1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
|
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// main entry for the lossless encoder.
//
// Author: Vikas Arora (vikaas.arora@gmail.com)
//
#include <assert.h>
#include <stdlib.h>
#include "src/dsp/lossless.h"
#include "src/dsp/lossless_common.h"
#include "src/enc/backward_references_enc.h"
#include "src/enc/histogram_enc.h"
#include "src/enc/vp8i_enc.h"
#include "src/enc/vp8li_enc.h"
#include "src/utils/bit_writer_utils.h"
#include "src/utils/huffman_encode_utils.h"
#include "src/utils/utils.h"
#include "src/webp/encode.h"
#include "src/webp/format_constants.h"
// Maximum number of histogram images (sub-blocks).
#define MAX_HUFF_IMAGE_SIZE 2600
// Palette reordering for smaller sum of deltas (and for smaller storage).
static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
const uint32_t a = WebPMemToUint32((uint8_t*)p1);
const uint32_t b = WebPMemToUint32((uint8_t*)p2);
assert(a != b);
return (a < b) ? -1 : 1;
}
static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
return (v <= 128) ? v : (256 - v);
}
// Computes a value that is related to the entropy created by the
// palette entry diff.
//
// Note that the last & 0xff is a no-operation in the next statement, but
// removed by most compilers and is here only for regularity of the code.
static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
const uint32_t diff = VP8LSubPixels(col1, col2);
const int kMoreWeightForRGBThanForAlpha = 9;
uint32_t score;
score = PaletteComponentDistance((diff >> 0) & 0xff);
score += PaletteComponentDistance((diff >> 8) & 0xff);
score += PaletteComponentDistance((diff >> 16) & 0xff);
score *= kMoreWeightForRGBThanForAlpha;
score += PaletteComponentDistance((diff >> 24) & 0xff);
return score;
}
static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
const uint32_t tmp = *col1;
*col1 = *col2;
*col2 = tmp;
}
static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
int num_colors) {
int low = 0, hi = num_colors;
if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
while (1) {
const int mid = (low + hi) >> 1;
if (sorted[mid] == color) {
return mid;
} else if (sorted[mid] < color) {
low = mid;
} else {
hi = mid;
}
}
assert(0);
return 0;
}
// The palette has been sorted by alpha. This function checks if the other
// components of the palette have a monotonic development with regards to
// position in the palette. If all have monotonic development, there is
// no benefit to re-organize them greedily. A monotonic development
// would be spotted in green-only situations (like lossy alpha) or gray-scale
// images.
static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
int num_colors) {
uint32_t predict = 0x000000;
int i;
uint8_t sign_found = 0x00;
for (i = 0; i < num_colors; ++i) {
const uint32_t diff = VP8LSubPixels(palette[i], predict);
const uint8_t rd = (diff >> 16) & 0xff;
const uint8_t gd = (diff >> 8) & 0xff;
const uint8_t bd = (diff >> 0) & 0xff;
if (rd != 0x00) {
sign_found |= (rd < 0x80) ? 1 : 2;
}
if (gd != 0x00) {
sign_found |= (gd < 0x80) ? 8 : 16;
}
if (bd != 0x00) {
sign_found |= (bd < 0x80) ? 64 : 128;
}
predict = palette[i];
}
return (sign_found & (sign_found << 1)) != 0; // two consequent signs.
}
static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
int num_colors, uint32_t* const palette) {
uint32_t predict = 0x00000000;
int i, k;
memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
// Find greedily always the closest color of the predicted color to minimize
// deltas in the palette. This reduces storage needs since the
// palette is stored with delta encoding.
for (i = 0; i < num_colors; ++i) {
int best_ix = i;
uint32_t best_score = ~0U;
for (k = i; k < num_colors; ++k) {
const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
if (best_score > cur_score) {
best_score = cur_score;
best_ix = k;
}
}
SwapColor(&palette[best_ix], &palette[i]);
predict = palette[i];
}
}
// Sort palette in increasing order and prepare an inverse mapping array.
static void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
uint32_t sorted[], uint32_t idx_map[]) {
uint32_t i;
memcpy(sorted, palette, num_colors * sizeof(*sorted));
qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
for (i = 0; i < num_colors; ++i) {
idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
}
}
// -----------------------------------------------------------------------------
// Modified Zeng method from "A Survey on Palette Reordering
// Methods for Improving the Compression of Color-Indexed Images" by Armando J.
// Pinho and Antonio J. R. Neves.
// Finds the biggest cooccurrence in the matrix.
static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
uint32_t num_colors, uint8_t* const c1,
uint8_t* const c2) {
// Find the index that is most frequently located adjacent to other
// (different) indexes.
uint32_t best_sum = 0u;
uint32_t i, j, best_cooccurrence;
*c1 = 0u;
for (i = 0; i < num_colors; ++i) {
uint32_t sum = 0;
for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
if (sum > best_sum) {
best_sum = sum;
*c1 = i;
}
}
// Find the index that is most frequently found adjacent to *c1.
*c2 = 0u;
best_cooccurrence = 0u;
for (i = 0; i < num_colors; ++i) {
if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
best_cooccurrence = cooccurrence[*c1 * num_colors + i];
*c2 = i;
}
}
assert(*c1 != *c2);
}
// Builds the cooccurrence matrix
static int CoOccurrenceBuild(const WebPPicture* const pic,
const uint32_t* const palette, uint32_t num_colors,
uint32_t* cooccurrence) {
uint32_t *lines, *line_top, *line_current, *line_tmp;
int x, y;
const uint32_t* src = pic->argb;
uint32_t prev_pix = ~src[0];
uint32_t prev_idx = 0u;
uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
uint32_t palette_sorted[MAX_PALETTE_SIZE];
lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
if (lines == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
return 0;
}
line_top = &lines[0];
line_current = &lines[pic->width];
PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
for (y = 0; y < pic->height; ++y) {
for (x = 0; x < pic->width; ++x) {
const uint32_t pix = src[x];
if (pix != prev_pix) {
prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
prev_pix = pix;
}
line_current[x] = prev_idx;
// 4-connectivity is what works best as mentioned in "On the relation
// between Memon's and the modified Zeng's palette reordering methods".
if (x > 0 && prev_idx != line_current[x - 1]) {
const uint32_t left_idx = line_current[x - 1];
++cooccurrence[prev_idx * num_colors + left_idx];
++cooccurrence[left_idx * num_colors + prev_idx];
}
if (y > 0 && prev_idx != line_top[x]) {
const uint32_t top_idx = line_top[x];
++cooccurrence[prev_idx * num_colors + top_idx];
++cooccurrence[top_idx * num_colors + prev_idx];
}
}
line_tmp = line_top;
line_top = line_current;
line_current = line_tmp;
src += pic->argb_stride;
}
WebPSafeFree(lines);
return 1;
}
struct Sum {
uint8_t index;
uint32_t sum;
};
// Implements the modified Zeng method from "A Survey on Palette Reordering
// Methods for Improving the Compression of Color-Indexed Images" by Armando J.
// Pinho and Antonio J. R. Neves.
static int PaletteSortModifiedZeng(
const WebPPicture* const pic, const uint32_t* const palette_sorted,
uint32_t num_colors, uint32_t* const palette) {
uint32_t i, j, ind;
uint8_t remapping[MAX_PALETTE_SIZE];
uint32_t* cooccurrence;
struct Sum sums[MAX_PALETTE_SIZE];
uint32_t first, last;
uint32_t num_sums;
// TODO(vrabaud) check whether one color images should use palette or not.
if (num_colors <= 1) return 1;
// Build the co-occurrence matrix.
cooccurrence =
(uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
if (cooccurrence == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
return 0;
}
if (!CoOccurrenceBuild(pic, palette_sorted, num_colors, cooccurrence)) {
return 0;
}
// Initialize the mapping list with the two best indices.
CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
// We need to append and prepend to the list of remapping. To this end, we
// actually define the next start/end of the list as indices in a vector (with
// a wrap around when the end is reached).
first = 0;
last = 1;
num_sums = num_colors - 2; // -2 because we know the first two values
if (num_sums > 0) {
// Initialize the sums with the first two remappings and find the best one
struct Sum* best_sum = &sums[0];
best_sum->index = 0u;
best_sum->sum = 0u;
for (i = 0, j = 0; i < num_colors; ++i) {
if (i == remapping[0] || i == remapping[1]) continue;
sums[j].index = i;
sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
cooccurrence[i * num_colors + remapping[1]];
if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
++j;
}
while (num_sums > 0) {
const uint8_t best_index = best_sum->index;
// Compute delta to know if we need to prepend or append the best index.
int32_t delta = 0;
const int32_t n = num_colors - num_sums;
for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
const uint16_t l_j = remapping[(ind + j) % num_colors];
delta += (n - 1 - 2 * (int32_t)j) *
(int32_t)cooccurrence[best_index * num_colors + l_j];
}
if (delta > 0) {
first = (first == 0) ? num_colors - 1 : first - 1;
remapping[first] = best_index;
} else {
++last;
remapping[last] = best_index;
}
// Remove best_sum from sums.
*best_sum = sums[num_sums - 1];
--num_sums;
// Update all the sums and find the best one.
best_sum = &sums[0];
for (i = 0; i < num_sums; ++i) {
sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
}
}
}
assert((last + 1) % num_colors == first);
WebPSafeFree(cooccurrence);
// Re-map the palette.
for (i = 0; i < num_colors; ++i) {
palette[i] = palette_sorted[remapping[(first + i) % num_colors]];
}
return 1;
}
// -----------------------------------------------------------------------------
// Palette
// These five modes are evaluated and their respective entropy is computed.
typedef enum {
kDirect = 0,
kSpatial = 1,
kSubGreen = 2,
kSpatialSubGreen = 3,
kPalette = 4,
kPaletteAndSpatial = 5,
kNumEntropyIx = 6
} EntropyIx;
typedef enum {
kSortedDefault = 0,
kMinimizeDelta = 1,
kModifiedZeng = 2,
kUnusedPalette = 3,
} PaletteSorting;
typedef enum {
kHistoAlpha = 0,
kHistoAlphaPred,
kHistoGreen,
kHistoGreenPred,
kHistoRed,
kHistoRedPred,
kHistoBlue,
kHistoBluePred,
kHistoRedSubGreen,
kHistoRedPredSubGreen,
kHistoBlueSubGreen,
kHistoBluePredSubGreen,
kHistoPalette,
kHistoTotal // Must be last.
} HistoIx;
static void AddSingleSubGreen(int p, uint32_t* const r, uint32_t* const b) {
const int green = p >> 8; // The upper bits are masked away later.
++r[((p >> 16) - green) & 0xff];
++b[((p >> 0) - green) & 0xff];
}
static void AddSingle(uint32_t p,
uint32_t* const a, uint32_t* const r,
uint32_t* const g, uint32_t* const b) {
++a[(p >> 24) & 0xff];
++r[(p >> 16) & 0xff];
++g[(p >> 8) & 0xff];
++b[(p >> 0) & 0xff];
}
static WEBP_INLINE uint32_t HashPix(uint32_t pix) {
// Note that masking with 0xffffffffu is for preventing an
// 'unsigned int overflow' warning. Doesn't impact the compiled code.
return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24;
}
static int AnalyzeEntropy(const uint32_t* argb,
int width, int height, int argb_stride,
int use_palette,
int palette_size, int transform_bits,
EntropyIx* const min_entropy_ix,
int* const red_and_blue_always_zero) {
// Allocate histogram set with cache_bits = 0.
uint32_t* histo;
if (use_palette && palette_size <= 16) {
// In the case of small palettes, we pack 2, 4 or 8 pixels together. In
// practice, small palettes are better than any other transform.
*min_entropy_ix = kPalette;
*red_and_blue_always_zero = 1;
return 1;
}
histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256);
if (histo != NULL) {
int i, x, y;
const uint32_t* prev_row = NULL;
const uint32_t* curr_row = argb;
uint32_t pix_prev = argb[0]; // Skip the first pixel.
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
const uint32_t pix = curr_row[x];
const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev);
pix_prev = pix;
if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) {
continue;
}
AddSingle(pix,
&histo[kHistoAlpha * 256],
&histo[kHistoRed * 256],
&histo[kHistoGreen * 256],
&histo[kHistoBlue * 256]);
AddSingle(pix_diff,
&histo[kHistoAlphaPred * 256],
&histo[kHistoRedPred * 256],
&histo[kHistoGreenPred * 256],
&histo[kHistoBluePred * 256]);
AddSingleSubGreen(pix,
&histo[kHistoRedSubGreen * 256],
&histo[kHistoBlueSubGreen * 256]);
AddSingleSubGreen(pix_diff,
&histo[kHistoRedPredSubGreen * 256],
&histo[kHistoBluePredSubGreen * 256]);
{
// Approximate the palette by the entropy of the multiplicative hash.
const uint32_t hash = HashPix(pix);
++histo[kHistoPalette * 256 + hash];
}
}
prev_row = curr_row;
curr_row += argb_stride;
}
{
float entropy_comp[kHistoTotal];
float entropy[kNumEntropyIx];
int k;
int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen;
int j;
// Let's add one zero to the predicted histograms. The zeros are removed
// too efficiently by the pix_diff == 0 comparison, at least one of the
// zeros is likely to exist.
++histo[kHistoRedPredSubGreen * 256];
++histo[kHistoBluePredSubGreen * 256];
++histo[kHistoRedPred * 256];
++histo[kHistoGreenPred * 256];
++histo[kHistoBluePred * 256];
++histo[kHistoAlphaPred * 256];
for (j = 0; j < kHistoTotal; ++j) {
entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256);
}
entropy[kDirect] = entropy_comp[kHistoAlpha] +
entropy_comp[kHistoRed] +
entropy_comp[kHistoGreen] +
entropy_comp[kHistoBlue];
entropy[kSpatial] = entropy_comp[kHistoAlphaPred] +
entropy_comp[kHistoRedPred] +
entropy_comp[kHistoGreenPred] +
entropy_comp[kHistoBluePred];
entropy[kSubGreen] = entropy_comp[kHistoAlpha] +
entropy_comp[kHistoRedSubGreen] +
entropy_comp[kHistoGreen] +
entropy_comp[kHistoBlueSubGreen];
entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] +
entropy_comp[kHistoRedPredSubGreen] +
entropy_comp[kHistoGreenPred] +
entropy_comp[kHistoBluePredSubGreen];
entropy[kPalette] = entropy_comp[kHistoPalette];
// When including transforms, there is an overhead in bits from
// storing them. This overhead is small but matters for small images.
// For spatial, there are 14 transformations.
entropy[kSpatial] += VP8LSubSampleSize(width, transform_bits) *
VP8LSubSampleSize(height, transform_bits) *
VP8LFastLog2(14);
// For color transforms: 24 as only 3 channels are considered in a
// ColorTransformElement.
entropy[kSpatialSubGreen] += VP8LSubSampleSize(width, transform_bits) *
VP8LSubSampleSize(height, transform_bits) *
VP8LFastLog2(24);
// For palettes, add the cost of storing the palette.
// We empirically estimate the cost of a compressed entry as 8 bits.
// The palette is differential-coded when compressed hence a much
// lower cost than sizeof(uint32_t)*8.
entropy[kPalette] += palette_size * 8;
*min_entropy_ix = kDirect;
for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) {
if (entropy[*min_entropy_ix] > entropy[k]) {
*min_entropy_ix = (EntropyIx)k;
}
}
assert((int)*min_entropy_ix <= last_mode_to_analyze);
*red_and_blue_always_zero = 1;
// Let's check if the histogram of the chosen entropy mode has
// non-zero red and blue values. If all are zero, we can later skip
// the cross color optimization.
{
static const uint8_t kHistoPairs[5][2] = {
{ kHistoRed, kHistoBlue },
{ kHistoRedPred, kHistoBluePred },
{ kHistoRedSubGreen, kHistoBlueSubGreen },
{ kHistoRedPredSubGreen, kHistoBluePredSubGreen },
{ kHistoRed, kHistoBlue }
};
const uint32_t* const red_histo =
&histo[256 * kHistoPairs[*min_entropy_ix][0]];
const uint32_t* const blue_histo =
&histo[256 * kHistoPairs[*min_entropy_ix][1]];
for (i = 1; i < 256; ++i) {
if ((red_histo[i] | blue_histo[i]) != 0) {
*red_and_blue_always_zero = 0;
break;
}
}
}
}
WebPSafeFree(histo);
return 1;
} else {
return 0;
}
}
static int GetHistoBits(int method, int use_palette, int width, int height) {
// Make tile size a function of encoding method (Range: 0 to 6).
int histo_bits = (use_palette ? 9 : 7) - method;
while (1) {
const int huff_image_size = VP8LSubSampleSize(width, histo_bits) *
VP8LSubSampleSize(height, histo_bits);
if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break;
++histo_bits;
}
return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS :
(histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits;
}
static int GetTransformBits(int method, int histo_bits) {
const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5;
const int res =
(histo_bits > max_transform_bits) ? max_transform_bits : histo_bits;
assert(res <= MAX_TRANSFORM_BITS);
return res;
}
// Set of parameters to be used in each iteration of the cruncher.
#define CRUNCH_SUBCONFIGS_MAX 2
typedef struct {
int lz77_;
int do_no_cache_;
} CrunchSubConfig;
typedef struct {
int entropy_idx_;
PaletteSorting palette_sorting_type_;
CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX];
int sub_configs_size_;
} CrunchConfig;
// +2 because we add a palette sorting configuration for kPalette and
// kPaletteAndSpatial.
#define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2)
static int EncoderAnalyze(VP8LEncoder* const enc,
CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
int* const crunch_configs_size,
int* const red_and_blue_always_zero) {
const WebPPicture* const pic = enc->pic_;
const int width = pic->width;
const int height = pic->height;
const WebPConfig* const config = enc->config_;
const int method = config->method;
const int low_effort = (config->method == 0);
int i;
int use_palette;
int n_lz77s;
// If set to 0, analyze the cache with the computed cache value. If 1, also
// analyze with no-cache.
int do_no_cache = 0;
assert(pic != NULL && pic->argb != NULL);
// Check whether a palette is possible.
enc->palette_size_ = WebPGetColorPalette(pic, enc->palette_sorted_);
use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE);
if (!use_palette) {
enc->palette_size_ = 0;
} else {
qsort(enc->palette_sorted_, enc->palette_size_,
sizeof(*enc->palette_sorted_), PaletteCompareColorsForQsort);
}
// Empirical bit sizes.
enc->histo_bits_ = GetHistoBits(method, use_palette,
pic->width, pic->height);
enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_);
if (low_effort) {
// AnalyzeEntropy is somewhat slow.
crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
crunch_configs[0].palette_sorting_type_ =
use_palette ? kSortedDefault : kUnusedPalette;
n_lz77s = 1;
*crunch_configs_size = 1;
} else {
EntropyIx min_entropy_ix;
// Try out multiple LZ77 on images with few colors.
n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1;
if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette,
enc->palette_size_, enc->transform_bits_,
&min_entropy_ix, red_and_blue_always_zero)) {
return 0;
}
if (method == 6 && config->quality == 100) {
do_no_cache = 1;
// Go brute force on all transforms.
*crunch_configs_size = 0;
for (i = 0; i < kNumEntropyIx; ++i) {
// We can only apply kPalette or kPaletteAndSpatial if we can indeed use
// a palette.
if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) {
assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) {
crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
kMinimizeDelta;
++*crunch_configs_size;
// Also add modified Zeng's method.
crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
kModifiedZeng;
} else {
crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
kUnusedPalette;
}
++*crunch_configs_size;
}
}
} else {
// Only choose the guessed best transform.
*crunch_configs_size = 1;
crunch_configs[0].entropy_idx_ = min_entropy_ix;
crunch_configs[0].palette_sorting_type_ =
use_palette ? kMinimizeDelta : kUnusedPalette;
if (config->quality >= 75 && method == 5) {
// Test with and without color cache.
do_no_cache = 1;
// If we have a palette, also check in combination with spatial.
if (min_entropy_ix == kPalette) {
*crunch_configs_size = 2;
crunch_configs[1].entropy_idx_ = kPaletteAndSpatial;
crunch_configs[1].palette_sorting_type_ = kMinimizeDelta;
}
}
}
}
// Fill in the different LZ77s.
assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX);
for (i = 0; i < *crunch_configs_size; ++i) {
int j;
for (j = 0; j < n_lz77s; ++j) {
assert(j < CRUNCH_SUBCONFIGS_MAX);
crunch_configs[i].sub_configs_[j].lz77_ =
(j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box;
crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache;
}
crunch_configs[i].sub_configs_size_ = n_lz77s;
}
return 1;
}
static int EncoderInit(VP8LEncoder* const enc) {
const WebPPicture* const pic = enc->pic_;
const int width = pic->width;
const int height = pic->height;
const int pix_cnt = width * height;
// we round the block size up, so we're guaranteed to have
// at most MAX_REFS_BLOCK_PER_IMAGE blocks used:
const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1;
int i;
if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
return 1;
}
// Returns false in case of memory error.
static int GetHuffBitLengthsAndCodes(
const VP8LHistogramSet* const histogram_image,
HuffmanTreeCode* const huffman_codes) {
int i, k;
int ok = 0;
uint64_t total_length_size = 0;
uint8_t* mem_buf = NULL;
const int histogram_image_size = histogram_image->size;
int max_num_symbols = 0;
uint8_t* buf_rle = NULL;
HuffmanTree* huff_tree = NULL;
// Iterate over all histograms and get the aggregate number of codes used.
for (i = 0; i < histogram_image_size; ++i) {
const VP8LHistogram* const histo = histogram_image->histograms[i];
HuffmanTreeCode* const codes = &huffman_codes[5 * i];
assert(histo != NULL);
for (k = 0; k < 5; ++k) {
const int num_symbols =
(k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) :
(k == 4) ? NUM_DISTANCE_CODES : 256;
codes[k].num_symbols = num_symbols;
total_length_size += num_symbols;
}
}
// Allocate and Set Huffman codes.
{
uint16_t* codes;
uint8_t* lengths;
mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size,
sizeof(*lengths) + sizeof(*codes));
if (mem_buf == NULL) goto End;
codes = (uint16_t*)mem_buf;
lengths = (uint8_t*)&codes[total_length_size];
for (i = 0; i < 5 * histogram_image_size; ++i) {
const int bit_length = huffman_codes[i].num_symbols;
huffman_codes[i].codes = codes;
huffman_codes[i].code_lengths = lengths;
codes += bit_length;
lengths += bit_length;
if (max_num_symbols < bit_length) {
max_num_symbols = bit_length;
}
}
}
buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols);
huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols,
sizeof(*huff_tree));
if (buf_rle == NULL || huff_tree == NULL) goto End;
// Create Huffman trees.
for (i = 0; i < histogram_image_size; ++i) {
HuffmanTreeCode* const codes = &huffman_codes[5 * i];
VP8LHistogram* const histo = histogram_image->histograms[i];
VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0);
VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1);
VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2);
VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3);
VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4);
}
ok = 1;
End:
WebPSafeFree(huff_tree);
WebPSafeFree(buf_rle);
if (!ok) {
WebPSafeFree(mem_buf);
memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes));
}
return ok;
}
static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
// RFC 1951 will calm you down if you are worried about this funny sequence.
// This sequence is tuned from that, but more weighted for lower symbol count,
// and more spiking histograms.
static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
int i;
// Throw away trailing zeros:
int codes_to_store = CODE_LENGTH_CODES;
for (; codes_to_store > 4; --codes_to_store) {
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
break;
}
}
VP8LPutBits(bw, codes_to_store - 4, 4);
for (i = 0; i < codes_to_store; ++i) {
VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3);
}
}
static void ClearHuffmanTreeIfOnlyOneSymbol(
HuffmanTreeCode* const huffman_code) {
int k;
int count = 0;
for (k = 0; k < huffman_code->num_symbols; ++k) {
if (huffman_code->code_lengths[k] != 0) {
++count;
if (count > 1) return;
}
}
for (k = 0; k < huffman_code->num_symbols; ++k) {
huffman_code->code_lengths[k] = 0;
huffman_code->codes[k] = 0;
}
}
static void StoreHuffmanTreeToBitMask(
VP8LBitWriter* const bw,
const HuffmanTreeToken* const tokens, const int num_tokens,
const HuffmanTreeCode* const huffman_code) {
int i;
for (i = 0; i < num_tokens; ++i) {
const int ix = tokens[i].code;
const int extra_bits = tokens[i].extra_bits;
VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]);
switch (ix) {
case 16:
VP8LPutBits(bw, extra_bits, 2);
break;
case 17:
VP8LPutBits(bw, extra_bits, 3);
break;
case 18:
VP8LPutBits(bw, extra_bits, 7);
break;
}
}
}
// 'huff_tree' and 'tokens' are pre-alloacted buffers.
static void StoreFullHuffmanCode(VP8LBitWriter* const bw,
HuffmanTree* const huff_tree,
HuffmanTreeToken* const tokens,
const HuffmanTreeCode* const tree) {
uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 };
uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 };
const int max_tokens = tree->num_symbols;
int num_tokens;
HuffmanTreeCode huffman_code;
huffman_code.num_symbols = CODE_LENGTH_CODES;
huffman_code.code_lengths = code_length_bitdepth;
huffman_code.codes = code_length_bitdepth_symbols;
VP8LPutBits(bw, 0, 1);
num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens);
{
uint32_t histogram[CODE_LENGTH_CODES] = { 0 };
uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 };
int i;
for (i = 0; i < num_tokens; ++i) {
++histogram[tokens[i].code];
}
VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code);
}
StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code);
{
int trailing_zero_bits = 0;
int trimmed_length = num_tokens;
int write_trimmed_length;
int length;
int i = num_tokens;
while (i-- > 0) {
const int ix = tokens[i].code;
if (ix == 0 || ix == 17 || ix == 18) {
--trimmed_length; // discount trailing zeros
trailing_zero_bits += code_length_bitdepth[ix];
if (ix == 17) {
trailing_zero_bits += 3;
} else if (ix == 18) {
trailing_zero_bits += 7;
}
} else {
break;
}
}
write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12);
length = write_trimmed_length ? trimmed_length : num_tokens;
VP8LPutBits(bw, write_trimmed_length, 1);
if (write_trimmed_length) {
if (trimmed_length == 2) {
VP8LPutBits(bw, 0, 3 + 2); // nbitpairs=1, trimmed_length=2
} else {
const int nbits = BitsLog2Floor(trimmed_length - 2);
const int nbitpairs = nbits / 2 + 1;
assert(trimmed_length > 2);
assert(nbitpairs - 1 < 8);
VP8LPutBits(bw, nbitpairs - 1, 3);
VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2);
}
}
StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code);
}
}
// 'huff_tree' and 'tokens' are pre-alloacted buffers.
static void StoreHuffmanCode(VP8LBitWriter* const bw,
HuffmanTree* const huff_tree,
HuffmanTreeToken* const tokens,
const HuffmanTreeCode* const huffman_code) {
int i;
int count = 0;
int symbols[2] = { 0, 0 };
const int kMaxBits = 8;
const int kMaxSymbol = 1 << kMaxBits;
// Check whether it's a small tree.
for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) {
if (huffman_code->code_lengths[i] != 0) {
if (count < 2) symbols[count] = i;
++count;
}
}
if (count == 0) { // emit minimal tree for empty cases
// bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0
VP8LPutBits(bw, 0x01, 4);
} else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) {
VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols.
VP8LPutBits(bw, count - 1, 1);
if (symbols[0] <= 1) {
VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value.
VP8LPutBits(bw, symbols[0], 1);
} else {
VP8LPutBits(bw, 1, 1);
VP8LPutBits(bw, symbols[0], 8);
}
if (count == 2) {
VP8LPutBits(bw, symbols[1], 8);
}
} else {
StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code);
}
}
static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw,
const HuffmanTreeCode* const code,
int code_index) {
const int depth = code->code_lengths[code_index];
const int symbol = code->codes[code_index];
VP8LPutBits(bw, symbol, depth);
}
static WEBP_INLINE void WriteHuffmanCodeWithExtraBits(
VP8LBitWriter* const bw,
const HuffmanTreeCode* const code,
int code_index,
int bits,
int n_bits) {
const int depth = code->code_lengths[code_index];
const int symbol = code->codes[code_index];
VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits);
}
static int StoreImageToBitMask(
VP8LBitWriter* const bw, int width, int histo_bits,
const VP8LBackwardRefs* const refs,
const uint16_t* histogram_symbols,
const HuffmanTreeCode* const huffman_codes, const WebPPicture* const pic) {
const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits);
// x and y trace the position in the image.
int x = 0;
int y = 0;
int tile_x = x & tile_mask;
int tile_y = y & tile_mask;
int histogram_ix = histogram_symbols[0];
const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix;
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
while (VP8LRefsCursorOk(&c)) {
const PixOrCopy* const v = c.cur_pos;
if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) {
tile_x = x & tile_mask;
tile_y = y & tile_mask;
histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize +
(x >> histo_bits)];
codes = huffman_codes + 5 * histogram_ix;
}
if (PixOrCopyIsLiteral(v)) {
static const uint8_t order[] = { 1, 2, 0, 3 };
int k;
for (k = 0; k < 4; ++k) {
const int code = PixOrCopyLiteral(v, order[k]);
WriteHuffmanCode(bw, codes + k, code);
}
} else if (PixOrCopyIsCacheIdx(v)) {
const int code = PixOrCopyCacheIdx(v);
const int literal_ix = 256 + NUM_LENGTH_CODES + code;
WriteHuffmanCode(bw, codes, literal_ix);
} else {
int bits, n_bits;
int code;
const int distance = PixOrCopyDistance(v);
VP8LPrefixEncode(v->len, &code, &n_bits, &bits);
WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits);
// Don't write the distance with the extra bits code since
// the distance can be up to 18 bits of extra bits, and the prefix
// 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
VP8LPrefixEncode(distance, &code, &n_bits, &bits);
WriteHuffmanCode(bw, codes + 4, code);
VP8LPutBits(bw, bits, n_bits);
}
x += PixOrCopyLength(v);
while (x >= width) {
x -= width;
++y;
}
VP8LRefsCursorNext(&c);
}
if (bw->error_) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
return 0;
}
return 1;
}
// Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31.
// pic and percent are for progress.
static int EncodeImageNoHuffman(VP8LBitWriter* const bw,
const uint32_t* const argb,
VP8LHashChain* const hash_chain,
VP8LBackwardRefs* const refs_array, int width,
int height, int quality, int low_effort,
const WebPPicture* const pic, int percent_range,
int* const percent) {
int i;
int max_tokens = 0;
VP8LBackwardRefs* refs;
HuffmanTreeToken* tokens = NULL;
HuffmanTreeCode huffman_codes[5] = {{0, NULL, NULL}};
const uint16_t histogram_symbols[1] = {0}; // only one tree, one symbol
int cache_bits = 0;
VP8LHistogramSet* histogram_image = NULL;
HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
if (huff_tree == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
// Calculate backward references from ARGB image.
if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, low_effort,
pic, percent_range / 2, percent)) {
goto Error;
}
if (!VP8LGetBackwardReferences(width, height, argb, quality, /*low_effort=*/0,
kLZ77Standard | kLZ77RLE, cache_bits,
/*do_no_cache=*/0, hash_chain, refs_array,
&cache_bits, pic,
percent_range - percent_range / 2, percent)) {
goto Error;
}
refs = &refs_array[0];
histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
if (histogram_image == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
VP8LHistogramSetClear(histogram_image);
// Build histogram image and symbols from backward references.
VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]);
// Create Huffman bit lengths and codes for each histogram image.
assert(histogram_image->size == 1);
if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
// No color cache, no Huffman image.
VP8LPutBits(bw, 0, 1);
// Find maximum number of symbols for the huffman tree-set.
for (i = 0; i < 5; ++i) {
HuffmanTreeCode* const codes = &huffman_codes[i];
if (max_tokens < codes->num_symbols) {
max_tokens = codes->num_symbols;
}
}
tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
if (tokens == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
// Store Huffman codes.
for (i = 0; i < 5; ++i) {
HuffmanTreeCode* const codes = &huffman_codes[i];
StoreHuffmanCode(bw, huff_tree, tokens, codes);
ClearHuffmanTreeIfOnlyOneSymbol(codes);
}
// Store actual literals.
if (!StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, huffman_codes,
pic)) {
goto Error;
}
Error:
WebPSafeFree(tokens);
WebPSafeFree(huff_tree);
VP8LFreeHistogramSet(histogram_image);
WebPSafeFree(huffman_codes[0].codes);
return (pic->error_code == VP8_ENC_OK);
}
// pic and percent are for progress.
static int EncodeImageInternal(
VP8LBitWriter* const bw, const uint32_t* const argb,
VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width,
int height, int quality, int low_effort, int use_cache,
const CrunchConfig* const config, int* cache_bits, int histogram_bits,
size_t init_byte_position, int* const hdr_size, int* const data_size,
const WebPPicture* const pic, int percent_range, int* const percent) {
const uint32_t histogram_image_xysize =
VP8LSubSampleSize(width, histogram_bits) *
VP8LSubSampleSize(height, histogram_bits);
int remaining_percent = percent_range;
int percent_start = *percent;
VP8LHistogramSet* histogram_image = NULL;
VP8LHistogram* tmp_histo = NULL;
int histogram_image_size = 0;
size_t bit_array_size = 0;
HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
HuffmanTreeToken* tokens = NULL;
HuffmanTreeCode* huffman_codes = NULL;
uint16_t* const histogram_symbols = (uint16_t*)WebPSafeMalloc(
histogram_image_xysize, sizeof(*histogram_symbols));
int sub_configs_idx;
int cache_bits_init, write_histogram_image;
VP8LBitWriter bw_init = *bw, bw_best;
int hdr_size_tmp;
VP8LHashChain hash_chain_histogram; // histogram image hash chain
size_t bw_size_best = ~(size_t)0;
assert(histogram_bits >= MIN_HUFFMAN_BITS);
assert(histogram_bits <= MAX_HUFFMAN_BITS);
assert(hdr_size != NULL);
assert(data_size != NULL);
memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram));
if (!VP8LBitWriterInit(&bw_best, 0)) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
// Make sure we can allocate the different objects.
if (huff_tree == NULL || histogram_symbols == NULL ||
!VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize)) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
percent_range = remaining_percent / 5;
if (!VP8LHashChainFill(hash_chain, quality, argb, width, height,
low_effort, pic, percent_range, percent)) {
goto Error;
}
percent_start += percent_range;
remaining_percent -= percent_range;
if (use_cache) {
// If the value is different from zero, it has been set during the
// palette analysis.
cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits;
} else {
cache_bits_init = 0;
}
// If several iterations will happen, clone into bw_best.
if ((config->sub_configs_size_ > 1 || config->sub_configs_[0].do_no_cache_) &&
!VP8LBitWriterClone(bw, &bw_best)) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_;
++sub_configs_idx) {
const CrunchSubConfig* const sub_config =
&config->sub_configs_[sub_configs_idx];
int cache_bits_best, i_cache;
int i_remaining_percent = remaining_percent / config->sub_configs_size_;
int i_percent_range = i_remaining_percent / 4;
i_remaining_percent -= i_percent_range;
if (!VP8LGetBackwardReferences(
width, height, argb, quality, low_effort, sub_config->lz77_,
cache_bits_init, sub_config->do_no_cache_, hash_chain,
&refs_array[0], &cache_bits_best, pic, i_percent_range, percent)) {
goto Error;
}
for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) {
const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0;
// Speed-up: no need to study the no-cache case if it was already studied
// in i_cache == 0.
if (i_cache == 1 && cache_bits_best == 0) break;
// Reset the bit writer for this iteration.
VP8LBitWriterReset(&bw_init, bw);
// Build histogram image and symbols from backward references.
histogram_image =
VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp);
tmp_histo = VP8LAllocateHistogram(cache_bits_tmp);
if (histogram_image == NULL || tmp_histo == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
i_percent_range = i_remaining_percent / 3;
i_remaining_percent -= i_percent_range;
if (!VP8LGetHistoImageSymbols(
width, height, &refs_array[i_cache], quality, low_effort,
histogram_bits, cache_bits_tmp, histogram_image, tmp_histo,
histogram_symbols, pic, i_percent_range, percent)) {
goto Error;
}
// Create Huffman bit lengths and codes for each histogram image.
histogram_image_size = histogram_image->size;
bit_array_size = 5 * histogram_image_size;
huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
sizeof(*huffman_codes));
// Note: some histogram_image entries may point to tmp_histos[], so the
// latter need to outlive the following call to
// GetHuffBitLengthsAndCodes().
if (huffman_codes == NULL ||
!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
// Free combined histograms.
VP8LFreeHistogramSet(histogram_image);
histogram_image = NULL;
// Free scratch histograms.
VP8LFreeHistogram(tmp_histo);
tmp_histo = NULL;
// Color Cache parameters.
if (cache_bits_tmp > 0) {
VP8LPutBits(bw, 1, 1);
VP8LPutBits(bw, cache_bits_tmp, 4);
} else {
VP8LPutBits(bw, 0, 1);
}
// Huffman image + meta huffman.
write_histogram_image = (histogram_image_size > 1);
VP8LPutBits(bw, write_histogram_image, 1);
if (write_histogram_image) {
uint32_t* const histogram_argb = (uint32_t*)WebPSafeMalloc(
histogram_image_xysize, sizeof(*histogram_argb));
int max_index = 0;
uint32_t i;
if (histogram_argb == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
for (i = 0; i < histogram_image_xysize; ++i) {
const int symbol_index = histogram_symbols[i] & 0xffff;
histogram_argb[i] = (symbol_index << 8);
if (symbol_index >= max_index) {
max_index = symbol_index + 1;
}
}
histogram_image_size = max_index;
VP8LPutBits(bw, histogram_bits - 2, 3);
i_percent_range = i_remaining_percent / 2;
i_remaining_percent -= i_percent_range;
if (!EncodeImageNoHuffman(
bw, histogram_argb, &hash_chain_histogram, &refs_array[2],
VP8LSubSampleSize(width, histogram_bits),
VP8LSubSampleSize(height, histogram_bits), quality, low_effort,
pic, i_percent_range, percent)) {
WebPSafeFree(histogram_argb);
goto Error;
}
WebPSafeFree(histogram_argb);
}
// Store Huffman codes.
{
int i;
int max_tokens = 0;
// Find maximum number of symbols for the huffman tree-set.
for (i = 0; i < 5 * histogram_image_size; ++i) {
HuffmanTreeCode* const codes = &huffman_codes[i];
if (max_tokens < codes->num_symbols) {
max_tokens = codes->num_symbols;
}
}
tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
if (tokens == NULL) goto Error;
for (i = 0; i < 5 * histogram_image_size; ++i) {
HuffmanTreeCode* const codes = &huffman_codes[i];
StoreHuffmanCode(bw, huff_tree, tokens, codes);
ClearHuffmanTreeIfOnlyOneSymbol(codes);
}
}
// Store actual literals.
hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
if (!StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache],
histogram_symbols, huffman_codes, pic)) {
goto Error;
}
// Keep track of the smallest image so far.
if (VP8LBitWriterNumBytes(bw) < bw_size_best) {
bw_size_best = VP8LBitWriterNumBytes(bw);
*cache_bits = cache_bits_tmp;
*hdr_size = hdr_size_tmp;
*data_size =
(int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
VP8LBitWriterSwap(bw, &bw_best);
}
WebPSafeFree(tokens);
tokens = NULL;
if (huffman_codes != NULL) {
WebPSafeFree(huffman_codes->codes);
WebPSafeFree(huffman_codes);
huffman_codes = NULL;
}
}
}
VP8LBitWriterSwap(bw, &bw_best);
if (!WebPReportProgress(pic, percent_start + remaining_percent, percent)) {
goto Error;
}
Error:
WebPSafeFree(tokens);
WebPSafeFree(huff_tree);
VP8LFreeHistogramSet(histogram_image);
VP8LFreeHistogram(tmp_histo);
VP8LHashChainClear(&hash_chain_histogram);
if (huffman_codes != NULL) {
WebPSafeFree(huffman_codes->codes);
WebPSafeFree(huffman_codes);
}
WebPSafeFree(histogram_symbols);
VP8LBitWriterWipeOut(&bw_best);
return (pic->error_code == VP8_ENC_OK);
}
// -----------------------------------------------------------------------------
// Transforms
static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height,
VP8LBitWriter* const bw) {
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
VP8LPutBits(bw, SUBTRACT_GREEN, 2);
VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
}
static int ApplyPredictFilter(const VP8LEncoder* const enc, int width,
int height, int quality, int low_effort,
int used_subtract_green, VP8LBitWriter* const bw,
int percent_range, int* const percent) {
const int pred_bits = enc->transform_bits_;
const int transform_width = VP8LSubSampleSize(width, pred_bits);
const int transform_height = VP8LSubSampleSize(height, pred_bits);
// we disable near-lossless quantization if palette is used.
const int near_lossless_strength =
enc->use_palette_ ? 100 : enc->config_->near_lossless;
if (!VP8LResidualImage(
width, height, pred_bits, low_effort, enc->argb_, enc->argb_scratch_,
enc->transform_data_, near_lossless_strength, enc->config_->exact,
used_subtract_green, enc->pic_, percent_range / 2, percent)) {
return 0;
}
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
assert(pred_bits >= 2);
VP8LPutBits(bw, pred_bits - 2, 3);
return EncodeImageNoHuffman(
bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
(VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
quality, low_effort, enc->pic_, percent_range - percent_range / 2,
percent);
}
static int ApplyCrossColorFilter(const VP8LEncoder* const enc, int width,
int height, int quality, int low_effort,
VP8LBitWriter* const bw, int percent_range,
int* const percent) {
const int ccolor_transform_bits = enc->transform_bits_;
const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits);
const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits);
if (!VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality,
enc->argb_, enc->transform_data_, enc->pic_,
percent_range / 2, percent)) {
return 0;
}
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2);
assert(ccolor_transform_bits >= 2);
VP8LPutBits(bw, ccolor_transform_bits - 2, 3);
return EncodeImageNoHuffman(
bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
(VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
quality, low_effort, enc->pic_, percent_range - percent_range / 2,
percent);
}
// -----------------------------------------------------------------------------
static int WriteRiffHeader(const WebPPicture* const pic, size_t riff_size,
size_t vp8l_size) {
uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = {
'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE,
};
PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
return pic->writer(riff, sizeof(riff), pic);
}
static int WriteImageSize(const WebPPicture* const pic,
VP8LBitWriter* const bw) {
const int width = pic->width - 1;
const int height = pic->height - 1;
assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS);
VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS);
return !bw->error_;
}
static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) {
VP8LPutBits(bw, has_alpha, 1);
VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS);
return !bw->error_;
}
static int WriteImage(const WebPPicture* const pic, VP8LBitWriter* const bw,
size_t* const coded_size) {
const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
const size_t webpll_size = VP8LBitWriterNumBytes(bw);
const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size;
const size_t pad = vp8l_size & 1;
const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad;
if (!WriteRiffHeader(pic, riff_size, vp8l_size) ||
!pic->writer(webpll_data, webpll_size, pic)) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
return 0;
}
if (pad) {
const uint8_t pad_byte[1] = { 0 };
if (!pic->writer(pad_byte, 1, pic)) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
return 0;
}
}
*coded_size = CHUNK_HEADER_SIZE + riff_size;
return 1;
}
// -----------------------------------------------------------------------------
static void ClearTransformBuffer(VP8LEncoder* const enc) {
WebPSafeFree(enc->transform_mem_);
enc->transform_mem_ = NULL;
enc->transform_mem_size_ = 0;
}
// Allocates the memory for argb (W x H) buffer, 2 rows of context for
// prediction and transform data.
// Flags influencing the memory allocated:
// enc->transform_bits_
// enc->use_predict_, enc->use_cross_color_
static int AllocateTransformBuffer(VP8LEncoder* const enc, int width,
int height) {
const uint64_t image_size = width * height;
// VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra
// pixel in each, plus 2 regular scanlines of bytes.
// TODO(skal): Clean up by using arithmetic in bytes instead of words.
const uint64_t argb_scratch_size =
enc->use_predict_ ? (width + 1) * 2 + (width * 2 + sizeof(uint32_t) - 1) /
sizeof(uint32_t)
: 0;
const uint64_t transform_data_size =
(enc->use_predict_ || enc->use_cross_color_)
? VP8LSubSampleSize(width, enc->transform_bits_) *
VP8LSubSampleSize(height, enc->transform_bits_)
: 0;
const uint64_t max_alignment_in_words =
(WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t);
const uint64_t mem_size = image_size + max_alignment_in_words +
argb_scratch_size + max_alignment_in_words +
transform_data_size;
uint32_t* mem = enc->transform_mem_;
if (mem == NULL || mem_size > enc->transform_mem_size_) {
ClearTransformBuffer(enc);
mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem));
if (mem == NULL) {
WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
return 0;
}
enc->transform_mem_ = mem;
enc->transform_mem_size_ = (size_t)mem_size;
enc->argb_content_ = kEncoderNone;
}
enc->argb_ = mem;
mem = (uint32_t*)WEBP_ALIGN(mem + image_size);
enc->argb_scratch_ = mem;
mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size);
enc->transform_data_ = mem;
enc->current_width_ = width;
return 1;
}
static int MakeInputImageCopy(VP8LEncoder* const enc) {
const WebPPicture* const picture = enc->pic_;
const int width = picture->width;
const int height = picture->height;
if (!AllocateTransformBuffer(enc, width, height)) return 0;
if (enc->argb_content_ == kEncoderARGB) return 1;
{
uint32_t* dst = enc->argb_;
const uint32_t* src = picture->argb;
int y;
for (y = 0; y < height; ++y) {
memcpy(dst, src, width * sizeof(*dst));
dst += width;
src += picture->argb_stride;
}
}
enc->argb_content_ = kEncoderARGB;
assert(enc->current_width_ == width);
return 1;
}
// -----------------------------------------------------------------------------
#define APPLY_PALETTE_GREEDY_MAX 4
static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
int palette_size,
uint32_t color) {
(void)palette_size;
assert(palette_size < APPLY_PALETTE_GREEDY_MAX);
assert(3 == APPLY_PALETTE_GREEDY_MAX - 1);
if (color == palette[0]) return 0;
if (color == palette[1]) return 1;
if (color == palette[2]) return 2;
return 3;
}
static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) {
// Focus on the green color.
return (color >> 8) & 0xff;
}
#define PALETTE_INV_SIZE_BITS 11
#define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS)
static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) {
// Forget about alpha.
return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >>
(32 - PALETTE_INV_SIZE_BITS);
}
static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
// Forget about alpha.
return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >>
(32 - PALETTE_INV_SIZE_BITS);
}
// Use 1 pixel cache for ARGB pixels.
#define APPLY_PALETTE_FOR(COLOR_INDEX) do { \
uint32_t prev_pix = palette[0]; \
uint32_t prev_idx = 0; \
for (y = 0; y < height; ++y) { \
for (x = 0; x < width; ++x) { \
const uint32_t pix = src[x]; \
if (pix != prev_pix) { \
prev_idx = COLOR_INDEX; \
prev_pix = pix; \
} \
tmp_row[x] = prev_idx; \
} \
VP8LBundleColorMap(tmp_row, width, xbits, dst); \
src += src_stride; \
dst += dst_stride; \
} \
} while (0)
// Remap argb values in src[] to packed palettes entries in dst[]
// using 'row' as a temporary buffer of size 'width'.
// We assume that all src[] values have a corresponding entry in the palette.
// Note: src[] can be the same as dst[]
static int ApplyPalette(const uint32_t* src, uint32_t src_stride, uint32_t* dst,
uint32_t dst_stride, const uint32_t* palette,
int palette_size, int width, int height, int xbits,
const WebPPicture* const pic) {
// TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be
// made to work in-place.
uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
int x, y;
if (tmp_row == NULL) {
WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
return 0;
}
if (palette_size < APPLY_PALETTE_GREEDY_MAX) {
APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix));
} else {
int i, j;
uint16_t buffer[PALETTE_INV_SIZE];
uint32_t (*const hash_functions[])(uint32_t) = {
ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2
};
// Try to find a perfect hash function able to go from a color to an index
// within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go
// from color to index in palette.
for (i = 0; i < 3; ++i) {
int use_LUT = 1;
// Set each element in buffer to max uint16_t.
memset(buffer, 0xff, sizeof(buffer));
for (j = 0; j < palette_size; ++j) {
const uint32_t ind = hash_functions[i](palette[j]);
if (buffer[ind] != 0xffffu) {
use_LUT = 0;
break;
} else {
buffer[ind] = j;
}
}
if (use_LUT) break;
}
if (i == 0) {
APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]);
} else if (i == 1) {
APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]);
} else if (i == 2) {
APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]);
} else {
uint32_t idx_map[MAX_PALETTE_SIZE];
uint32_t palette_sorted[MAX_PALETTE_SIZE];
PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map);
APPLY_PALETTE_FOR(
idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]);
}
}
WebPSafeFree(tmp_row);
return 1;
}
#undef APPLY_PALETTE_FOR
#undef PALETTE_INV_SIZE_BITS
#undef PALETTE_INV_SIZE
#undef APPLY_PALETTE_GREEDY_MAX
// Note: Expects "enc->palette_" to be set properly.
static int MapImageFromPalette(VP8LEncoder* const enc, int in_place) {
const WebPPicture* const pic = enc->pic_;
const int width = pic->width;
const int height = pic->height;
const uint32_t* const palette = enc->palette_;
const uint32_t* src = in_place ? enc->argb_ : pic->argb;
const int src_stride = in_place ? enc->current_width_ : pic->argb_stride;
const int palette_size = enc->palette_size_;
int xbits;
// Replace each input pixel by corresponding palette index.
// This is done line by line.
if (palette_size <= 4) {
xbits = (palette_size <= 2) ? 3 : 2;
} else {
xbits = (palette_size <= 16) ? 1 : 0;
}
if (!AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height)) {
return 0;
}
if (!ApplyPalette(src, src_stride,
enc->argb_, enc->current_width_,
palette, palette_size, width, height, xbits, pic)) {
return 0;
}
enc->argb_content_ = kEncoderPalette;
return 1;
}
// Save palette_[] to bitstream.
static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort,
VP8LEncoder* const enc,
int percent_range, int* const percent) {
int i;
uint32_t tmp_palette[MAX_PALETTE_SIZE];
const int palette_size = enc->palette_size_;
const uint32_t* const palette = enc->palette_;
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2);
assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE);
VP8LPutBits(bw, palette_size - 1, 8);
for (i = palette_size - 1; i >= 1; --i) {
tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
}
tmp_palette[0] = palette[0];
return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_,
&enc->refs_[0], palette_size, 1, /*quality=*/20,
low_effort, enc->pic_, percent_range, percent);
}
// -----------------------------------------------------------------------------
// VP8LEncoder
static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config,
const WebPPicture* const picture) {
VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc));
if (enc == NULL) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
return NULL;
}
enc->config_ = config;
enc->pic_ = picture;
enc->argb_content_ = kEncoderNone;
VP8LEncDspInit();
return enc;
}
static void VP8LEncoderDelete(VP8LEncoder* enc) {
if (enc != NULL) {
int i;
VP8LHashChainClear(&enc->hash_chain_);
for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
ClearTransformBuffer(enc);
WebPSafeFree(enc);
}
}
// -----------------------------------------------------------------------------
// Main call
typedef struct {
const WebPConfig* config_;
const WebPPicture* picture_;
VP8LBitWriter* bw_;
VP8LEncoder* enc_;
int use_cache_;
CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX];
int num_crunch_configs_;
int red_and_blue_always_zero_;
WebPAuxStats* stats_;
} StreamEncodeContext;
static int EncodeStreamHook(void* input, void* data2) {
StreamEncodeContext* const params = (StreamEncodeContext*)input;
const WebPConfig* const config = params->config_;
const WebPPicture* const picture = params->picture_;
VP8LBitWriter* const bw = params->bw_;
VP8LEncoder* const enc = params->enc_;
const int use_cache = params->use_cache_;
const CrunchConfig* const crunch_configs = params->crunch_configs_;
const int num_crunch_configs = params->num_crunch_configs_;
const int red_and_blue_always_zero = params->red_and_blue_always_zero_;
#if !defined(WEBP_DISABLE_STATS)
WebPAuxStats* const stats = params->stats_;
#endif
const int quality = (int)config->quality;
const int low_effort = (config->method == 0);
#if (WEBP_NEAR_LOSSLESS == 1)
const int width = picture->width;
#endif
const int height = picture->height;
const size_t byte_position = VP8LBitWriterNumBytes(bw);
int percent = 2; // for WebPProgressHook
#if (WEBP_NEAR_LOSSLESS == 1)
int use_near_lossless = 0;
#endif
int hdr_size = 0;
int data_size = 0;
int use_delta_palette = 0;
int idx;
size_t best_size = ~(size_t)0;
VP8LBitWriter bw_init = *bw, bw_best;
(void)data2;
if (!VP8LBitWriterInit(&bw_best, 0) ||
(num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
for (idx = 0; idx < num_crunch_configs; ++idx) {
const int entropy_idx = crunch_configs[idx].entropy_idx_;
int remaining_percent = 97 / num_crunch_configs, percent_range;
enc->use_palette_ =
(entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial);
enc->use_subtract_green_ =
(entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen);
enc->use_predict_ = (entropy_idx == kSpatial) ||
(entropy_idx == kSpatialSubGreen) ||
(entropy_idx == kPaletteAndSpatial);
// When using a palette, R/B==0, hence no need to test for cross-color.
if (low_effort || enc->use_palette_) {
enc->use_cross_color_ = 0;
} else {
enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
}
// Reset any parameter in the encoder that is set in the previous iteration.
enc->cache_bits_ = 0;
VP8LBackwardRefsClear(&enc->refs_[0]);
VP8LBackwardRefsClear(&enc->refs_[1]);
#if (WEBP_NEAR_LOSSLESS == 1)
// Apply near-lossless preprocessing.
use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ &&
!enc->use_predict_;
if (use_near_lossless) {
if (!AllocateTransformBuffer(enc, width, height)) goto Error;
if ((enc->argb_content_ != kEncoderNearLossless) &&
!VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
enc->argb_content_ = kEncoderNearLossless;
} else {
enc->argb_content_ = kEncoderNone;
}
#else
enc->argb_content_ = kEncoderNone;
#endif
// Encode palette
if (enc->use_palette_) {
if (crunch_configs[idx].palette_sorting_type_ == kSortedDefault) {
// Nothing to do, we have already sorted the palette.
memcpy(enc->palette_, enc->palette_sorted_,
enc->palette_size_ * sizeof(*enc->palette_));
} else if (crunch_configs[idx].palette_sorting_type_ == kMinimizeDelta) {
PaletteSortMinimizeDeltas(enc->palette_sorted_, enc->palette_size_,
enc->palette_);
} else {
assert(crunch_configs[idx].palette_sorting_type_ == kModifiedZeng);
if (!PaletteSortModifiedZeng(enc->pic_, enc->palette_sorted_,
enc->palette_size_, enc->palette_)) {
goto Error;
}
}
percent_range = remaining_percent / 4;
if (!EncodePalette(bw, low_effort, enc, percent_range, &percent)) {
goto Error;
}
remaining_percent -= percent_range;
if (!MapImageFromPalette(enc, use_delta_palette)) goto Error;
// If using a color cache, do not have it bigger than the number of
// colors.
if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) {
enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1;
}
}
if (!use_delta_palette) {
// In case image is not packed.
if (enc->argb_content_ != kEncoderNearLossless &&
enc->argb_content_ != kEncoderPalette) {
if (!MakeInputImageCopy(enc)) goto Error;
}
// -----------------------------------------------------------------------
// Apply transforms and write transform data.
if (enc->use_subtract_green_) {
ApplySubtractGreen(enc, enc->current_width_, height, bw);
}
if (enc->use_predict_) {
percent_range = remaining_percent / 3;
if (!ApplyPredictFilter(enc, enc->current_width_, height, quality,
low_effort, enc->use_subtract_green_, bw,
percent_range, &percent)) {
goto Error;
}
remaining_percent -= percent_range;
}
if (enc->use_cross_color_) {
percent_range = remaining_percent / 2;
if (!ApplyCrossColorFilter(enc, enc->current_width_, height, quality,
low_effort, bw, percent_range, &percent)) {
goto Error;
}
remaining_percent -= percent_range;
}
}
VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms.
// -------------------------------------------------------------------------
// Encode and write the transformed image.
if (!EncodeImageInternal(
bw, enc->argb_, &enc->hash_chain_, enc->refs_, enc->current_width_,
height, quality, low_effort, use_cache, &crunch_configs[idx],
&enc->cache_bits_, enc->histo_bits_, byte_position, &hdr_size,
&data_size, picture, remaining_percent, &percent)) {
goto Error;
}
// If we are better than what we already have.
if (VP8LBitWriterNumBytes(bw) < best_size) {
best_size = VP8LBitWriterNumBytes(bw);
// Store the BitWriter.
VP8LBitWriterSwap(bw, &bw_best);
#if !defined(WEBP_DISABLE_STATS)
// Update the stats.
if (stats != NULL) {
stats->lossless_features = 0;
if (enc->use_predict_) stats->lossless_features |= 1;
if (enc->use_cross_color_) stats->lossless_features |= 2;
if (enc->use_subtract_green_) stats->lossless_features |= 4;
if (enc->use_palette_) stats->lossless_features |= 8;
stats->histogram_bits = enc->histo_bits_;
stats->transform_bits = enc->transform_bits_;
stats->cache_bits = enc->cache_bits_;
stats->palette_size = enc->palette_size_;
stats->lossless_size = (int)(best_size - byte_position);
stats->lossless_hdr_size = hdr_size;
stats->lossless_data_size = data_size;
}
#endif
}
// Reset the bit writer for the following iteration if any.
if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw);
}
VP8LBitWriterSwap(&bw_best, bw);
Error:
VP8LBitWriterWipeOut(&bw_best);
// The hook should return false in case of error.
return (params->picture_->error_code == VP8_ENC_OK);
}
int VP8LEncodeStream(const WebPConfig* const config,
const WebPPicture* const picture,
VP8LBitWriter* const bw_main, int use_cache) {
VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture);
VP8LEncoder* enc_side = NULL;
CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX];
int num_crunch_configs_main, num_crunch_configs_side = 0;
int idx;
int red_and_blue_always_zero = 0;
WebPWorker worker_main, worker_side;
StreamEncodeContext params_main, params_side;
// The main thread uses picture->stats, the side thread uses stats_side.
WebPAuxStats stats_side;
VP8LBitWriter bw_side;
WebPPicture picture_side;
const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface();
int ok_main;
if (enc_main == NULL || !VP8LBitWriterInit(&bw_side, 0)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
VP8LEncoderDelete(enc_main);
return 0;
}
// Avoid "garbage value" error from Clang's static analysis tool.
WebPPictureInit(&picture_side);
// Analyze image (entropy, num_palettes etc)
if (!EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main,
&red_and_blue_always_zero) ||
!EncoderInit(enc_main)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
// Split the configs between the main and side threads (if any).
if (config->thread_level > 0) {
num_crunch_configs_side = num_crunch_configs_main / 2;
for (idx = 0; idx < num_crunch_configs_side; ++idx) {
params_side.crunch_configs_[idx] =
crunch_configs[num_crunch_configs_main - num_crunch_configs_side +
idx];
}
params_side.num_crunch_configs_ = num_crunch_configs_side;
}
num_crunch_configs_main -= num_crunch_configs_side;
for (idx = 0; idx < num_crunch_configs_main; ++idx) {
params_main.crunch_configs_[idx] = crunch_configs[idx];
}
params_main.num_crunch_configs_ = num_crunch_configs_main;
// Fill in the parameters for the thread workers.
{
const int params_size = (num_crunch_configs_side > 0) ? 2 : 1;
for (idx = 0; idx < params_size; ++idx) {
// Create the parameters for each worker.
WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side;
StreamEncodeContext* const param =
(idx == 0) ? ¶ms_main : ¶ms_side;
param->config_ = config;
param->use_cache_ = use_cache;
param->red_and_blue_always_zero_ = red_and_blue_always_zero;
if (idx == 0) {
param->picture_ = picture;
param->stats_ = picture->stats;
param->bw_ = bw_main;
param->enc_ = enc_main;
} else {
// Create a side picture (error_code is not thread-safe).
if (!WebPPictureView(picture, /*left=*/0, /*top=*/0, picture->width,
picture->height, &picture_side)) {
assert(0);
}
picture_side.progress_hook = NULL; // Progress hook is not thread-safe.
param->picture_ = &picture_side; // No need to free a view afterwards.
param->stats_ = (picture->stats == NULL) ? NULL : &stats_side;
// Create a side bit writer.
if (!VP8LBitWriterClone(bw_main, &bw_side)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
param->bw_ = &bw_side;
// Create a side encoder.
enc_side = VP8LEncoderNew(config, &picture_side);
if (enc_side == NULL || !EncoderInit(enc_side)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
// Copy the values that were computed for the main encoder.
enc_side->histo_bits_ = enc_main->histo_bits_;
enc_side->transform_bits_ = enc_main->transform_bits_;
enc_side->palette_size_ = enc_main->palette_size_;
memcpy(enc_side->palette_, enc_main->palette_,
sizeof(enc_main->palette_));
memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_,
sizeof(enc_main->palette_sorted_));
param->enc_ = enc_side;
}
// Create the workers.
worker_interface->Init(worker);
worker->data1 = param;
worker->data2 = NULL;
worker->hook = EncodeStreamHook;
}
}
// Start the second thread if needed.
if (num_crunch_configs_side != 0) {
if (!worker_interface->Reset(&worker_side)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
#if !defined(WEBP_DISABLE_STATS)
// This line is here and not in the param initialization above to remove a
// Clang static analyzer warning.
if (picture->stats != NULL) {
memcpy(&stats_side, picture->stats, sizeof(stats_side));
}
#endif
worker_interface->Launch(&worker_side);
}
// Execute the main thread.
worker_interface->Execute(&worker_main);
ok_main = worker_interface->Sync(&worker_main);
worker_interface->End(&worker_main);
if (num_crunch_configs_side != 0) {
// Wait for the second thread.
const int ok_side = worker_interface->Sync(&worker_side);
worker_interface->End(&worker_side);
if (!ok_main || !ok_side) {
if (picture->error_code == VP8_ENC_OK) {
assert(picture_side.error_code != VP8_ENC_OK);
WebPEncodingSetError(picture, picture_side.error_code);
}
goto Error;
}
if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) {
VP8LBitWriterSwap(bw_main, &bw_side);
#if !defined(WEBP_DISABLE_STATS)
if (picture->stats != NULL) {
memcpy(picture->stats, &stats_side, sizeof(*picture->stats));
}
#endif
}
}
Error:
VP8LBitWriterWipeOut(&bw_side);
VP8LEncoderDelete(enc_main);
VP8LEncoderDelete(enc_side);
return (picture->error_code == VP8_ENC_OK);
}
#undef CRUNCH_CONFIGS_MAX
#undef CRUNCH_SUBCONFIGS_MAX
int VP8LEncodeImage(const WebPConfig* const config,
const WebPPicture* const picture) {
int width, height;
int has_alpha;
size_t coded_size;
int percent = 0;
int initial_size;
VP8LBitWriter bw;
if (picture == NULL) return 0;
if (config == NULL || picture->argb == NULL) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
return 0;
}
width = picture->width;
height = picture->height;
// Initialize BitWriter with size corresponding to 16 bpp to photo images and
// 8 bpp for graphical images.
initial_size = (config->image_hint == WEBP_HINT_GRAPH) ?
width * height : width * height * 2;
if (!VP8LBitWriterInit(&bw, initial_size)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
if (!WebPReportProgress(picture, 1, &percent)) {
UserAbort:
WebPEncodingSetError(picture, VP8_ENC_ERROR_USER_ABORT);
goto Error;
}
// Reset stats (for pure lossless coding)
if (picture->stats != NULL) {
WebPAuxStats* const stats = picture->stats;
memset(stats, 0, sizeof(*stats));
stats->PSNR[0] = 99.f;
stats->PSNR[1] = 99.f;
stats->PSNR[2] = 99.f;
stats->PSNR[3] = 99.f;
stats->PSNR[4] = 99.f;
}
// Write image size.
if (!WriteImageSize(picture, &bw)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
has_alpha = WebPPictureHasTransparency(picture);
// Write the non-trivial Alpha flag and lossless version.
if (!WriteRealAlphaAndVersion(&bw, has_alpha)) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
goto Error;
}
if (!WebPReportProgress(picture, 2, &percent)) goto UserAbort;
// Encode main image stream.
if (!VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/)) goto Error;
if (!WebPReportProgress(picture, 99, &percent)) goto UserAbort;
// Finish the RIFF chunk.
if (!WriteImage(picture, &bw, &coded_size)) goto Error;
if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort;
#if !defined(WEBP_DISABLE_STATS)
// Save size.
if (picture->stats != NULL) {
picture->stats->coded_size += (int)coded_size;
picture->stats->lossless_size = (int)coded_size;
}
#endif
if (picture->extra_info != NULL) {
const int mb_w = (width + 15) >> 4;
const int mb_h = (height + 15) >> 4;
memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
}
Error:
if (bw.error_) {
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
}
VP8LBitWriterWipeOut(&bw);
return (picture->error_code == VP8_ENC_OK);
}
//------------------------------------------------------------------------------
|