summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/src/enc/histogram_enc.c
blob: 056a972dda0e8f42312bfcd2d7a6ab8deca6070c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#ifdef HAVE_CONFIG_H
#include "src/webp/config.h"
#endif

#include <math.h>

#include "src/enc/backward_references_enc.h"
#include "src/enc/histogram_enc.h"
#include "src/dsp/lossless.h"
#include "src/dsp/lossless_common.h"
#include "src/utils/utils.h"

#define MAX_COST 1.e38

// Number of partitions for the three dominant (literal, red and blue) symbol
// costs.
#define NUM_PARTITIONS 4
// The size of the bin-hash corresponding to the three dominant costs.
#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
// Maximum number of histograms allowed in greedy combining algorithm.
#define MAX_HISTO_GREEDY 100

static void HistogramClear(VP8LHistogram* const p) {
  uint32_t* const literal = p->literal_;
  const int cache_bits = p->palette_code_bits_;
  const int histo_size = VP8LGetHistogramSize(cache_bits);
  memset(p, 0, histo_size);
  p->palette_code_bits_ = cache_bits;
  p->literal_ = literal;
}

// Swap two histogram pointers.
static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
  VP8LHistogram* const tmp = *A;
  *A = *B;
  *B = tmp;
}

static void HistogramCopy(const VP8LHistogram* const src,
                          VP8LHistogram* const dst) {
  uint32_t* const dst_literal = dst->literal_;
  const int dst_cache_bits = dst->palette_code_bits_;
  const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
  assert(src->palette_code_bits_ == dst_cache_bits);
  memcpy(dst, src, histo_size);
  dst->literal_ = dst_literal;
}

int VP8LGetHistogramSize(int cache_bits) {
  const int literal_size = VP8LHistogramNumCodes(cache_bits);
  const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
  assert(total_size <= (size_t)0x7fffffff);
  return (int)total_size;
}

void VP8LFreeHistogram(VP8LHistogram* const histo) {
  WebPSafeFree(histo);
}

void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
  WebPSafeFree(histo);
}

void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
                            VP8LHistogram* const histo) {
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  while (VP8LRefsCursorOk(&c)) {
    VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0);
    VP8LRefsCursorNext(&c);
  }
}

void VP8LHistogramCreate(VP8LHistogram* const p,
                         const VP8LBackwardRefs* const refs,
                         int palette_code_bits) {
  if (palette_code_bits >= 0) {
    p->palette_code_bits_ = palette_code_bits;
  }
  HistogramClear(p);
  VP8LHistogramStoreRefs(refs, p);
}

void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
  p->palette_code_bits_ = palette_code_bits;
  HistogramClear(p);
}

VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
  VP8LHistogram* histo = NULL;
  const int total_size = VP8LGetHistogramSize(cache_bits);
  uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
  if (memory == NULL) return NULL;
  histo = (VP8LHistogram*)memory;
  // literal_ won't necessary be aligned.
  histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
  VP8LHistogramInit(histo, cache_bits);
  return histo;
}

VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
  int i;
  VP8LHistogramSet* set;
  const int histo_size = VP8LGetHistogramSize(cache_bits);
  const size_t total_size =
      sizeof(*set) + size * (sizeof(*set->histograms) +
      histo_size + WEBP_ALIGN_CST);
  uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
  if (memory == NULL) return NULL;

  set = (VP8LHistogramSet*)memory;
  memory += sizeof(*set);
  set->histograms = (VP8LHistogram**)memory;
  memory += size * sizeof(*set->histograms);
  set->max_size = size;
  set->size = size;
  for (i = 0; i < size; ++i) {
    memory = (uint8_t*)WEBP_ALIGN(memory);
    set->histograms[i] = (VP8LHistogram*)memory;
    // literal_ won't necessary be aligned.
    set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
    VP8LHistogramInit(set->histograms[i], cache_bits);
    memory += histo_size;
  }
  return set;
}

// -----------------------------------------------------------------------------

void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
                                     const PixOrCopy* const v,
                                     int (*const distance_modifier)(int, int),
                                     int distance_modifier_arg0) {
  if (PixOrCopyIsLiteral(v)) {
    ++histo->alpha_[PixOrCopyLiteral(v, 3)];
    ++histo->red_[PixOrCopyLiteral(v, 2)];
    ++histo->literal_[PixOrCopyLiteral(v, 1)];
    ++histo->blue_[PixOrCopyLiteral(v, 0)];
  } else if (PixOrCopyIsCacheIdx(v)) {
    const int literal_ix =
        NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
    ++histo->literal_[literal_ix];
  } else {
    int code, extra_bits;
    VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
    ++histo->literal_[NUM_LITERAL_CODES + code];
    if (distance_modifier == NULL) {
      VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
    } else {
      VP8LPrefixEncodeBits(
          distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)),
          &code, &extra_bits);
    }
    ++histo->distance_[code];
  }
}

// -----------------------------------------------------------------------------
// Entropy-related functions.

static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
  double mix;
  if (entropy->nonzeros < 5) {
    if (entropy->nonzeros <= 1) {
      return 0;
    }
    // Two symbols, they will be 0 and 1 in a Huffman code.
    // Let's mix in a bit of entropy to favor good clustering when
    // distributions of these are combined.
    if (entropy->nonzeros == 2) {
      return 0.99 * entropy->sum + 0.01 * entropy->entropy;
    }
    // No matter what the entropy says, we cannot be better than min_limit
    // with Huffman coding. I am mixing a bit of entropy into the
    // min_limit since it produces much better (~0.5 %) compression results
    // perhaps because of better entropy clustering.
    if (entropy->nonzeros == 3) {
      mix = 0.95;
    } else {
      mix = 0.7;  // nonzeros == 4.
    }
  } else {
    mix = 0.627;
  }

  {
    double min_limit = 2 * entropy->sum - entropy->max_val;
    min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
    return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
  }
}

double VP8LBitsEntropy(const uint32_t* const array, int n,
                       uint32_t* const trivial_symbol) {
  VP8LBitEntropy entropy;
  VP8LBitsEntropyUnrefined(array, n, &entropy);
  if (trivial_symbol != NULL) {
    *trivial_symbol =
        (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
  }

  return BitsEntropyRefine(&entropy);
}

static double InitialHuffmanCost(void) {
  // Small bias because Huffman code length is typically not stored in
  // full length.
  static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
  static const double kSmallBias = 9.1;
  return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
}

// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
static double FinalHuffmanCost(const VP8LStreaks* const stats) {
  // The constants in this function are experimental and got rounded from
  // their original values in 1/8 when switched to 1/1024.
  double retval = InitialHuffmanCost();
  // Second coefficient: Many zeros in the histogram are covered efficiently
  // by a run-length encode. Originally 2/8.
  retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
  // Second coefficient: Constant values are encoded less efficiently, but still
  // RLE'ed. Originally 6/8.
  retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
  // 0s are usually encoded more efficiently than non-0s.
  // Originally 15/8.
  retval += 1.796875 * stats->streaks[0][0];
  // Originally 26/8.
  retval += 3.28125 * stats->streaks[1][0];
  return retval;
}

// Get the symbol entropy for the distribution 'population'.
// Set 'trivial_sym', if there's only one symbol present in the distribution.
static double PopulationCost(const uint32_t* const population, int length,
                             uint32_t* const trivial_sym) {
  VP8LBitEntropy bit_entropy;
  VP8LStreaks stats;
  VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
  if (trivial_sym != NULL) {
    *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
                                               : VP8L_NON_TRIVIAL_SYM;
  }

  return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
}

// trivial_at_end is 1 if the two histograms only have one element that is
// non-zero: both the zero-th one, or both the last one.
static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
                                             const uint32_t* const Y,
                                             int length, int trivial_at_end) {
  VP8LStreaks stats;
  if (trivial_at_end) {
    // This configuration is due to palettization that transforms an indexed
    // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
    // BitsEntropyRefine is 0 for histograms with only one non-zero value.
    // Only FinalHuffmanCost needs to be evaluated.
    memset(&stats, 0, sizeof(stats));
    // Deal with the non-zero value at index 0 or length-1.
    stats.streaks[1][0] += 1;
    // Deal with the following/previous zero streak.
    stats.counts[0] += 1;
    stats.streaks[0][1] += length - 1;
    return FinalHuffmanCost(&stats);
  } else {
    VP8LBitEntropy bit_entropy;
    VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);

    return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
  }
}

// Estimates the Entropy + Huffman + other block overhead size cost.
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
  return
      PopulationCost(
          p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
      + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
      + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
      + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
      + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
      + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
      + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
}

// -----------------------------------------------------------------------------
// Various histogram combine/cost-eval functions

static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
                                       const VP8LHistogram* const b,
                                       double cost_threshold,
                                       double* cost) {
  const int palette_code_bits = a->palette_code_bits_;
  int trivial_at_end = 0;
  assert(a->palette_code_bits_ == b->palette_code_bits_);
  *cost += GetCombinedEntropy(a->literal_, b->literal_,
                              VP8LHistogramNumCodes(palette_code_bits), 0);
  *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
                                 b->literal_ + NUM_LITERAL_CODES,
                                 NUM_LENGTH_CODES);
  if (*cost > cost_threshold) return 0;

  if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
      a->trivial_symbol_ == b->trivial_symbol_) {
    // A, R and B are all 0 or 0xff.
    const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
    const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
    const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
    if ((color_a == 0 || color_a == 0xff) &&
        (color_r == 0 || color_r == 0xff) &&
        (color_b == 0 || color_b == 0xff)) {
      trivial_at_end = 1;
    }
  }

  *cost +=
      GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end);
  if (*cost > cost_threshold) return 0;

  *cost +=
      GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end);
  if (*cost > cost_threshold) return 0;

  *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
                              trivial_at_end);
  if (*cost > cost_threshold) return 0;

  *cost +=
      GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0);
  *cost +=
      VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
  if (*cost > cost_threshold) return 0;

  return 1;
}

static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
                                     const VP8LHistogram* const b,
                                     VP8LHistogram* const out) {
  VP8LHistogramAdd(a, b, out);
  out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
                       ? a->trivial_symbol_
                       : VP8L_NON_TRIVIAL_SYM;
}

// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
// to the threshold value 'cost_threshold'. The score returned is
//  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
// Since the previous score passed is 'cost_threshold', we only need to compare
// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
// early.
static double HistogramAddEval(const VP8LHistogram* const a,
                               const VP8LHistogram* const b,
                               VP8LHistogram* const out,
                               double cost_threshold) {
  double cost = 0;
  const double sum_cost = a->bit_cost_ + b->bit_cost_;
  cost_threshold += sum_cost;

  if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
    HistogramAdd(a, b, out);
    out->bit_cost_ = cost;
    out->palette_code_bits_ = a->palette_code_bits_;
  }

  return cost - sum_cost;
}

// Same as HistogramAddEval(), except that the resulting histogram
// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
// the term C(b) which is constant over all the evaluations.
static double HistogramAddThresh(const VP8LHistogram* const a,
                                 const VP8LHistogram* const b,
                                 double cost_threshold) {
  double cost = -a->bit_cost_;
  GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
  return cost;
}

// -----------------------------------------------------------------------------

// The structure to keep track of cost range for the three dominant entropy
// symbols.
// TODO(skal): Evaluate if float can be used here instead of double for
// representing the entropy costs.
typedef struct {
  double literal_max_;
  double literal_min_;
  double red_max_;
  double red_min_;
  double blue_max_;
  double blue_min_;
} DominantCostRange;

static void DominantCostRangeInit(DominantCostRange* const c) {
  c->literal_max_ = 0.;
  c->literal_min_ = MAX_COST;
  c->red_max_ = 0.;
  c->red_min_ = MAX_COST;
  c->blue_max_ = 0.;
  c->blue_min_ = MAX_COST;
}

static void UpdateDominantCostRange(
    const VP8LHistogram* const h, DominantCostRange* const c) {
  if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
  if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
  if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
  if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
  if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
  if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
}

static void UpdateHistogramCost(VP8LHistogram* const h) {
  uint32_t alpha_sym, red_sym, blue_sym;
  const double alpha_cost =
      PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
  const double distance_cost =
      PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
      VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
  const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
  h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
                     VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
                                   NUM_LENGTH_CODES);
  h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
  h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
  h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
                 alpha_cost + distance_cost;
  if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
    h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
  } else {
    h->trivial_symbol_ =
        ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
  }
}

static int GetBinIdForEntropy(double min, double max, double val) {
  const double range = max - min;
  if (range > 0.) {
    const double delta = val - min;
    return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
  } else {
    return 0;
  }
}

static int GetHistoBinIndex(const VP8LHistogram* const h,
                            const DominantCostRange* const c, int low_effort) {
  int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
                                  h->literal_cost_);
  assert(bin_id < NUM_PARTITIONS);
  if (!low_effort) {
    bin_id = bin_id * NUM_PARTITIONS
           + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
    bin_id = bin_id * NUM_PARTITIONS
           + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
    assert(bin_id < BIN_SIZE);
  }
  return bin_id;
}

// Construct the histograms from backward references.
static void HistogramBuild(
    int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
    VP8LHistogramSet* const image_histo) {
  int x = 0, y = 0;
  const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
  VP8LHistogram** const histograms = image_histo->histograms;
  VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
  assert(histo_bits > 0);
  while (VP8LRefsCursorOk(&c)) {
    const PixOrCopy* const v = c.cur_pos;
    const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
    VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0);
    x += PixOrCopyLength(v);
    while (x >= xsize) {
      x -= xsize;
      ++y;
    }
    VP8LRefsCursorNext(&c);
  }
}

// Copies the histograms and computes its bit_cost.
static void HistogramCopyAndAnalyze(
    VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
  int i;
  const int histo_size = orig_histo->size;
  VP8LHistogram** const orig_histograms = orig_histo->histograms;
  VP8LHistogram** const histograms = image_histo->histograms;
  for (i = 0; i < histo_size; ++i) {
    VP8LHistogram* const histo = orig_histograms[i];
    UpdateHistogramCost(histo);
    // Copy histograms from orig_histo[] to image_histo[].
    HistogramCopy(histo, histograms[i]);
  }
}

// Partition histograms to different entropy bins for three dominant (literal,
// red and blue) symbol costs and compute the histogram aggregate bit_cost.
static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
                                       uint16_t* const bin_map,
                                       int low_effort) {
  int i;
  VP8LHistogram** const histograms = image_histo->histograms;
  const int histo_size = image_histo->size;
  DominantCostRange cost_range;
  DominantCostRangeInit(&cost_range);

  // Analyze the dominant (literal, red and blue) entropy costs.
  for (i = 0; i < histo_size; ++i) {
    UpdateDominantCostRange(histograms[i], &cost_range);
  }

  // bin-hash histograms on three of the dominant (literal, red and blue)
  // symbol costs and store the resulting bin_id for each histogram.
  for (i = 0; i < histo_size; ++i) {
    bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
  }
}

// Compact image_histo[] by merging some histograms with same bin_id together if
// it's advantageous.
static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo,
                                       VP8LHistogram* cur_combo,
                                       const uint16_t* const bin_map,
                                       int bin_map_size, int num_bins,
                                       double combine_cost_factor,
                                       int low_effort) {
  VP8LHistogram** const histograms = image_histo->histograms;
  int idx;
  // Work in-place: processed histograms are put at the beginning of
  // image_histo[]. At the end, we just have to truncate the array.
  int size = 0;
  struct {
    int16_t first;    // position of the histogram that accumulates all
                      // histograms with the same bin_id
    uint16_t num_combine_failures;   // number of combine failures per bin_id
  } bin_info[BIN_SIZE];

  assert(num_bins <= BIN_SIZE);
  for (idx = 0; idx < num_bins; ++idx) {
    bin_info[idx].first = -1;
    bin_info[idx].num_combine_failures = 0;
  }

  for (idx = 0; idx < bin_map_size; ++idx) {
    const int bin_id = bin_map[idx];
    const int first = bin_info[bin_id].first;
    assert(size <= idx);
    if (first == -1) {
      // just move histogram #idx to its final position
      histograms[size] = histograms[idx];
      bin_info[bin_id].first = size++;
    } else if (low_effort) {
      HistogramAdd(histograms[idx], histograms[first], histograms[first]);
    } else {
      // try to merge #idx into #first (both share the same bin_id)
      const double bit_cost = histograms[idx]->bit_cost_;
      const double bit_cost_thresh = -bit_cost * combine_cost_factor;
      const double curr_cost_diff =
          HistogramAddEval(histograms[first], histograms[idx],
                           cur_combo, bit_cost_thresh);
      if (curr_cost_diff < bit_cost_thresh) {
        // Try to merge two histograms only if the combo is a trivial one or
        // the two candidate histograms are already non-trivial.
        // For some images, 'try_combine' turns out to be false for a lot of
        // histogram pairs. In that case, we fallback to combining
        // histograms as usual to avoid increasing the header size.
        const int try_combine =
            (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
            ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
             (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
        const int max_combine_failures = 32;
        if (try_combine ||
            bin_info[bin_id].num_combine_failures >= max_combine_failures) {
          // move the (better) merged histogram to its final slot
          HistogramSwap(&cur_combo, &histograms[first]);
        } else {
          histograms[size++] = histograms[idx];
          ++bin_info[bin_id].num_combine_failures;
        }
      } else {
        histograms[size++] = histograms[idx];
      }
    }
  }
  image_histo->size = size;
  if (low_effort) {
    // for low_effort case, update the final cost when everything is merged
    for (idx = 0; idx < size; ++idx) {
      UpdateHistogramCost(histograms[idx]);
    }
  }
}

// Implement a Lehmer random number generator with a multiplicative constant of
// 48271 and a modulo constant of 2^31 − 1.
static uint32_t MyRand(uint32_t* const seed) {
  *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u);
  assert(*seed > 0);
  return *seed;
}

// -----------------------------------------------------------------------------
// Histogram pairs priority queue

// Pair of histograms. Negative idx1 value means that pair is out-of-date.
typedef struct {
  int idx1;
  int idx2;
  double cost_diff;
  double cost_combo;
} HistogramPair;

typedef struct {
  HistogramPair* queue;
  int size;
  int max_size;
} HistoQueue;

static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
  histo_queue->size = 0;
  // max_index^2 for the queue size is safe. If you look at
  // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
  // data to the queue, you insert at most:
  // - max_index*(max_index-1)/2 (the first two for loops)
  // - max_index - 1 in the last for loop at the first iteration of the while
  //   loop, max_index - 2 at the second iteration ... therefore
  //   max_index*(max_index-1)/2 overall too
  histo_queue->max_size = max_index * max_index;
  // We allocate max_size + 1 because the last element at index "size" is
  // used as temporary data (and it could be up to max_size).
  histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
      histo_queue->max_size + 1, sizeof(*histo_queue->queue));
  return histo_queue->queue != NULL;
}

static void HistoQueueClear(HistoQueue* const histo_queue) {
  assert(histo_queue != NULL);
  WebPSafeFree(histo_queue->queue);
  histo_queue->size = 0;
  histo_queue->max_size = 0;
}

// Pop a specific pair in the queue by replacing it with the last one
// and shrinking the queue.
static void HistoQueuePopPair(HistoQueue* const histo_queue,
                              HistogramPair* const pair) {
  assert(pair >= histo_queue->queue &&
         pair < (histo_queue->queue + histo_queue->size));
  assert(histo_queue->size > 0);
  *pair = histo_queue->queue[histo_queue->size - 1];
  --histo_queue->size;
}

// Check whether a pair in the queue should be updated as head or not.
static void HistoQueueUpdateHead(HistoQueue* const histo_queue,
                                 HistogramPair* const pair) {
  assert(pair->cost_diff < 0.);
  assert(pair >= histo_queue->queue &&
         pair < (histo_queue->queue + histo_queue->size));
  assert(histo_queue->size > 0);
  if (pair->cost_diff < histo_queue->queue[0].cost_diff) {
    // Replace the best pair.
    const HistogramPair tmp = histo_queue->queue[0];
    histo_queue->queue[0] = *pair;
    *pair = tmp;
  }
}

// Create a pair from indices "idx1" and "idx2" provided its cost
// is inferior to "threshold", a negative entropy.
// It returns the cost of the pair, or 0. if it superior to threshold.
static double HistoQueuePush(HistoQueue* const histo_queue,
                             VP8LHistogram** const histograms, int idx1,
                             int idx2, double threshold) {
  const VP8LHistogram* h1;
  const VP8LHistogram* h2;
  HistogramPair pair;
  double sum_cost;

  assert(threshold <= 0.);
  if (idx1 > idx2) {
    const int tmp = idx2;
    idx2 = idx1;
    idx1 = tmp;
  }
  pair.idx1 = idx1;
  pair.idx2 = idx2;
  h1 = histograms[idx1];
  h2 = histograms[idx2];
  sum_cost = h1->bit_cost_ + h2->bit_cost_;
  pair.cost_combo = 0.;
  GetCombinedHistogramEntropy(h1, h2, sum_cost + threshold, &pair.cost_combo);
  pair.cost_diff = pair.cost_combo - sum_cost;

  // Do not even consider the pair if it does not improve the entropy.
  if (pair.cost_diff >= threshold) return 0.;

  // We cannot add more elements than the capacity.
  assert(histo_queue->size < histo_queue->max_size);
  histo_queue->queue[histo_queue->size++] = pair;
  HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]);

  return pair.cost_diff;
}

// -----------------------------------------------------------------------------

// Combines histograms by continuously choosing the one with the highest cost
// reduction.
static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
  int ok = 0;
  int image_histo_size = image_histo->size;
  int i, j;
  VP8LHistogram** const histograms = image_histo->histograms;
  // Indexes of remaining histograms.
  int* const clusters =
      (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters));
  // Priority queue of histogram pairs.
  HistoQueue histo_queue;

  if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
    goto End;
  }

  for (i = 0; i < image_histo_size; ++i) {
    // Initialize clusters indexes.
    clusters[i] = i;
    for (j = i + 1; j < image_histo_size; ++j) {
      // Initialize positions array.
      HistoQueuePush(&histo_queue, histograms, i, j, 0.);
    }
  }

  while (image_histo_size > 1 && histo_queue.size > 0) {
    const int idx1 = histo_queue.queue[0].idx1;
    const int idx2 = histo_queue.queue[0].idx2;
    HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
    histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
    // Remove merged histogram.
    for (i = 0; i + 1 < image_histo_size; ++i) {
      if (clusters[i] >= idx2) {
        clusters[i] = clusters[i + 1];
      }
    }
    --image_histo_size;

    // Remove pairs intersecting the just combined best pair.
    for (i = 0; i < histo_queue.size;) {
      HistogramPair* const p = histo_queue.queue + i;
      if (p->idx1 == idx1 || p->idx2 == idx1 ||
          p->idx1 == idx2 || p->idx2 == idx2) {
        HistoQueuePopPair(&histo_queue, p);
      } else {
        HistoQueueUpdateHead(&histo_queue, p);
        ++i;
      }
    }

    // Push new pairs formed with combined histogram to the queue.
    for (i = 0; i < image_histo_size; ++i) {
      if (clusters[i] != idx1) {
        HistoQueuePush(&histo_queue, histograms, idx1, clusters[i], 0.);
      }
    }
  }
  // Move remaining histograms to the beginning of the array.
  for (i = 0; i < image_histo_size; ++i) {
    if (i != clusters[i]) {  // swap the two histograms
      HistogramSwap(&histograms[i], &histograms[clusters[i]]);
    }
  }

  image_histo->size = image_histo_size;
  ok = 1;

 End:
  WebPSafeFree(clusters);
  HistoQueueClear(&histo_queue);
  return ok;
}

// Perform histogram aggregation using a stochastic approach.
// 'do_greedy' is set to 1 if a greedy approach needs to be performed
// afterwards, 0 otherwise.
static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
                                      int min_cluster_size,
                                      int* const do_greedy) {
  int iter;
  uint32_t seed = 1;
  int tries_with_no_success = 0;
  int image_histo_size = image_histo->size;
  const int outer_iters = image_histo_size;
  const int num_tries_no_success = outer_iters / 2;
  VP8LHistogram** const histograms = image_histo->histograms;
  // Priority queue of histogram pairs. Its size of "kCostHeapSizeSqrt"^2
  // impacts the quality of the compression and the speed: the smaller the
  // faster but the worse for the compression.
  HistoQueue histo_queue;
  const int kHistoQueueSizeSqrt = 3;
  int ok = 0;

  if (!HistoQueueInit(&histo_queue, kHistoQueueSizeSqrt)) {
    goto End;
  }
  // Collapse similar histograms in 'image_histo'.
  ++min_cluster_size;
  for (iter = 0; iter < outer_iters && image_histo_size >= min_cluster_size &&
                 ++tries_with_no_success < num_tries_no_success;
       ++iter) {
    double best_cost =
        (histo_queue.size == 0) ? 0. : histo_queue.queue[0].cost_diff;
    int best_idx1 = -1, best_idx2 = 1;
    int j;
    const uint32_t rand_range = (image_histo_size - 1) * image_histo_size;
    // image_histo_size / 2 was chosen empirically. Less means faster but worse
    // compression.
    const int num_tries = image_histo_size / 2;

    for (j = 0; j < num_tries; ++j) {
      double curr_cost;
      // Choose two different histograms at random and try to combine them.
      const uint32_t tmp = MyRand(&seed) % rand_range;
      const uint32_t idx1 = tmp / (image_histo_size - 1);
      uint32_t idx2 = tmp % (image_histo_size - 1);
      if (idx2 >= idx1) ++idx2;

      // Calculate cost reduction on combination.
      curr_cost =
          HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost);
      if (curr_cost < 0) {  // found a better pair?
        best_cost = curr_cost;
        // Empty the queue if we reached full capacity.
        if (histo_queue.size == histo_queue.max_size) break;
      }
    }
    if (histo_queue.size == 0) continue;

    // Merge the two best histograms.
    best_idx1 = histo_queue.queue[0].idx1;
    best_idx2 = histo_queue.queue[0].idx2;
    assert(best_idx1 < best_idx2);
    HistogramAddEval(histograms[best_idx1], histograms[best_idx2],
                     histograms[best_idx1], 0);
    // Swap the best_idx2 histogram with the last one (which is now unused).
    --image_histo_size;
    if (best_idx2 != image_histo_size) {
      HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
    }
    histograms[image_histo_size] = NULL;
    // Parse the queue and update each pair that deals with best_idx1,
    // best_idx2 or image_histo_size.
    for (j = 0; j < histo_queue.size;) {
      HistogramPair* const p = histo_queue.queue + j;
      const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2;
      const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2;
      int do_eval = 0;
      // The front pair could have been duplicated by a random pick so
      // check for it all the time nevertheless.
      if (is_idx1_best && is_idx2_best) {
        HistoQueuePopPair(&histo_queue, p);
        continue;
      }
      // Any pair containing one of the two best indices should only refer to
      // best_idx1. Its cost should also be updated.
      if (is_idx1_best) {
        p->idx1 = best_idx1;
        do_eval = 1;
      } else if (is_idx2_best) {
        p->idx2 = best_idx1;
        do_eval = 1;
      }
      if (p->idx2 == image_histo_size) {
        // No need to re-evaluate here as it does not involve a pair
        // containing best_idx1 or best_idx2.
        p->idx2 = best_idx2;
      }
      assert(p->idx2 < image_histo_size);
      // Make sure the index order is respected.
      if (p->idx1 > p->idx2) {
        const int tmp = p->idx2;
        p->idx2 = p->idx1;
        p->idx1 = tmp;
      }
      if (do_eval) {
        // Re-evaluate the cost of an updated pair.
        GetCombinedHistogramEntropy(histograms[p->idx1], histograms[p->idx2], 0,
                                    &p->cost_diff);
        if (p->cost_diff >= 0.) {
          HistoQueuePopPair(&histo_queue, p);
          continue;
        }
      }
      HistoQueueUpdateHead(&histo_queue, p);
      ++j;
    }

    tries_with_no_success = 0;
  }
  image_histo->size = image_histo_size;
  *do_greedy = (image_histo->size <= min_cluster_size);
  ok = 1;

End:
  HistoQueueClear(&histo_queue);
  return ok;
}

// -----------------------------------------------------------------------------
// Histogram refinement

// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRemap(const VP8LHistogramSet* const in,
                           const VP8LHistogramSet* const out,
                           uint16_t* const symbols) {
  int i;
  VP8LHistogram** const in_histo = in->histograms;
  VP8LHistogram** const out_histo = out->histograms;
  const int in_size = in->size;
  const int out_size = out->size;
  if (out_size > 1) {
    for (i = 0; i < in_size; ++i) {
      int best_out = 0;
      double best_bits = MAX_COST;
      int k;
      for (k = 0; k < out_size; ++k) {
        const double cur_bits =
            HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
        if (k == 0 || cur_bits < best_bits) {
          best_bits = cur_bits;
          best_out = k;
        }
      }
      symbols[i] = best_out;
    }
  } else {
    assert(out_size == 1);
    for (i = 0; i < in_size; ++i) {
      symbols[i] = 0;
    }
  }

  // Recompute each out based on raw and symbols.
  for (i = 0; i < out_size; ++i) {
    HistogramClear(out_histo[i]);
  }

  for (i = 0; i < in_size; ++i) {
    const int idx = symbols[i];
    HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
  }
}

static double GetCombineCostFactor(int histo_size, int quality) {
  double combine_cost_factor = 0.16;
  if (quality < 90) {
    if (histo_size > 256) combine_cost_factor /= 2.;
    if (histo_size > 512) combine_cost_factor /= 2.;
    if (histo_size > 1024) combine_cost_factor /= 2.;
    if (quality <= 50) combine_cost_factor /= 2.;
  }
  return combine_cost_factor;
}

int VP8LGetHistoImageSymbols(int xsize, int ysize,
                             const VP8LBackwardRefs* const refs,
                             int quality, int low_effort,
                             int histo_bits, int cache_bits,
                             VP8LHistogramSet* const image_histo,
                             VP8LHistogram* const tmp_histo,
                             uint16_t* const histogram_symbols) {
  int ok = 0;
  const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
  const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
  const int image_histo_raw_size = histo_xsize * histo_ysize;
  VP8LHistogramSet* const orig_histo =
      VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
  // Don't attempt linear bin-partition heuristic for
  // histograms of small sizes (as bin_map will be very sparse) and
  // maximum quality q==100 (to preserve the compression gains at that level).
  const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
  const int entropy_combine =
      (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);

  if (orig_histo == NULL) goto Error;

  // Construct the histograms from backward references.
  HistogramBuild(xsize, histo_bits, refs, orig_histo);
  // Copies the histograms and computes its bit_cost.
  HistogramCopyAndAnalyze(orig_histo, image_histo);

  if (entropy_combine) {
    const int bin_map_size = orig_histo->size;
    // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
    uint16_t* const bin_map = histogram_symbols;
    const double combine_cost_factor =
        GetCombineCostFactor(image_histo_raw_size, quality);

    HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
    // Collapse histograms with similar entropy.
    HistogramCombineEntropyBin(image_histo, tmp_histo, bin_map, bin_map_size,
                               entropy_combine_num_bins, combine_cost_factor,
                               low_effort);
  }

  // Don't combine the histograms using stochastic and greedy heuristics for
  // low-effort compression mode.
  if (!low_effort || !entropy_combine) {
    const float x = quality / 100.f;
    // cubic ramp between 1 and MAX_HISTO_GREEDY:
    const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
    int do_greedy;
    if (!HistogramCombineStochastic(image_histo, threshold_size, &do_greedy)) {
      goto Error;
    }
    if (do_greedy && !HistogramCombineGreedy(image_histo)) {
      goto Error;
    }
  }

  // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
  // Find the optimal map from original histograms to the final ones.
  HistogramRemap(orig_histo, image_histo, histogram_symbols);

  ok = 1;

 Error:
  VP8LFreeHistogramSet(orig_histo);
  return ok;
}