summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/src/dsp/yuv_sse41.c
blob: f79b802e4712a224ca5342ad63c569db32c16d65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// YUV->RGB conversion functions
//
// Author: Skal (pascal.massimino@gmail.com)

#include "src/dsp/yuv.h"

#if defined(WEBP_USE_SSE41)

#include <stdlib.h>
#include <smmintrin.h>

#include "src/dsp/common_sse41.h"
#include "src/utils/utils.h"

//-----------------------------------------------------------------------------
// Convert spans of 32 pixels to various RGB formats for the fancy upsampler.

// These constants are 14b fixed-point version of ITU-R BT.601 constants.
// R = (19077 * y             + 26149 * v - 14234) >> 6
// G = (19077 * y -  6419 * u - 13320 * v +  8708) >> 6
// B = (19077 * y + 33050 * u             - 17685) >> 6
static void ConvertYUV444ToRGB_SSE41(const __m128i* const Y0,
                                     const __m128i* const U0,
                                     const __m128i* const V0,
                                     __m128i* const R,
                                     __m128i* const G,
                                     __m128i* const B) {
  const __m128i k19077 = _mm_set1_epi16(19077);
  const __m128i k26149 = _mm_set1_epi16(26149);
  const __m128i k14234 = _mm_set1_epi16(14234);
  // 33050 doesn't fit in a signed short: only use this with unsigned arithmetic
  const __m128i k33050 = _mm_set1_epi16((short)33050);
  const __m128i k17685 = _mm_set1_epi16(17685);
  const __m128i k6419  = _mm_set1_epi16(6419);
  const __m128i k13320 = _mm_set1_epi16(13320);
  const __m128i k8708  = _mm_set1_epi16(8708);

  const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077);

  const __m128i R0 = _mm_mulhi_epu16(*V0, k26149);
  const __m128i R1 = _mm_sub_epi16(Y1, k14234);
  const __m128i R2 = _mm_add_epi16(R1, R0);

  const __m128i G0 = _mm_mulhi_epu16(*U0, k6419);
  const __m128i G1 = _mm_mulhi_epu16(*V0, k13320);
  const __m128i G2 = _mm_add_epi16(Y1, k8708);
  const __m128i G3 = _mm_add_epi16(G0, G1);
  const __m128i G4 = _mm_sub_epi16(G2, G3);

  // be careful with the saturated *unsigned* arithmetic here!
  const __m128i B0 = _mm_mulhi_epu16(*U0, k33050);
  const __m128i B1 = _mm_adds_epu16(B0, Y1);
  const __m128i B2 = _mm_subs_epu16(B1, k17685);

  // use logical shift for B2, which can be larger than 32767
  *R = _mm_srai_epi16(R2, 6);   // range: [-14234, 30815]
  *G = _mm_srai_epi16(G4, 6);   // range: [-10953, 27710]
  *B = _mm_srli_epi16(B2, 6);   // range: [0, 34238]
}

// Load the bytes into the *upper* part of 16b words. That's "<< 8", basically.
static WEBP_INLINE __m128i Load_HI_16_SSE41(const uint8_t* src) {
  const __m128i zero = _mm_setzero_si128();
  return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src));
}

// Load and replicate the U/V samples
static WEBP_INLINE __m128i Load_UV_HI_8_SSE41(const uint8_t* src) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i tmp0 = _mm_cvtsi32_si128(WebPMemToInt32(src));
  const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0);
  return _mm_unpacklo_epi16(tmp1, tmp1);   // replicate samples
}

// Convert 32 samples of YUV444 to R/G/B
static void YUV444ToRGB_SSE41(const uint8_t* const y,
                              const uint8_t* const u,
                              const uint8_t* const v,
                              __m128i* const R, __m128i* const G,
                              __m128i* const B) {
  const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_HI_16_SSE41(u),
                V0 = Load_HI_16_SSE41(v);
  ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B);
}

// Convert 32 samples of YUV420 to R/G/B
static void YUV420ToRGB_SSE41(const uint8_t* const y,
                              const uint8_t* const u,
                              const uint8_t* const v,
                              __m128i* const R, __m128i* const G,
                              __m128i* const B) {
  const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_UV_HI_8_SSE41(u),
                V0 = Load_UV_HI_8_SSE41(v);
  ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B);
}

// Pack the planar buffers
// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ...
static WEBP_INLINE void PlanarTo24b_SSE41(
    __m128i* const in0, __m128i* const in1, __m128i* const in2,
    __m128i* const in3, __m128i* const in4, __m128i* const in5,
    uint8_t* const rgb) {
  // The input is 6 registers of sixteen 8b but for the sake of explanation,
  // let's take 6 registers of four 8b values.
  // To pack, we will keep taking one every two 8b integer and move it
  // around as follows:
  // Input:
  //   r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7
  // Split the 6 registers in two sets of 3 registers: the first set as the even
  // 8b bytes, the second the odd ones:
  //   r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7
  // Repeat the same permutations twice more:
  //   r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7
  //   r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7
  VP8PlanarTo24b_SSE41(in0, in1, in2, in3, in4, in5);

  _mm_storeu_si128((__m128i*)(rgb +  0), *in0);
  _mm_storeu_si128((__m128i*)(rgb + 16), *in1);
  _mm_storeu_si128((__m128i*)(rgb + 32), *in2);
  _mm_storeu_si128((__m128i*)(rgb + 48), *in3);
  _mm_storeu_si128((__m128i*)(rgb + 64), *in4);
  _mm_storeu_si128((__m128i*)(rgb + 80), *in5);
}

void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                         uint8_t* dst) {
  __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
  __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5;

  YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0);
  YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1);
  YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2);
  YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3);

  // Cast to 8b and store as RRRRGGGGBBBB.
  rgb0 = _mm_packus_epi16(R0, R1);
  rgb1 = _mm_packus_epi16(R2, R3);
  rgb2 = _mm_packus_epi16(G0, G1);
  rgb3 = _mm_packus_epi16(G2, G3);
  rgb4 = _mm_packus_epi16(B0, B1);
  rgb5 = _mm_packus_epi16(B2, B3);

  // Pack as RGBRGBRGBRGB.
  PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst);
}

void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                         uint8_t* dst) {
  __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
  __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5;

  YUV444ToRGB_SSE41(y +  0, u +  0, v +  0, &R0, &G0, &B0);
  YUV444ToRGB_SSE41(y +  8, u +  8, v +  8, &R1, &G1, &B1);
  YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2);
  YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3);

  // Cast to 8b and store as BBBBGGGGRRRR.
  bgr0 = _mm_packus_epi16(B0, B1);
  bgr1 = _mm_packus_epi16(B2, B3);
  bgr2 = _mm_packus_epi16(G0, G1);
  bgr3 = _mm_packus_epi16(G2, G3);
  bgr4 = _mm_packus_epi16(R0, R1);
  bgr5= _mm_packus_epi16(R2, R3);

  // Pack as BGRBGRBGRBGR.
  PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst);
}

//-----------------------------------------------------------------------------
// Arbitrary-length row conversion functions

static void YuvToRgbRow_SSE41(const uint8_t* y,
                              const uint8_t* u, const uint8_t* v,
                              uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) {
    __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
    __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5;

    YUV420ToRGB_SSE41(y +  0, u +  0, v +  0, &R0, &G0, &B0);
    YUV420ToRGB_SSE41(y +  8, u +  4, v +  4, &R1, &G1, &B1);
    YUV420ToRGB_SSE41(y + 16, u +  8, v +  8, &R2, &G2, &B2);
    YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3);

    // Cast to 8b and store as RRRRGGGGBBBB.
    rgb0 = _mm_packus_epi16(R0, R1);
    rgb1 = _mm_packus_epi16(R2, R3);
    rgb2 = _mm_packus_epi16(G0, G1);
    rgb3 = _mm_packus_epi16(G2, G3);
    rgb4 = _mm_packus_epi16(B0, B1);
    rgb5 = _mm_packus_epi16(B2, B3);

    // Pack as RGBRGBRGBRGB.
    PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst);

    y += 32;
    u += 16;
    v += 16;
  }
  for (; n < len; ++n) {   // Finish off
    VP8YuvToRgb(y[0], u[0], v[0], dst);
    dst += 3;
    y += 1;
    u += (n & 1);
    v += (n & 1);
  }
}

static void YuvToBgrRow_SSE41(const uint8_t* y,
                              const uint8_t* u, const uint8_t* v,
                              uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) {
    __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
    __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5;

    YUV420ToRGB_SSE41(y +  0, u +  0, v +  0, &R0, &G0, &B0);
    YUV420ToRGB_SSE41(y +  8, u +  4, v +  4, &R1, &G1, &B1);
    YUV420ToRGB_SSE41(y + 16, u +  8, v +  8, &R2, &G2, &B2);
    YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3);

    // Cast to 8b and store as BBBBGGGGRRRR.
    bgr0 = _mm_packus_epi16(B0, B1);
    bgr1 = _mm_packus_epi16(B2, B3);
    bgr2 = _mm_packus_epi16(G0, G1);
    bgr3 = _mm_packus_epi16(G2, G3);
    bgr4 = _mm_packus_epi16(R0, R1);
    bgr5 = _mm_packus_epi16(R2, R3);

    // Pack as BGRBGRBGRBGR.
    PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst);

    y += 32;
    u += 16;
    v += 16;
  }
  for (; n < len; ++n) {   // Finish off
    VP8YuvToBgr(y[0], u[0], v[0], dst);
    dst += 3;
    y += 1;
    u += (n & 1);
    v += (n & 1);
  }
}

//------------------------------------------------------------------------------
// Entry point

extern void WebPInitSamplersSSE41(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE41(void) {
  WebPSamplers[MODE_RGB]  = YuvToRgbRow_SSE41;
  WebPSamplers[MODE_BGR]  = YuvToBgrRow_SSE41;
}

//------------------------------------------------------------------------------
// RGB24/32 -> YUV converters

// Load eight 16b-words from *src.
#define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src))
// Store either 16b-words into *dst
#define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V))

#define WEBP_SSE41_SHUFF(OUT)  do {                  \
  const __m128i tmp0 = _mm_shuffle_epi8(A0, shuff0); \
  const __m128i tmp1 = _mm_shuffle_epi8(A1, shuff1); \
  const __m128i tmp2 = _mm_shuffle_epi8(A2, shuff2); \
  const __m128i tmp3 = _mm_shuffle_epi8(A3, shuff0); \
  const __m128i tmp4 = _mm_shuffle_epi8(A4, shuff1); \
  const __m128i tmp5 = _mm_shuffle_epi8(A5, shuff2); \
                                                     \
  /* OR everything to get one channel */             \
  const __m128i tmp6 = _mm_or_si128(tmp0, tmp1);     \
  const __m128i tmp7 = _mm_or_si128(tmp3, tmp4);     \
  out[OUT + 0] = _mm_or_si128(tmp6, tmp2);           \
  out[OUT + 1] = _mm_or_si128(tmp7, tmp5);           \
} while (0);

// Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers:
// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
// Similar to PlanarTo24bHelper(), but in reverse order.
static WEBP_INLINE void RGB24PackedToPlanar_SSE41(
    const uint8_t* const rgb, __m128i* const out /*out[6]*/) {
  const __m128i A0 = _mm_loadu_si128((const __m128i*)(rgb +  0));
  const __m128i A1 = _mm_loadu_si128((const __m128i*)(rgb + 16));
  const __m128i A2 = _mm_loadu_si128((const __m128i*)(rgb + 32));
  const __m128i A3 = _mm_loadu_si128((const __m128i*)(rgb + 48));
  const __m128i A4 = _mm_loadu_si128((const __m128i*)(rgb + 64));
  const __m128i A5 = _mm_loadu_si128((const __m128i*)(rgb + 80));

  // Compute RR.
  {
    const __m128i shuff0 = _mm_set_epi8(
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0);
    const __m128i shuff1 = _mm_set_epi8(
        -1, -1, -1, -1, -1, 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1);
    const __m128i shuff2 = _mm_set_epi8(
        13, 10, 7, 4, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
    WEBP_SSE41_SHUFF(0)
  }
  // Compute GG.
  {
    const __m128i shuff0 = _mm_set_epi8(
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1);
    const __m128i shuff1 = _mm_set_epi8(
        -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1);
    const __m128i shuff2 = _mm_set_epi8(
        14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
    WEBP_SSE41_SHUFF(2)
  }
  // Compute BB.
  {
    const __m128i shuff0 = _mm_set_epi8(
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 14, 11, 8, 5, 2);
    const __m128i shuff1 = _mm_set_epi8(
        -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1, -1, -1, -1, -1, -1);
    const __m128i shuff2 = _mm_set_epi8(
        15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
    WEBP_SSE41_SHUFF(4)
  }
}

#undef WEBP_SSE41_SHUFF

// Convert 8 packed ARGB to r[], g[], b[]
static WEBP_INLINE void RGB32PackedToPlanar_SSE41(
    const uint32_t* const argb, __m128i* const rgb /*in[6]*/) {
  const __m128i zero = _mm_setzero_si128();
  __m128i a0 = LOAD_16(argb + 0);
  __m128i a1 = LOAD_16(argb + 4);
  __m128i a2 = LOAD_16(argb + 8);
  __m128i a3 = LOAD_16(argb + 12);
  VP8L32bToPlanar_SSE41(&a0, &a1, &a2, &a3);
  rgb[0] = _mm_unpacklo_epi8(a1, zero);
  rgb[1] = _mm_unpackhi_epi8(a1, zero);
  rgb[2] = _mm_unpacklo_epi8(a2, zero);
  rgb[3] = _mm_unpackhi_epi8(a2, zero);
  rgb[4] = _mm_unpacklo_epi8(a3, zero);
  rgb[5] = _mm_unpackhi_epi8(a3, zero);
}

// This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX
// It's a macro and not a function because we need to use immediate values with
// srai_epi32, e.g.
#define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \
                  ROUNDER, DESCALE_FIX, OUT) do {               \
  const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG);         \
  const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG);         \
  const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB);         \
  const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB);         \
  const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo);            \
  const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi);            \
  const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER);          \
  const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER);          \
  const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX);     \
  const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX);     \
  (OUT) = _mm_packs_epi32(V5_lo, V5_hi);                        \
} while (0)

#define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A))
static WEBP_INLINE void ConvertRGBToY_SSE41(const __m128i* const R,
                                            const __m128i* const G,
                                            const __m128i* const B,
                                            __m128i* const Y) {
  const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384);
  const __m128i kGB_y = MK_CST_16(16384, 6420);
  const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF);

  const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
  const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
  const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
  const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
  TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y);
}

static WEBP_INLINE void ConvertRGBToUV_SSE41(const __m128i* const R,
                                             const __m128i* const G,
                                             const __m128i* const B,
                                             __m128i* const U,
                                             __m128i* const V) {
  const __m128i kRG_u = MK_CST_16(-9719, -19081);
  const __m128i kGB_u = MK_CST_16(0, 28800);
  const __m128i kRG_v = MK_CST_16(28800, 0);
  const __m128i kGB_v = MK_CST_16(-24116, -4684);
  const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2);

  const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
  const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
  const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
  const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
  TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u,
            kHALF_UV, YUV_FIX + 2, *U);
  TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v,
            kHALF_UV, YUV_FIX + 2, *V);
}

#undef MK_CST_16
#undef TRANSFORM

static void ConvertRGB24ToY_SSE41(const uint8_t* rgb, uint8_t* y, int width) {
  const int max_width = width & ~31;
  int i;
  for (i = 0; i < max_width; rgb += 3 * 16 * 2) {
    __m128i rgb_plane[6];
    int j;

    RGB24PackedToPlanar_SSE41(rgb, rgb_plane);

    for (j = 0; j < 2; ++j, i += 16) {
      const __m128i zero = _mm_setzero_si128();
      __m128i r, g, b, Y0, Y1;

      // Convert to 16-bit Y.
      r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero);
      g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero);
      b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero);
      ConvertRGBToY_SSE41(&r, &g, &b, &Y0);

      // Convert to 16-bit Y.
      r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero);
      g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero);
      b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero);
      ConvertRGBToY_SSE41(&r, &g, &b, &Y1);

      // Cast to 8-bit and store.
      STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
    }
  }
  for (; i < width; ++i, rgb += 3) {   // left-over
    y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF);
  }
}

static void ConvertBGR24ToY_SSE41(const uint8_t* bgr, uint8_t* y, int width) {
  const int max_width = width & ~31;
  int i;
  for (i = 0; i < max_width; bgr += 3 * 16 * 2) {
    __m128i bgr_plane[6];
    int j;

    RGB24PackedToPlanar_SSE41(bgr, bgr_plane);

    for (j = 0; j < 2; ++j, i += 16) {
      const __m128i zero = _mm_setzero_si128();
      __m128i r, g, b, Y0, Y1;

      // Convert to 16-bit Y.
      b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero);
      g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero);
      r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero);
      ConvertRGBToY_SSE41(&r, &g, &b, &Y0);

      // Convert to 16-bit Y.
      b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero);
      g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero);
      r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero);
      ConvertRGBToY_SSE41(&r, &g, &b, &Y1);

      // Cast to 8-bit and store.
      STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
    }
  }
  for (; i < width; ++i, bgr += 3) {  // left-over
    y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF);
  }
}

static void ConvertARGBToY_SSE41(const uint32_t* argb, uint8_t* y, int width) {
  const int max_width = width & ~15;
  int i;
  for (i = 0; i < max_width; i += 16) {
    __m128i Y0, Y1, rgb[6];
    RGB32PackedToPlanar_SSE41(&argb[i], rgb);
    ConvertRGBToY_SSE41(&rgb[0], &rgb[2], &rgb[4], &Y0);
    ConvertRGBToY_SSE41(&rgb[1], &rgb[3], &rgb[5], &Y1);
    STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
  }
  for (; i < width; ++i) {   // left-over
    const uint32_t p = argb[i];
    y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >>  0) & 0xff,
                     YUV_HALF);
  }
}

// Horizontal add (doubled) of two 16b values, result is 16b.
// in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ...
static void HorizontalAddPack_SSE41(const __m128i* const A,
                                    const __m128i* const B,
                                    __m128i* const out) {
  const __m128i k2 = _mm_set1_epi16(2);
  const __m128i C = _mm_madd_epi16(*A, k2);
  const __m128i D = _mm_madd_epi16(*B, k2);
  *out = _mm_packs_epi32(C, D);
}

static void ConvertARGBToUV_SSE41(const uint32_t* argb,
                                  uint8_t* u, uint8_t* v,
                                  int src_width, int do_store) {
  const int max_width = src_width & ~31;
  int i;
  for (i = 0; i < max_width; i += 32, u += 16, v += 16) {
    __m128i rgb[6], U0, V0, U1, V1;
    RGB32PackedToPlanar_SSE41(&argb[i], rgb);
    HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]);
    HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]);
    HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]);
    ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U0, &V0);

    RGB32PackedToPlanar_SSE41(&argb[i + 16], rgb);
    HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]);
    HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]);
    HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]);
    ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U1, &V1);

    U0 = _mm_packus_epi16(U0, U1);
    V0 = _mm_packus_epi16(V0, V1);
    if (!do_store) {
      const __m128i prev_u = LOAD_16(u);
      const __m128i prev_v = LOAD_16(v);
      U0 = _mm_avg_epu8(U0, prev_u);
      V0 = _mm_avg_epu8(V0, prev_v);
    }
    STORE_16(U0, u);
    STORE_16(V0, v);
  }
  if (i < src_width) {  // left-over
    WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store);
  }
}

// Convert 16 packed ARGB 16b-values to r[], g[], b[]
static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE41(
    const uint16_t* const rgbx,
    __m128i* const r, __m128i* const g, __m128i* const b) {
  const __m128i in0 = LOAD_16(rgbx +  0);  // r0 | g0 | b0 |x| r1 | g1 | b1 |x
  const __m128i in1 = LOAD_16(rgbx +  8);  // r2 | g2 | b2 |x| r3 | g3 | b3 |x
  const __m128i in2 = LOAD_16(rgbx + 16);  // r4 | ...
  const __m128i in3 = LOAD_16(rgbx + 24);  // r6 | ...
  // aarrggbb as 16-bit.
  const __m128i shuff0 =
      _mm_set_epi8(-1, -1, -1, -1, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0);
  const __m128i shuff1 =
      _mm_set_epi8(13, 12, 5, 4, -1, -1, -1, -1, 11, 10, 3, 2, 9, 8, 1, 0);
  const __m128i A0 = _mm_shuffle_epi8(in0, shuff0);
  const __m128i A1 = _mm_shuffle_epi8(in1, shuff1);
  const __m128i A2 = _mm_shuffle_epi8(in2, shuff0);
  const __m128i A3 = _mm_shuffle_epi8(in3, shuff1);
  // R0R1G0G1
  // B0B1****
  // R2R3G2G3
  // B2B3****
  // (OR is used to free port 5 for the unpack)
  const __m128i B0 = _mm_unpacklo_epi32(A0, A1);
  const __m128i B1 = _mm_or_si128(A0, A1);
  const __m128i B2 = _mm_unpacklo_epi32(A2, A3);
  const __m128i B3 = _mm_or_si128(A2, A3);
  // Gather the channels.
  *r = _mm_unpacklo_epi64(B0, B2);
  *g = _mm_unpackhi_epi64(B0, B2);
  *b = _mm_unpackhi_epi64(B1, B3);
}

static void ConvertRGBA32ToUV_SSE41(const uint16_t* rgb,
                                    uint8_t* u, uint8_t* v, int width) {
  const int max_width = width & ~15;
  const uint16_t* const last_rgb = rgb + 4 * max_width;
  while (rgb < last_rgb) {
    __m128i r, g, b, U0, V0, U1, V1;
    RGBA32PackedToPlanar_16b_SSE41(rgb +  0, &r, &g, &b);
    ConvertRGBToUV_SSE41(&r, &g, &b, &U0, &V0);
    RGBA32PackedToPlanar_16b_SSE41(rgb + 32, &r, &g, &b);
    ConvertRGBToUV_SSE41(&r, &g, &b, &U1, &V1);
    STORE_16(_mm_packus_epi16(U0, U1), u);
    STORE_16(_mm_packus_epi16(V0, V1), v);
    u += 16;
    v += 16;
    rgb += 2 * 32;
  }
  if (max_width < width) {  // left-over
    WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width);
  }
}

//------------------------------------------------------------------------------

extern void WebPInitConvertARGBToYUVSSE41(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE41(void) {
  WebPConvertARGBToY = ConvertARGBToY_SSE41;
  WebPConvertARGBToUV = ConvertARGBToUV_SSE41;

  WebPConvertRGB24ToY = ConvertRGB24ToY_SSE41;
  WebPConvertBGR24ToY = ConvertBGR24ToY_SSE41;

  WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE41;
}

//------------------------------------------------------------------------------

#else  // !WEBP_USE_SSE41

WEBP_DSP_INIT_STUB(WebPInitSamplersSSE41)
WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE41)

#endif  // WEBP_USE_SSE41