }

    if( verbose != 0 )
        mbedtls_printf( "passed\n" );

    if( verbose != 0 )
        mbedtls_printf( "  ECP test #2 (constant op_count, other point): " );
    /* We computed P = 2G last time, use it */

    add_count = 0;
    dbl_count = 0;
    mul_count = 0;
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );

    for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
    {
        add_c_prev = add_count;
        dbl_c_prev = dbl_count;
        mul_c_prev = mul_count;
        add_count = 0;
        dbl_count = 0;
        mul_count = 0;

        MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );

        if( add_count != add_c_prev ||
            dbl_count != dbl_c_prev ||
            mul_count != mul_c_prev )
        {
            if( verbose != 0 )
                mbedtls_printf( "failed (%u)\n", (unsigned int) i );

            ret = 1;
            goto cleanup;
        }
    }

    if( verbose != 0 )
        mbedtls_printf( "passed\n" );

#if defined(ECP_ONE_STEP_KDF)
    if( verbose != 0 )
        mbedtls_printf( "  ECP test #3 (internal KDF): " );

    ret = ecp_kdf_self_test();
    if( ret != 0 )
    {
        if( verbose != 0 )
            mbedtls_printf( "failed\n" );

        ret = 1;
        goto cleanup;
    }

    if( verbose != 0 )
        mbedtls_printf( "passed\n" );
#endif /* ECP_ONE_STEP_KDF */

cleanup:

    if( ret < 0 && verbose != 0 )
        mbedtls_printf( "Unexpected error, return code = %08X\n", ret );

    mbedtls_ecp_group_free( &grp );
    mbedtls_ecp_point_free( &R );
    mbedtls_ecp_point_free( &P );
    mbedtls_mpi_free( &m );

    if( verbose != 0 )
        mbedtls_printf( "\n" );

    return( ret );
}

#endif /* MBEDTLS_SELF_TEST */

#endif /* !MBEDTLS_ECP_ALT */

#endif /* MBEDTLS_ECP_C */