summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/src/enc/picture_csp_enc.c
blob: 02d9df76d55b47063f259af5d79c92303d20c95f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// WebPPicture utils for colorspace conversion
//
// Author: Skal (pascal.massimino@gmail.com)

#include <assert.h>
#include <stdlib.h>
#include <math.h>

#include "src/enc/vp8i_enc.h"
#include "src/utils/random_utils.h"
#include "src/utils/utils.h"
#include "src/dsp/dsp.h"
#include "src/dsp/lossless.h"
#include "src/dsp/yuv.h"

// Uncomment to disable gamma-compression during RGB->U/V averaging
#define USE_GAMMA_COMPRESSION

// If defined, use table to compute x / alpha.
#define USE_INVERSE_ALPHA_TABLE

#ifdef WORDS_BIGENDIAN
#define ALPHA_OFFSET 0   // uint32_t 0xff000000 is 0xff,00,00,00 in memory
#else
#define ALPHA_OFFSET 3   // uint32_t 0xff000000 is 0x00,00,00,ff in memory
#endif

//------------------------------------------------------------------------------
// Detection of non-trivial transparency

// Returns true if alpha[] has non-0xff values.
static int CheckNonOpaque(const uint8_t* alpha, int width, int height,
                          int x_step, int y_step) {
  if (alpha == NULL) return 0;
  WebPInitAlphaProcessing();
  if (x_step == 1) {
    for (; height-- > 0; alpha += y_step) {
      if (WebPHasAlpha8b(alpha, width)) return 1;
    }
  } else {
    for (; height-- > 0; alpha += y_step) {
      if (WebPHasAlpha32b(alpha, width)) return 1;
    }
  }
  return 0;
}

// Checking for the presence of non-opaque alpha.
int WebPPictureHasTransparency(const WebPPicture* picture) {
  if (picture == NULL) return 0;
  if (!picture->use_argb) {
    return CheckNonOpaque(picture->a, picture->width, picture->height,
                          1, picture->a_stride);
  } else {
    const int alpha_offset = ALPHA_OFFSET;
    return CheckNonOpaque((const uint8_t*)picture->argb + alpha_offset,
                          picture->width, picture->height,
                          4, picture->argb_stride * sizeof(*picture->argb));
  }
  return 0;
}

//------------------------------------------------------------------------------
// Code for gamma correction

#if defined(USE_GAMMA_COMPRESSION)

// gamma-compensates loss of resolution during chroma subsampling
#define kGamma 0.80      // for now we use a different gamma value than kGammaF
#define kGammaFix 12     // fixed-point precision for linear values
#define kGammaScale ((1 << kGammaFix) - 1)
#define kGammaTabFix 7   // fixed-point fractional bits precision
#define kGammaTabScale (1 << kGammaTabFix)
#define kGammaTabRounder (kGammaTabScale >> 1)
#define kGammaTabSize (1 << (kGammaFix - kGammaTabFix))

static int kLinearToGammaTab[kGammaTabSize + 1];
static uint16_t kGammaToLinearTab[256];
static volatile int kGammaTablesOk = 0;

static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTables(void) {
  if (!kGammaTablesOk) {
    int v;
    const double scale = (double)(1 << kGammaTabFix) / kGammaScale;
    const double norm = 1. / 255.;
    for (v = 0; v <= 255; ++v) {
      kGammaToLinearTab[v] =
          (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5);
    }
    for (v = 0; v <= kGammaTabSize; ++v) {
      kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5);
    }
    kGammaTablesOk = 1;
  }
}

static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) {
  return kGammaToLinearTab[v];
}

static WEBP_INLINE int Interpolate(int v) {
  const int tab_pos = v >> (kGammaTabFix + 2);    // integer part
  const int x = v & ((kGammaTabScale << 2) - 1);  // fractional part
  const int v0 = kLinearToGammaTab[tab_pos];
  const int v1 = kLinearToGammaTab[tab_pos + 1];
  const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x);   // interpolate
  assert(tab_pos + 1 < kGammaTabSize + 1);
  return y;
}

// Convert a linear value 'v' to YUV_FIX+2 fixed-point precision
// U/V value, suitable for RGBToU/V calls.
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
  const int y = Interpolate(base_value << shift);   // final uplifted value
  return (y + kGammaTabRounder) >> kGammaTabFix;    // descale
}

#else

static void InitGammaTables(void) {}
static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; }
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
  return (int)(base_value << shift);
}

#endif    // USE_GAMMA_COMPRESSION

//------------------------------------------------------------------------------
// RGB -> YUV conversion

static int RGBToY(int r, int g, int b, VP8Random* const rg) {
  return (rg == NULL) ? VP8RGBToY(r, g, b, YUV_HALF)
                      : VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX));
}

static int RGBToU(int r, int g, int b, VP8Random* const rg) {
  return (rg == NULL) ? VP8RGBToU(r, g, b, YUV_HALF << 2)
                      : VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
}

static int RGBToV(int r, int g, int b, VP8Random* const rg) {
  return (rg == NULL) ? VP8RGBToV(r, g, b, YUV_HALF << 2)
                      : VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2));
}

//------------------------------------------------------------------------------
// Sharp RGB->YUV conversion

static const int kNumIterations = 4;
static const int kMinDimensionIterativeConversion = 4;

// We could use SFIX=0 and only uint8_t for fixed_y_t, but it produces some
// banding sometimes. Better use extra precision.
#define SFIX 2                // fixed-point precision of RGB and Y/W
typedef int16_t fixed_t;      // signed type with extra SFIX precision for UV
typedef uint16_t fixed_y_t;   // unsigned type with extra SFIX precision for W

#define SHALF (1 << SFIX >> 1)
#define MAX_Y_T ((256 << SFIX) - 1)
#define SROUNDER (1 << (YUV_FIX + SFIX - 1))

#if defined(USE_GAMMA_COMPRESSION)

// We use tables of different size and precision for the Rec709 / BT2020
// transfer function.
#define kGammaF (1./0.45)
static uint32_t kLinearToGammaTabS[kGammaTabSize + 2];
#define GAMMA_TO_LINEAR_BITS 14
static uint32_t kGammaToLinearTabS[MAX_Y_T + 1];   // size scales with Y_FIX
static volatile int kGammaTablesSOk = 0;

static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesS(void) {
  assert(2 * GAMMA_TO_LINEAR_BITS < 32);  // we use uint32_t intermediate values
  if (!kGammaTablesSOk) {
    int v;
    const double norm = 1. / MAX_Y_T;
    const double scale = 1. / kGammaTabSize;
    const double a = 0.09929682680944;
    const double thresh = 0.018053968510807;
    const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;
    for (v = 0; v <= MAX_Y_T; ++v) {
      const double g = norm * v;
      double value;
      if (g <= thresh * 4.5) {
        value = g / 4.5;
      } else {
        const double a_rec = 1. / (1. + a);
        value = pow(a_rec * (g + a), kGammaF);
      }
      kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);
    }
    for (v = 0; v <= kGammaTabSize; ++v) {
      const double g = scale * v;
      double value;
      if (g <= thresh) {
        value = 4.5 * g;
      } else {
        value = (1. + a) * pow(g, 1. / kGammaF) - a;
      }
      // we already incorporate the 1/2 rounding constant here
      kLinearToGammaTabS[v] =
          (uint32_t)(MAX_Y_T * value) + (1 << GAMMA_TO_LINEAR_BITS >> 1);
    }
    // to prevent small rounding errors to cause read-overflow:
    kLinearToGammaTabS[kGammaTabSize + 1] = kLinearToGammaTabS[kGammaTabSize];
    kGammaTablesSOk = 1;
  }
}

// return value has a fixed-point precision of GAMMA_TO_LINEAR_BITS
static WEBP_INLINE uint32_t GammaToLinearS(int v) {
  return kGammaToLinearTabS[v];
}

static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) {
  // 'value' is in GAMMA_TO_LINEAR_BITS fractional precision
  const uint32_t v = value * kGammaTabSize;
  const uint32_t tab_pos = v >> GAMMA_TO_LINEAR_BITS;
  // fractional part, in GAMMA_TO_LINEAR_BITS fixed-point precision
  const uint32_t x = v - (tab_pos << GAMMA_TO_LINEAR_BITS);  // fractional part
  // v0 / v1 are in GAMMA_TO_LINEAR_BITS fixed-point precision (range [0..1])
  const uint32_t v0 = kLinearToGammaTabS[tab_pos + 0];
  const uint32_t v1 = kLinearToGammaTabS[tab_pos + 1];
  // Final interpolation. Note that rounding is already included.
  const uint32_t v2 = (v1 - v0) * x;    // note: v1 >= v0.
  const uint32_t result = v0 + (v2 >> GAMMA_TO_LINEAR_BITS);
  return result;
}

#else

static void InitGammaTablesS(void) {}
static WEBP_INLINE uint32_t GammaToLinearS(int v) {
  return (v << GAMMA_TO_LINEAR_BITS) / MAX_Y_T;
}
static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) {
  return (MAX_Y_T * value) >> GAMMA_TO_LINEAR_BITS;
}

#endif    // USE_GAMMA_COMPRESSION

//------------------------------------------------------------------------------

static uint8_t clip_8b(fixed_t v) {
  return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u;
}

static fixed_y_t clip_y(int y) {
  return (!(y & ~MAX_Y_T)) ? (fixed_y_t)y : (y < 0) ? 0 : MAX_Y_T;
}

//------------------------------------------------------------------------------

static int RGBToGray(int r, int g, int b) {
  const int luma = 13933 * r + 46871 * g + 4732 * b + YUV_HALF;
  return (luma >> YUV_FIX);
}

static uint32_t ScaleDown(int a, int b, int c, int d) {
  const uint32_t A = GammaToLinearS(a);
  const uint32_t B = GammaToLinearS(b);
  const uint32_t C = GammaToLinearS(c);
  const uint32_t D = GammaToLinearS(d);
  return LinearToGammaS((A + B + C + D + 2) >> 2);
}

static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w) {
  int i;
  for (i = 0; i < w; ++i) {
    const uint32_t R = GammaToLinearS(src[0 * w + i]);
    const uint32_t G = GammaToLinearS(src[1 * w + i]);
    const uint32_t B = GammaToLinearS(src[2 * w + i]);
    const uint32_t Y = RGBToGray(R, G, B);
    dst[i] = (fixed_y_t)LinearToGammaS(Y);
  }
}

static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2,
                         fixed_t* dst, int uv_w) {
  int i;
  for (i = 0; i < uv_w; ++i) {
    const int r = ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1],
                            src2[0 * uv_w + 0], src2[0 * uv_w + 1]);
    const int g = ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1],
                            src2[2 * uv_w + 0], src2[2 * uv_w + 1]);
    const int b = ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1],
                            src2[4 * uv_w + 0], src2[4 * uv_w + 1]);
    const int W = RGBToGray(r, g, b);
    dst[0 * uv_w] = (fixed_t)(r - W);
    dst[1 * uv_w] = (fixed_t)(g - W);
    dst[2 * uv_w] = (fixed_t)(b - W);
    dst  += 1;
    src1 += 2;
    src2 += 2;
  }
}

static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) {
  int i;
  for (i = 0; i < w; ++i) {
    y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]);
  }
}

//------------------------------------------------------------------------------

static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0) {
  const int v0 = (A * 3 + B + 2) >> 2;
  return clip_y(v0 + W0);
}

//------------------------------------------------------------------------------

static WEBP_INLINE fixed_y_t UpLift(uint8_t a) {  // 8bit -> SFIX
  return ((fixed_y_t)a << SFIX) | SHALF;
}

static void ImportOneRow(const uint8_t* const r_ptr,
                         const uint8_t* const g_ptr,
                         const uint8_t* const b_ptr,
                         int step,
                         int pic_width,
                         fixed_y_t* const dst) {
  int i;
  const int w = (pic_width + 1) & ~1;
  for (i = 0; i < pic_width; ++i) {
    const int off = i * step;
    dst[i + 0 * w] = UpLift(r_ptr[off]);
    dst[i + 1 * w] = UpLift(g_ptr[off]);
    dst[i + 2 * w] = UpLift(b_ptr[off]);
  }
  if (pic_width & 1) {  // replicate rightmost pixel
    dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1];
    dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1];
    dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1];
  }
}

static void InterpolateTwoRows(const fixed_y_t* const best_y,
                               const fixed_t* prev_uv,
                               const fixed_t* cur_uv,
                               const fixed_t* next_uv,
                               int w,
                               fixed_y_t* out1,
                               fixed_y_t* out2) {
  const int uv_w = w >> 1;
  const int len = (w - 1) >> 1;   // length to filter
  int k = 3;
  while (k-- > 0) {   // process each R/G/B segments in turn
    // special boundary case for i==0
    out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0]);
    out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w]);

    WebPSharpYUVFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1);
    WebPSharpYUVFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1);

    // special boundary case for i == w - 1 when w is even
    if (!(w & 1)) {
      out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1],
                            best_y[w - 1 + 0]);
      out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1],
                            best_y[w - 1 + w]);
    }
    out1 += w;
    out2 += w;
    prev_uv += uv_w;
    cur_uv  += uv_w;
    next_uv += uv_w;
  }
}

static WEBP_INLINE uint8_t ConvertRGBToY(int r, int g, int b) {
  const int luma = 16839 * r + 33059 * g + 6420 * b + SROUNDER;
  return clip_8b(16 + (luma >> (YUV_FIX + SFIX)));
}

static WEBP_INLINE uint8_t ConvertRGBToU(int r, int g, int b) {
  const int u =  -9719 * r - 19081 * g + 28800 * b + SROUNDER;
  return clip_8b(128 + (u >> (YUV_FIX + SFIX)));
}

static WEBP_INLINE uint8_t ConvertRGBToV(int r, int g, int b) {
  const int v = +28800 * r - 24116 * g -  4684 * b + SROUNDER;
  return clip_8b(128 + (v >> (YUV_FIX + SFIX)));
}

static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv,
                            WebPPicture* const picture) {
  int i, j;
  uint8_t* dst_y = picture->y;
  uint8_t* dst_u = picture->u;
  uint8_t* dst_v = picture->v;
  const fixed_t* const best_uv_base = best_uv;
  const int w = (picture->width + 1) & ~1;
  const int h = (picture->height + 1) & ~1;
  const int uv_w = w >> 1;
  const int uv_h = h >> 1;
  for (best_uv = best_uv_base, j = 0; j < picture->height; ++j) {
    for (i = 0; i < picture->width; ++i) {
      const int off = (i >> 1);
      const int W = best_y[i];
      const int r = best_uv[off + 0 * uv_w] + W;
      const int g = best_uv[off + 1 * uv_w] + W;
      const int b = best_uv[off + 2 * uv_w] + W;
      dst_y[i] = ConvertRGBToY(r, g, b);
    }
    best_y += w;
    best_uv += (j & 1) * 3 * uv_w;
    dst_y += picture->y_stride;
  }
  for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) {
    for (i = 0; i < uv_w; ++i) {
      const int off = i;
      const int r = best_uv[off + 0 * uv_w];
      const int g = best_uv[off + 1 * uv_w];
      const int b = best_uv[off + 2 * uv_w];
      dst_u[i] = ConvertRGBToU(r, g, b);
      dst_v[i] = ConvertRGBToV(r, g, b);
    }
    best_uv += 3 * uv_w;
    dst_u += picture->uv_stride;
    dst_v += picture->uv_stride;
  }
  return 1;
}

//------------------------------------------------------------------------------
// Main function

#define SAFE_ALLOC(W, H, T) ((T*)WebPSafeMalloc((W) * (H), sizeof(T)))

static int PreprocessARGB(const uint8_t* r_ptr,
                          const uint8_t* g_ptr,
                          const uint8_t* b_ptr,
                          int step, int rgb_stride,
                          WebPPicture* const picture) {
  // we expand the right/bottom border if needed
  const int w = (picture->width + 1) & ~1;
  const int h = (picture->height + 1) & ~1;
  const int uv_w = w >> 1;
  const int uv_h = h >> 1;
  uint64_t prev_diff_y_sum = ~0;
  int j, iter;

  // TODO(skal): allocate one big memory chunk. But for now, it's easier
  // for valgrind debugging to have several chunks.
  fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t);   // scratch
  fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t);
  fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t);
  fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t);
  fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
  fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
  fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t);
  fixed_y_t* best_y = best_y_base;
  fixed_y_t* target_y = target_y_base;
  fixed_t* best_uv = best_uv_base;
  fixed_t* target_uv = target_uv_base;
  const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h);
  int ok;

  if (best_y_base == NULL || best_uv_base == NULL ||
      target_y_base == NULL || target_uv_base == NULL ||
      best_rgb_y == NULL || best_rgb_uv == NULL ||
      tmp_buffer == NULL) {
    ok = WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
    goto End;
  }
  assert(picture->width >= kMinDimensionIterativeConversion);
  assert(picture->height >= kMinDimensionIterativeConversion);

  WebPInitConvertARGBToYUV();

  // Import RGB samples to W/RGB representation.
  for (j = 0; j < picture->height; j += 2) {
    const int is_last_row = (j == picture->height - 1);
    fixed_y_t* const src1 = tmp_buffer + 0 * w;
    fixed_y_t* const src2 = tmp_buffer + 3 * w;

    // prepare two rows of input
    ImportOneRow(r_ptr, g_ptr, b_ptr, step, picture->width, src1);
    if (!is_last_row) {
      ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride,
                   step, picture->width, src2);
    } else {
      memcpy(src2, src1, 3 * w * sizeof(*src2));
    }
    StoreGray(src1, best_y + 0, w);
    StoreGray(src2, best_y + w, w);

    UpdateW(src1, target_y, w);
    UpdateW(src2, target_y + w, w);
    UpdateChroma(src1, src2, target_uv, uv_w);
    memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv));
    best_y += 2 * w;
    best_uv += 3 * uv_w;
    target_y += 2 * w;
    target_uv += 3 * uv_w;
    r_ptr += 2 * rgb_stride;
    g_ptr += 2 * rgb_stride;
    b_ptr += 2 * rgb_stride;
  }

  // Iterate and resolve clipping conflicts.
  for (iter = 0; iter < kNumIterations; ++iter) {
    const fixed_t* cur_uv = best_uv_base;
    const fixed_t* prev_uv = best_uv_base;
    uint64_t diff_y_sum = 0;

    best_y = best_y_base;
    best_uv = best_uv_base;
    target_y = target_y_base;
    target_uv = target_uv_base;
    for (j = 0; j < h; j += 2) {
      fixed_y_t* const src1 = tmp_buffer + 0 * w;
      fixed_y_t* const src2 = tmp_buffer + 3 * w;
      {
        const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0);
        InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w, src1, src2);
        prev_uv = cur_uv;
        cur_uv = next_uv;
      }

      UpdateW(src1, best_rgb_y + 0 * w, w);
      UpdateW(src2, best_rgb_y + 1 * w, w);
      UpdateChroma(src1, src2, best_rgb_uv, uv_w);

      // update two rows of Y and one row of RGB
      diff_y_sum += WebPSharpYUVUpdateY(target_y, best_rgb_y, best_y, 2 * w);
      WebPSharpYUVUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w);

      best_y += 2 * w;
      best_uv += 3 * uv_w;
      target_y += 2 * w;
      target_uv += 3 * uv_w;
    }
    // test exit condition
    if (iter > 0) {
      if (diff_y_sum < diff_y_threshold) break;
      if (diff_y_sum > prev_diff_y_sum) break;
    }
    prev_diff_y_sum = diff_y_sum;
  }
  // final reconstruction
  ok = ConvertWRGBToYUV(best_y_base, best_uv_base, picture);

 End:
  WebPSafeFree(best_y_base);
  WebPSafeFree(best_uv_base);
  WebPSafeFree(target_y_base);
  WebPSafeFree(target_uv_base);
  WebPSafeFree(best_rgb_y);
  WebPSafeFree(best_rgb_uv);
  WebPSafeFree(tmp_buffer);
  return ok;
}
#undef SAFE_ALLOC

//------------------------------------------------------------------------------
// "Fast" regular RGB->YUV

#define SUM4(ptr, step) LinearToGamma(                     \
    GammaToLinear((ptr)[0]) +                              \
    GammaToLinear((ptr)[(step)]) +                         \
    GammaToLinear((ptr)[rgb_stride]) +                     \
    GammaToLinear((ptr)[rgb_stride + (step)]), 0)          \

#define SUM2(ptr) \
    LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1)

#define SUM2ALPHA(ptr) ((ptr)[0] + (ptr)[rgb_stride])
#define SUM4ALPHA(ptr) (SUM2ALPHA(ptr) + SUM2ALPHA((ptr) + 4))

#if defined(USE_INVERSE_ALPHA_TABLE)

static const int kAlphaFix = 19;
// Following table is (1 << kAlphaFix) / a. The (v * kInvAlpha[a]) >> kAlphaFix
// formula is then equal to v / a in most (99.6%) cases. Note that this table
// and constant are adjusted very tightly to fit 32b arithmetic.
// In particular, they use the fact that the operands for 'v / a' are actually
// derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3
// with ai in [0..255] and pi in [0..1<<kGammaFix). The constraint to avoid
// overflow is: kGammaFix + kAlphaFix <= 31.
static const uint32_t kInvAlpha[4 * 0xff + 1] = {
  0,  /* alpha = 0 */
  524288, 262144, 174762, 131072, 104857, 87381, 74898, 65536,
  58254, 52428, 47662, 43690, 40329, 37449, 34952, 32768,
  30840, 29127, 27594, 26214, 24966, 23831, 22795, 21845,
  20971, 20164, 19418, 18724, 18078, 17476, 16912, 16384,
  15887, 15420, 14979, 14563, 14169, 13797, 13443, 13107,
  12787, 12483, 12192, 11915, 11650, 11397, 11155, 10922,
  10699, 10485, 10280, 10082, 9892, 9709, 9532, 9362,
  9198, 9039, 8886, 8738, 8594, 8456, 8322, 8192,
  8065, 7943, 7825, 7710, 7598, 7489, 7384, 7281,
  7182, 7084, 6990, 6898, 6808, 6721, 6636, 6553,
  6472, 6393, 6316, 6241, 6168, 6096, 6026, 5957,
  5890, 5825, 5761, 5698, 5637, 5577, 5518, 5461,
  5405, 5349, 5295, 5242, 5190, 5140, 5090, 5041,
  4993, 4946, 4899, 4854, 4809, 4766, 4723, 4681,
  4639, 4599, 4559, 4519, 4481, 4443, 4405, 4369,
  4332, 4297, 4262, 4228, 4194, 4161, 4128, 4096,
  4064, 4032, 4002, 3971, 3942, 3912, 3883, 3855,
  3826, 3799, 3771, 3744, 3718, 3692, 3666, 3640,
  3615, 3591, 3566, 3542, 3518, 3495, 3472, 3449,
  3426, 3404, 3382, 3360, 3339, 3318, 3297, 3276,
  3256, 3236, 3216, 3196, 3177, 3158, 3139, 3120,
  3102, 3084, 3066, 3048, 3030, 3013, 2995, 2978,
  2962, 2945, 2928, 2912, 2896, 2880, 2864, 2849,
  2833, 2818, 2803, 2788, 2774, 2759, 2744, 2730,
  2716, 2702, 2688, 2674, 2661, 2647, 2634, 2621,
  2608, 2595, 2582, 2570, 2557, 2545, 2532, 2520,
  2508, 2496, 2484, 2473, 2461, 2449, 2438, 2427,
  2416, 2404, 2394, 2383, 2372, 2361, 2351, 2340,
  2330, 2319, 2309, 2299, 2289, 2279, 2269, 2259,
  2250, 2240, 2231, 2221, 2212, 2202, 2193, 2184,
  2175, 2166, 2157, 2148, 2139, 2131, 2122, 2114,
  2105, 2097, 2088, 2080, 2072, 2064, 2056, 2048,
  2040, 2032, 2024, 2016, 2008, 2001, 1993, 1985,
  1978, 1971, 1963, 1956, 1949, 1941, 1934, 1927,
  1920, 1913, 1906, 1899, 1892, 1885, 1879, 1872,
  1865, 1859, 1852, 1846, 1839, 1833, 1826, 1820,
  1814, 1807, 1801, 1795, 1789, 1783, 1777, 1771,
  1765, 1759, 1753, 1747, 1741, 1736, 1730, 1724,
  1718, 1713, 1707, 1702, 1696, 1691, 1685, 1680,
  1675, 1669, 1664, 1659, 1653, 1648, 1643, 1638,
  1633, 1628, 1623, 1618, 1613, 1608, 1603, 1598,
  1593, 1588, 1583, 1579, 1574, 1569, 1565, 1560,
  1555, 1551, 1546, 1542, 1537, 1533, 1528, 1524,
  1519, 1515, 1510, 1506, 1502, 1497, 1493, 1489,
  1485, 1481, 1476, 1472, 1468, 1464, 1460, 1456,
  1452, 1448, 1444, 1440, 1436, 1432, 1428, 1424,
  1420, 1416, 1413, 1409, 1405, 1401, 1398, 1394,
  1390, 1387, 1383, 1379, 1376, 1372, 1368, 1365,
  1361, 1358, 1354, 1351, 1347, 1344, 1340, 1337,
  1334, 1330, 1327, 1323, 1320, 1317, 1314, 1310,
  1307, 1304, 1300, 1297, 1294, 1291, 1288, 1285,
  1281, 1278, 1275, 1272, 1269, 1266, 1263, 1260,
  1257, 1254, 1251, 1248, 1245, 1242, 1239, 1236,
  1233, 1230, 1227, 1224, 1222, 1219, 1216, 1213,
  1210, 1208, 1205, 1202, 1199, 1197, 1194, 1191,
  1188, 1186, 1183, 1180, 1178, 1175, 1172, 1170,
  1167, 1165, 1162, 1159, 1157, 1154, 1152, 1149,
  1147, 1144, 1142, 1139, 1137, 1134, 1132, 1129,
  1127, 1125, 1122, 1120, 1117, 1115, 1113, 1110,
  1108, 1106, 1103, 1101, 1099, 1096, 1094, 1092,
  1089, 1087, 1085, 1083, 1081, 1078, 1076, 1074,
  1072, 1069, 1067, 1065, 1063, 1061, 1059, 1057,
  1054, 1052, 1050, 1048, 1046, 1044, 1042, 1040,
  1038, 1036, 1034, 1032, 1030, 1028, 1026, 1024,
  1022, 1020, 1018, 1016, 1014, 1012, 1010, 1008,
  1006, 1004, 1002, 1000, 998, 996, 994, 992,
  991, 989, 987, 985, 983, 981, 979, 978,
  976, 974, 972, 970, 969, 967, 965, 963,
  961, 960, 958, 956, 954, 953, 951, 949,
  948, 946, 944, 942, 941, 939, 937, 936,
  934, 932, 931, 929, 927, 926, 924, 923,
  921, 919, 918, 916, 914, 913, 911, 910,
  908, 907, 905, 903, 902, 900, 899, 897,
  896, 894, 893, 891, 890, 888, 887, 885,
  884, 882, 881, 879, 878, 876, 875, 873,
  872, 870, 869, 868, 866, 865, 863, 862,
  860, 859, 858, 856, 855, 853, 852, 851,
  849, 848, 846, 845, 844, 842, 841, 840,
  838, 837, 836, 834, 833, 832, 830, 829,
  828, 826, 825, 824, 823, 821, 820, 819,
  817, 816, 815, 814, 812, 811, 810, 809,
  807, 806, 805, 804, 802, 801, 800, 799,
  798, 796, 795, 794, 793, 791, 790, 789,
  788, 787, 786, 784, 783, 782, 781, 780,
  779, 777, 776, 775, 774, 773, 772, 771,
  769, 768, 767, 766, 765, 764, 763, 762,
  760, 759, 758, 757, 756, 755, 754, 753,
  752, 751, 750, 748, 747, 746, 745, 744,
  743, 742, 741, 740, 739, 738, 737, 736,
  735, 734, 733, 732, 731, 730, 729, 728,
  727, 726, 725, 724, 723, 722, 721, 720,
  719, 718, 717, 716, 715, 714, 713, 712,
  711, 710, 709, 708, 707, 706, 705, 704,
  703, 702, 701, 700, 699, 699, 698, 697,
  696, 695, 694, 693, 692, 691, 690, 689,
  688, 688, 687, 686, 685, 684, 683, 682,
  681, 680, 680, 679, 678, 677, 676, 675,
  674, 673, 673, 672, 671, 670, 669, 668,
  667, 667, 666, 665, 664, 663, 662, 661,
  661, 660, 659, 658, 657, 657, 656, 655,
  654, 653, 652, 652, 651, 650, 649, 648,
  648, 647, 646, 645, 644, 644, 643, 642,
  641, 640, 640, 639, 638, 637, 637, 636,
  635, 634, 633, 633, 632, 631, 630, 630,
  629, 628, 627, 627, 626, 625, 624, 624,
  623, 622, 621, 621, 620, 619, 618, 618,
  617, 616, 616, 615, 614, 613, 613, 612,
  611, 611, 610, 609, 608, 608, 607, 606,
  606, 605, 604, 604, 603, 602, 601, 601,
  600, 599, 599, 598, 597, 597, 596, 595,
  595, 594, 593, 593, 592, 591, 591, 590,
  589, 589, 588, 587, 587, 586, 585, 585,
  584, 583, 583, 582, 581, 581, 580, 579,
  579, 578, 578, 577, 576, 576, 575, 574,
  574, 573, 572, 572, 571, 571, 570, 569,
  569, 568, 568, 567, 566, 566, 565, 564,
  564, 563, 563, 562, 561, 561, 560, 560,
  559, 558, 558, 557, 557, 556, 555, 555,
  554, 554, 553, 553, 552, 551, 551, 550,
  550, 549, 548, 548, 547, 547, 546, 546,
  545, 544, 544, 543, 543, 542, 542, 541,
  541, 540, 539, 539, 538, 538, 537, 537,
  536, 536, 535, 534, 534, 533, 533, 532,
  532, 531, 531, 530, 530, 529, 529, 528,
  527, 527, 526, 526, 525, 525, 524, 524,
  523, 523, 522, 522, 521, 521, 520, 520,
  519, 519, 518, 518, 517, 517, 516, 516,
  515, 515, 514, 514
};

// Note that LinearToGamma() expects the values to be premultiplied by 4,
// so we incorporate this factor 4 inside the DIVIDE_BY_ALPHA macro directly.
#define DIVIDE_BY_ALPHA(sum, a)  (((sum) * kInvAlpha[(a)]) >> (kAlphaFix - 2))

#else

#define DIVIDE_BY_ALPHA(sum, a) (4 * (sum) / (a))

#endif  // USE_INVERSE_ALPHA_TABLE

static WEBP_INLINE int LinearToGammaWeighted(const uint8_t* src,
                                             const uint8_t* a_ptr,
                                             uint32_t total_a, int step,
                                             int rgb_stride) {
  const uint32_t sum =
      a_ptr[0] * GammaToLinear(src[0]) +
      a_ptr[step] * GammaToLinear(src[step]) +
      a_ptr[rgb_stride] * GammaToLinear(src[rgb_stride]) +
      a_ptr[rgb_stride + step] * GammaToLinear(src[rgb_stride + step]);
  assert(total_a > 0 && total_a <= 4 * 0xff);
#if defined(USE_INVERSE_ALPHA_TABLE)
  assert((uint64_t)sum * kInvAlpha[total_a] < ((uint64_t)1 << 32));
#endif
  return LinearToGamma(DIVIDE_BY_ALPHA(sum, total_a), 0);
}

static WEBP_INLINE void ConvertRowToY(const uint8_t* const r_ptr,
                                      const uint8_t* const g_ptr,
                                      const uint8_t* const b_ptr,
                                      int step,
                                      uint8_t* const dst_y,
                                      int width,
                                      VP8Random* const rg) {
  int i, j;
  for (i = 0, j = 0; i < width; i += 1, j += step) {
    dst_y[i] = RGBToY(r_ptr[j], g_ptr[j], b_ptr[j], rg);
  }
}

static WEBP_INLINE void AccumulateRGBA(const uint8_t* const r_ptr,
                                       const uint8_t* const g_ptr,
                                       const uint8_t* const b_ptr,
                                       const uint8_t* const a_ptr,
                                       int rgb_stride,
                                       uint16_t* dst, int width) {
  int i, j;
  // we loop over 2x2 blocks and produce one R/G/B/A value for each.
  for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * 4, dst += 4) {
    const uint32_t a = SUM4ALPHA(a_ptr + j);
    int r, g, b;
    if (a == 4 * 0xff || a == 0) {
      r = SUM4(r_ptr + j, 4);
      g = SUM4(g_ptr + j, 4);
      b = SUM4(b_ptr + j, 4);
    } else {
      r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 4, rgb_stride);
      g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 4, rgb_stride);
      b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 4, rgb_stride);
    }
    dst[0] = r;
    dst[1] = g;
    dst[2] = b;
    dst[3] = a;
  }
  if (width & 1) {
    const uint32_t a = 2u * SUM2ALPHA(a_ptr + j);
    int r, g, b;
    if (a == 4 * 0xff || a == 0) {
      r = SUM2(r_ptr + j);
      g = SUM2(g_ptr + j);
      b = SUM2(b_ptr + j);
    } else {
      r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 0, rgb_stride);
      g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 0, rgb_stride);
      b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 0, rgb_stride);
    }
    dst[0] = r;
    dst[1] = g;
    dst[2] = b;
    dst[3] = a;
  }
}

static WEBP_INLINE void AccumulateRGB(const uint8_t* const r_ptr,
                                      const uint8_t* const g_ptr,
                                      const uint8_t* const b_ptr,
                                      int step, int rgb_stride,
                                      uint16_t* dst, int width) {
  int i, j;
  for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * step, dst += 4) {
    dst[0] = SUM4(r_ptr + j, step);
    dst[1] = SUM4(g_ptr + j, step);
    dst[2] = SUM4(b_ptr + j, step);
  }
  if (width & 1) {
    dst[0] = SUM2(r_ptr + j);
    dst[1] = SUM2(g_ptr + j);
    dst[2] = SUM2(b_ptr + j);
  }
}

static WEBP_INLINE void ConvertRowsToUV(const uint16_t* rgb,
                                        uint8_t* const dst_u,
                                        uint8_t* const dst_v,
                                        int width,
                                        VP8Random* const rg) {
  int i;
  for (i = 0; i < width; i += 1, rgb += 4) {
    const int r = rgb[0], g = rgb[1], b = rgb[2];
    dst_u[i] = RGBToU(r, g, b, rg);
    dst_v[i] = RGBToV(r, g, b, rg);
  }
}

static int ImportYUVAFromRGBA(const uint8_t* r_ptr,
                              const uint8_t* g_ptr,
                              const uint8_t* b_ptr,
                              const uint8_t* a_ptr,
                              int step,         // bytes per pixel
                              int rgb_stride,   // bytes per scanline
                              float dithering,
                              int use_iterative_conversion,
                              WebPPicture* const picture) {
  int y;
  const int width = picture->width;
  const int height = picture->height;
  const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride);
  const int is_rgb = (r_ptr < b_ptr);  // otherwise it's bgr

  picture->colorspace = has_alpha ? WEBP_YUV420A : WEBP_YUV420;
  picture->use_argb = 0;

  // disable smart conversion if source is too small (overkill).
  if (width < kMinDimensionIterativeConversion ||
      height < kMinDimensionIterativeConversion) {
    use_iterative_conversion = 0;
  }

  if (!WebPPictureAllocYUVA(picture, width, height)) {
    return 0;
  }
  if (has_alpha) {
    assert(step == 4);
#if defined(USE_GAMMA_COMPRESSION) && defined(USE_INVERSE_ALPHA_TABLE)
    assert(kAlphaFix + kGammaFix <= 31);
#endif
  }

  if (use_iterative_conversion) {
    InitGammaTablesS();
    if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) {
      return 0;
    }
    if (has_alpha) {
      WebPExtractAlpha(a_ptr, rgb_stride, width, height,
                       picture->a, picture->a_stride);
    }
  } else {
    const int uv_width = (width + 1) >> 1;
    int use_dsp = (step == 3);  // use special function in this case
    // temporary storage for accumulated R/G/B values during conversion to U/V
    uint16_t* const tmp_rgb =
        (uint16_t*)WebPSafeMalloc(4 * uv_width, sizeof(*tmp_rgb));
    uint8_t* dst_y = picture->y;
    uint8_t* dst_u = picture->u;
    uint8_t* dst_v = picture->v;
    uint8_t* dst_a = picture->a;

    VP8Random base_rg;
    VP8Random* rg = NULL;
    if (dithering > 0.) {
      VP8InitRandom(&base_rg, dithering);
      rg = &base_rg;
      use_dsp = 0;   // can't use dsp in this case
    }
    WebPInitConvertARGBToYUV();
    InitGammaTables();

    if (tmp_rgb == NULL) return 0;  // malloc error

    // Downsample Y/U/V planes, two rows at a time
    for (y = 0; y < (height >> 1); ++y) {
      int rows_have_alpha = has_alpha;
      if (use_dsp) {
        if (is_rgb) {
          WebPConvertRGB24ToY(r_ptr, dst_y, width);
          WebPConvertRGB24ToY(r_ptr + rgb_stride,
                              dst_y + picture->y_stride, width);
        } else {
          WebPConvertBGR24ToY(b_ptr, dst_y, width);
          WebPConvertBGR24ToY(b_ptr + rgb_stride,
                              dst_y + picture->y_stride, width);
        }
      } else {
        ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg);
        ConvertRowToY(r_ptr + rgb_stride,
                      g_ptr + rgb_stride,
                      b_ptr + rgb_stride, step,
                      dst_y + picture->y_stride, width, rg);
      }
      dst_y += 2 * picture->y_stride;
      if (has_alpha) {
        rows_have_alpha &= !WebPExtractAlpha(a_ptr, rgb_stride, width, 2,
                                             dst_a, picture->a_stride);
        dst_a += 2 * picture->a_stride;
      }
      // Collect averaged R/G/B(/A)
      if (!rows_have_alpha) {
        AccumulateRGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, tmp_rgb, width);
      } else {
        AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, rgb_stride, tmp_rgb, width);
      }
      // Convert to U/V
      if (rg == NULL) {
        WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width);
      } else {
        ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg);
      }
      dst_u += picture->uv_stride;
      dst_v += picture->uv_stride;
      r_ptr += 2 * rgb_stride;
      b_ptr += 2 * rgb_stride;
      g_ptr += 2 * rgb_stride;
      if (has_alpha) a_ptr += 2 * rgb_stride;
    }
    if (height & 1) {    // extra last row
      int row_has_alpha = has_alpha;
      if (use_dsp) {
        if (r_ptr < b_ptr) {
          WebPConvertRGB24ToY(r_ptr, dst_y, width);
        } else {
          WebPConvertBGR24ToY(b_ptr, dst_y, width);
        }
      } else {
        ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg);
      }
      if (row_has_alpha) {
        row_has_alpha &= !WebPExtractAlpha(a_ptr, 0, width, 1, dst_a, 0);
      }
      // Collect averaged R/G/B(/A)
      if (!row_has_alpha) {
        // Collect averaged R/G/B
        AccumulateRGB(r_ptr, g_ptr, b_ptr, step, /* rgb_stride = */ 0,
                      tmp_rgb, width);
      } else {
        AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, /* rgb_stride = */ 0,
                       tmp_rgb, width);
      }
      if (rg == NULL) {
        WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width);
      } else {
        ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg);
      }
    }
    WebPSafeFree(tmp_rgb);
  }
  return 1;
}

#undef SUM4
#undef SUM2
#undef SUM4ALPHA
#undef SUM2ALPHA

//------------------------------------------------------------------------------
// call for ARGB->YUVA conversion

static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace,
                             float dithering, int use_iterative_conversion) {
  if (picture == NULL) return 0;
  if (picture->argb == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  } else if ((colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
  } else {
    const uint8_t* const argb = (const uint8_t*)picture->argb;
    const uint8_t* const a = argb + (0 ^ ALPHA_OFFSET);
    const uint8_t* const r = argb + (1 ^ ALPHA_OFFSET);
    const uint8_t* const g = argb + (2 ^ ALPHA_OFFSET);
    const uint8_t* const b = argb + (3 ^ ALPHA_OFFSET);

    picture->colorspace = WEBP_YUV420;
    return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride,
                              dithering, use_iterative_conversion, picture);
  }
}

int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace,
                                  float dithering) {
  return PictureARGBToYUVA(picture, colorspace, dithering, 0);
}

int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) {
  return PictureARGBToYUVA(picture, colorspace, 0.f, 0);
}

int WebPPictureSharpARGBToYUVA(WebPPicture* picture) {
  return PictureARGBToYUVA(picture, WEBP_YUV420, 0.f, 1);
}
// for backward compatibility
int WebPPictureSmartARGBToYUVA(WebPPicture* picture) {
  return WebPPictureSharpARGBToYUVA(picture);
}

//------------------------------------------------------------------------------
// call for YUVA -> ARGB conversion

int WebPPictureYUVAToARGB(WebPPicture* picture) {
  if (picture == NULL) return 0;
  if (picture->y == NULL || picture->u == NULL || picture->v == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  }
  if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
  }
  if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) {
    return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
  }
  // Allocate a new argb buffer (discarding the previous one).
  if (!WebPPictureAllocARGB(picture, picture->width, picture->height)) return 0;
  picture->use_argb = 1;

  // Convert
  {
    int y;
    const int width = picture->width;
    const int height = picture->height;
    const int argb_stride = 4 * picture->argb_stride;
    uint8_t* dst = (uint8_t*)picture->argb;
    const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y;
    WebPUpsampleLinePairFunc upsample =
        WebPGetLinePairConverter(ALPHA_OFFSET > 0);

    // First row, with replicated top samples.
    upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
    cur_y += picture->y_stride;
    dst += argb_stride;
    // Center rows.
    for (y = 1; y + 1 < height; y += 2) {
      const uint8_t* const top_u = cur_u;
      const uint8_t* const top_v = cur_v;
      cur_u += picture->uv_stride;
      cur_v += picture->uv_stride;
      upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v,
               dst, dst + argb_stride, width);
      cur_y += 2 * picture->y_stride;
      dst += 2 * argb_stride;
    }
    // Last row (if needed), with replicated bottom samples.
    if (height > 1 && !(height & 1)) {
      upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
    }
    // Insert alpha values if needed, in replacement for the default 0xff ones.
    if (picture->colorspace & WEBP_CSP_ALPHA_BIT) {
      for (y = 0; y < height; ++y) {
        uint32_t* const argb_dst = picture->argb + y * picture->argb_stride;
        const uint8_t* const src = picture->a + y * picture->a_stride;
        int x;
        for (x = 0; x < width; ++x) {
          argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24);
        }
      }
    }
  }
  return 1;
}

//------------------------------------------------------------------------------
// automatic import / conversion

static int Import(WebPPicture* const picture,
                  const uint8_t* rgb, int rgb_stride,
                  int step, int swap_rb, int import_alpha) {
  int y;
  // swap_rb -> b,g,r,a , !swap_rb -> r,g,b,a
  const uint8_t* r_ptr = rgb + (swap_rb ? 2 : 0);
  const uint8_t* g_ptr = rgb + 1;
  const uint8_t* b_ptr = rgb + (swap_rb ? 0 : 2);
  const int width = picture->width;
  const int height = picture->height;

  if (!picture->use_argb) {
    const uint8_t* a_ptr = import_alpha ? rgb + 3 : NULL;
    return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride,
                              0.f /* no dithering */, 0, picture);
  }
  if (!WebPPictureAlloc(picture)) return 0;

  VP8LDspInit();
  WebPInitAlphaProcessing();

  if (import_alpha) {
    // dst[] byte order is {a,r,g,b} for big-endian, {b,g,r,a} for little endian
    uint32_t* dst = picture->argb;
    const int do_copy = (ALPHA_OFFSET == 3) && swap_rb;
    assert(step == 4);
    if (do_copy) {
      for (y = 0; y < height; ++y) {
        memcpy(dst, rgb, width * 4);
        rgb += rgb_stride;
        dst += picture->argb_stride;
      }
    } else {
      for (y = 0; y < height; ++y) {
#ifdef WORDS_BIGENDIAN
        // BGRA or RGBA input order.
        const uint8_t* a_ptr = rgb + 3;
        WebPPackARGB(a_ptr, r_ptr, g_ptr, b_ptr, width, dst);
        r_ptr += rgb_stride;
        g_ptr += rgb_stride;
        b_ptr += rgb_stride;
#else
        // RGBA input order. Need to swap R and B.
        VP8LConvertBGRAToRGBA((const uint32_t*)rgb, width, (uint8_t*)dst);
#endif
        rgb += rgb_stride;
        dst += picture->argb_stride;
      }
    }
  } else {
    uint32_t* dst = picture->argb;
    assert(step >= 3);
    for (y = 0; y < height; ++y) {
      WebPPackRGB(r_ptr, g_ptr, b_ptr, width, step, dst);
      r_ptr += rgb_stride;
      g_ptr += rgb_stride;
      b_ptr += rgb_stride;
      dst += picture->argb_stride;
    }
  }
  return 1;
}

// Public API

#if !defined(WEBP_REDUCE_CSP)

int WebPPictureImportBGR(WebPPicture* picture,
                         const uint8_t* rgb, int rgb_stride) {
  return (picture != NULL && rgb != NULL)
             ? Import(picture, rgb, rgb_stride, 3, 1, 0)
             : 0;
}

int WebPPictureImportBGRA(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return (picture != NULL && rgba != NULL)
             ? Import(picture, rgba, rgba_stride, 4, 1, 1)
             : 0;
}


int WebPPictureImportBGRX(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return (picture != NULL && rgba != NULL)
             ? Import(picture, rgba, rgba_stride, 4, 1, 0)
             : 0;
}

#endif   // WEBP_REDUCE_CSP

int WebPPictureImportRGB(WebPPicture* picture,
                         const uint8_t* rgb, int rgb_stride) {
  return (picture != NULL && rgb != NULL)
             ? Import(picture, rgb, rgb_stride, 3, 0, 0)
             : 0;
}

int WebPPictureImportRGBA(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return (picture != NULL && rgba != NULL)
             ? Import(picture, rgba, rgba_stride, 4, 0, 1)
             : 0;
}

int WebPPictureImportRGBX(WebPPicture* picture,
                          const uint8_t* rgba, int rgba_stride) {
  return (picture != NULL && rgba != NULL)
             ? Import(picture, rgba, rgba_stride, 4, 0, 0)
             : 0;
}

//------------------------------------------------------------------------------