summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/src/dsp/lossless_enc_sse2.c
blob: f84a9909e10f801ca9f0f4c63ab029e7a645efa3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 variant of methods for lossless encoder
//
// Author: Skal (pascal.massimino@gmail.com)

#include "src/dsp/dsp.h"

#if defined(WEBP_USE_SSE2)
#include <assert.h>
#include <emmintrin.h>
#include "src/dsp/lossless.h"
#include "src/dsp/common_sse2.h"
#include "src/dsp/lossless_common.h"

// For sign-extended multiplying constants, pre-shifted by 5:
#define CST_5b(X)  (((int16_t)((uint16_t)(X) << 8)) >> 5)

//------------------------------------------------------------------------------
// Subtract-Green Transform

static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
                                             int num_pixels) {
  int i;
  for (i = 0; i + 4 <= num_pixels; i += 4) {
    const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
    const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
    const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
    const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
    const __m128i out = _mm_sub_epi8(in, C);
    _mm_storeu_si128((__m128i*)&argb_data[i], out);
  }
  // fallthrough and finish off with plain-C
  if (i != num_pixels) {
    VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
  }
}

//------------------------------------------------------------------------------
// Color Transform

#define MK_CST_16(HI, LO) \
  _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))

static void TransformColor_SSE2(const VP8LMultipliers* const m,
                                uint32_t* argb_data, int num_pixels) {
  const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_),
                                     CST_5b(m->green_to_blue_));
  const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
  const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
  const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);  // red-blue masks
  int i;
  for (i = 0; i + 4 <= num_pixels; i += 4) {
    const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
    const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
    const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
    const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
    const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
    const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
    const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
    const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
    const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
    const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
    const __m128i out = _mm_sub_epi8(in, I);
    _mm_storeu_si128((__m128i*)&argb_data[i], out);
  }
  // fallthrough and finish off with plain-C
  if (i != num_pixels) {
    VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
  }
}

//------------------------------------------------------------------------------
#define SPAN 8
static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
                                            int tile_width, int tile_height,
                                            int green_to_blue, int red_to_blue,
                                            int histo[]) {
  const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0);
  const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue));
  const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
  const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
  int y;
  for (y = 0; y < tile_height; ++y) {
    const uint32_t* const src = argb + y * stride;
    int i, x;
    for (x = 0; x + SPAN <= tile_width; x += SPAN) {
      uint16_t values[SPAN];
      const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
      const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
      const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
      const __m128i A1 = _mm_slli_epi16(in1, 8);
      const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
      const __m128i B1 = _mm_and_si128(in1, mask_g);
      const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
      const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
      const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
      const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
      const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
      const __m128i E1 = _mm_sub_epi8(in1, D1);
      const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
      const __m128i F1 = _mm_srli_epi32(C1, 16);
      const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
      const __m128i G1 = _mm_sub_epi8(E1, F1);
      const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
      const __m128i H1 = _mm_and_si128(G1, mask_b);
      const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
      _mm_storeu_si128((__m128i*)values, I);
      for (i = 0; i < SPAN; ++i) ++histo[values[i]];
    }
  }
  {
    const int left_over = tile_width & (SPAN - 1);
    if (left_over > 0) {
      VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
                                       left_over, tile_height,
                                       green_to_blue, red_to_blue, histo);
    }
  }
}

static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
                                           int tile_width, int tile_height,
                                           int green_to_red, int histo[]) {
  const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red));
  const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
  const __m128i mask = _mm_set1_epi32(0xff);

  int y;
  for (y = 0; y < tile_height; ++y) {
    const uint32_t* const src = argb + y * stride;
    int i, x;
    for (x = 0; x + SPAN <= tile_width; x += SPAN) {
      uint16_t values[SPAN];
      const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
      const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
      const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
      const __m128i A1 = _mm_and_si128(in1, mask_g);
      const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
      const __m128i B1 = _mm_srli_epi32(in1, 16);
      const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
      const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
      const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
      const __m128i E1 = _mm_sub_epi8(B1, C1);
      const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
      const __m128i F1 = _mm_and_si128(E1, mask);
      const __m128i I = _mm_packs_epi32(F0, F1);
      _mm_storeu_si128((__m128i*)values, I);
      for (i = 0; i < SPAN; ++i) ++histo[values[i]];
    }
  }
  {
    const int left_over = tile_width & (SPAN - 1);
    if (left_over > 0) {
      VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
                                      left_over, tile_height,
                                      green_to_red, histo);
    }
  }
}
#undef SPAN
#undef MK_CST_16

//------------------------------------------------------------------------------

#define LINE_SIZE 16    // 8 or 16
static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out,
                           int size) {
  int i;
  assert(size % LINE_SIZE == 0);
  for (i = 0; i < size; i += LINE_SIZE) {
    const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
    const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
#if (LINE_SIZE == 16)
    const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
    const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
#endif
    const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
    const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
#if (LINE_SIZE == 16)
    const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
    const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
#endif
    _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
    _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
#if (LINE_SIZE == 16)
    _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
    _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
#endif
  }
}

static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) {
  int i;
  assert(size % LINE_SIZE == 0);
  for (i = 0; i < size; i += LINE_SIZE) {
    const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
    const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
#if (LINE_SIZE == 16)
    const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
    const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
#endif
    const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
    const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
#if (LINE_SIZE == 16)
    const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
    const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
#endif
    _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
    _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
#if (LINE_SIZE == 16)
    _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
    _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
#endif
  }
}
#undef LINE_SIZE

// Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
// that's ok since the histogram values are less than 1<<28 (max picture size).
static void HistogramAdd_SSE2(const VP8LHistogram* const a,
                              const VP8LHistogram* const b,
                              VP8LHistogram* const out) {
  int i;
  const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
  assert(a->palette_code_bits_ == b->palette_code_bits_);
  if (b != out) {
    AddVector_SSE2(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
    AddVector_SSE2(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
    AddVector_SSE2(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
    AddVector_SSE2(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
  } else {
    AddVectorEq_SSE2(a->literal_, out->literal_, NUM_LITERAL_CODES);
    AddVectorEq_SSE2(a->red_, out->red_, NUM_LITERAL_CODES);
    AddVectorEq_SSE2(a->blue_, out->blue_, NUM_LITERAL_CODES);
    AddVectorEq_SSE2(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
  }
  for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
    out->literal_[i] = a->literal_[i] + b->literal_[i];
  }
  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    out->distance_[i] = a->distance_[i] + b->distance_[i];
  }
}

//------------------------------------------------------------------------------
// Entropy

// Checks whether the X or Y contribution is worth computing and adding.
// Used in loop unrolling.
#define ANALYZE_X_OR_Y(x_or_y, j)                                           \
  do {                                                                      \
    if ((x_or_y)[i + (j)] != 0) retval -= VP8LFastSLog2((x_or_y)[i + (j)]); \
  } while (0)

// Checks whether the X + Y contribution is worth computing and adding.
// Used in loop unrolling.
#define ANALYZE_XY(j)                  \
  do {                                 \
    if (tmp[j] != 0) {                 \
      retval -= VP8LFastSLog2(tmp[j]); \
      ANALYZE_X_OR_Y(X, j);            \
    }                                  \
  } while (0)

static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) {
  int i;
  double retval = 0.;
  int sumX, sumXY;
  int32_t tmp[4];
  __m128i zero = _mm_setzero_si128();
  // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
  __m128i sumXY_128 = zero;
  __m128i sumX_128 = zero;

  for (i = 0; i < 256; i += 4) {
    const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
    const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));

    // Check if any X is non-zero: this actually provides a speedup as X is
    // usually sparse.
    if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
      const __m128i xy_128 = _mm_add_epi32(x, y);
      sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);

      sumX_128 = _mm_add_epi32(sumX_128, x);

      // Analyze the different X + Y.
      _mm_storeu_si128((__m128i*)tmp, xy_128);

      ANALYZE_XY(0);
      ANALYZE_XY(1);
      ANALYZE_XY(2);
      ANALYZE_XY(3);
    } else {
      // X is fully 0, so only deal with Y.
      sumXY_128 = _mm_add_epi32(sumXY_128, y);

      ANALYZE_X_OR_Y(Y, 0);
      ANALYZE_X_OR_Y(Y, 1);
      ANALYZE_X_OR_Y(Y, 2);
      ANALYZE_X_OR_Y(Y, 3);
    }
  }

  // Sum up sumX_128 to get sumX.
  _mm_storeu_si128((__m128i*)tmp, sumX_128);
  sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];

  // Sum up sumXY_128 to get sumXY.
  _mm_storeu_si128((__m128i*)tmp, sumXY_128);
  sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];

  retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
  return (float)retval;
}
#undef ANALYZE_X_OR_Y
#undef ANALYZE_XY

//------------------------------------------------------------------------------

static int VectorMismatch_SSE2(const uint32_t* const array1,
                               const uint32_t* const array2, int length) {
  int match_len;

  if (length >= 12) {
    __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
    __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
    match_len = 0;
    do {
      // Loop unrolling and early load both provide a speedup of 10% for the
      // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
      const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
      const __m128i B0 =
          _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
      const __m128i B1 =
          _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
      if (_mm_movemask_epi8(cmpA) != 0xffff) break;
      match_len += 4;

      {
        const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
        A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
        A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
        if (_mm_movemask_epi8(cmpB) != 0xffff) break;
        match_len += 4;
      }
    } while (match_len + 12 < length);
  } else {
    match_len = 0;
    // Unroll the potential first two loops.
    if (length >= 4 &&
        _mm_movemask_epi8(_mm_cmpeq_epi32(
            _mm_loadu_si128((const __m128i*)&array1[0]),
            _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
      match_len = 4;
      if (length >= 8 &&
          _mm_movemask_epi8(_mm_cmpeq_epi32(
              _mm_loadu_si128((const __m128i*)&array1[4]),
              _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
        match_len = 8;
      }
    }
  }

  while (match_len < length && array1[match_len] == array2[match_len]) {
    ++match_len;
  }
  return match_len;
}

// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
                                uint32_t* dst) {
  int x;
  assert(xbits >= 0);
  assert(xbits <= 3);
  switch (xbits) {
    case 0: {
      const __m128i ff = _mm_set1_epi16(0xff00);
      const __m128i zero = _mm_setzero_si128();
      // Store 0xff000000 | (row[x] << 8).
      for (x = 0; x + 16 <= width; x += 16, dst += 16) {
        const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
        const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
        const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
        const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
        const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
        const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
        const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
        _mm_storeu_si128((__m128i*)&dst[0], dst0);
        _mm_storeu_si128((__m128i*)&dst[4], dst1);
        _mm_storeu_si128((__m128i*)&dst[8], dst2);
        _mm_storeu_si128((__m128i*)&dst[12], dst3);
      }
      break;
    }
    case 1: {
      const __m128i ff = _mm_set1_epi16(0xff00);
      const __m128i mul = _mm_set1_epi16(0x110);
      for (x = 0; x + 16 <= width; x += 16, dst += 8) {
        // 0a0b | (where a/b are 4 bits).
        const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
        const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
        const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
        const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
        const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
        _mm_storeu_si128((__m128i*)&dst[0], dst0);
        _mm_storeu_si128((__m128i*)&dst[4], dst1);
      }
      break;
    }
    case 2: {
      const __m128i mask_or = _mm_set1_epi32(0xff000000);
      const __m128i mul_cst = _mm_set1_epi16(0x0104);
      const __m128i mask_mul = _mm_set1_epi16(0x0f00);
      for (x = 0; x + 16 <= width; x += 16, dst += 4) {
        // 000a000b000c000d | (where a/b/c/d are 2 bits).
        const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
        const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
        const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
        const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
        const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
        // Convert to 0xff00**00.
        const __m128i res = _mm_or_si128(pack, mask_or);
        _mm_storeu_si128((__m128i*)dst, res);
      }
      break;
    }
    default: {
      assert(xbits == 3);
      for (x = 0; x + 16 <= width; x += 16, dst += 2) {
        // 0000000a00000000b... | (where a/b are 1 bit).
        const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
        const __m128i shift = _mm_slli_epi64(in, 7);
        const uint32_t move = _mm_movemask_epi8(shift);
        dst[0] = 0xff000000 | ((move & 0xff) << 8);
        dst[1] = 0xff000000 | (move & 0xff00);
      }
      break;
    }
  }
  if (x != width) {
    VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
  }
}

//------------------------------------------------------------------------------
// Batch version of Predictor Transform subtraction

static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
                                       const __m128i* const a1,
                                       __m128i* const avg) {
  // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
  const __m128i ones = _mm_set1_epi8(1);
  const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
  const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
  *avg = _mm_sub_epi8(avg1, one);
}

// Predictor0: ARGB_BLACK.
static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
                               int num_pixels, uint32_t* out) {
  int i;
  const __m128i black = _mm_set1_epi32(ARGB_BLACK);
  for (i = 0; i + 4 <= num_pixels; i += 4) {
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    const __m128i res = _mm_sub_epi8(src, black);
    _mm_storeu_si128((__m128i*)&out[i], res);
  }
  if (i != num_pixels) {
    VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
  }
}

#define GENERATE_PREDICTOR_1(X, IN)                                           \
static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
                                   int num_pixels, uint32_t* out) {           \
  int i;                                                                      \
  for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
    const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));              \
    const __m128i res = _mm_sub_epi8(src, pred);                              \
    _mm_storeu_si128((__m128i*)&out[i], res);                                 \
  }                                                                           \
  if (i != num_pixels) {                                                      \
    VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
  }                                                                           \
}

GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
#undef GENERATE_PREDICTOR_1

// Predictor5: avg2(avg2(L, TR), T)
static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
                               int num_pixels, uint32_t* out) {
  int i;
  for (i = 0; i + 4 <= num_pixels; i += 4) {
    const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    __m128i avg, pred, res;
    Average2_m128i(&L, &TR, &avg);
    Average2_m128i(&avg, &T, &pred);
    res = _mm_sub_epi8(src, pred);
    _mm_storeu_si128((__m128i*)&out[i], res);
  }
  if (i != num_pixels) {
    VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
  }
}

#define GENERATE_PREDICTOR_2(X, A, B)                                         \
static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
                                   int num_pixels, uint32_t* out) {           \
  int i;                                                                      \
  for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
    const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
    const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
    __m128i pred, res;                                                        \
    Average2_m128i(&tA, &tB, &pred);                                          \
    res = _mm_sub_epi8(src, pred);                                            \
    _mm_storeu_si128((__m128i*)&out[i], res);                                 \
  }                                                                           \
  if (i != num_pixels) {                                                      \
    VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
  }                                                                           \
}

GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
#undef GENERATE_PREDICTOR_2

// Predictor10: avg(avg(L,TL), avg(T, TR)).
static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
                                int num_pixels, uint32_t* out) {
  int i;
  for (i = 0; i + 4 <= num_pixels; i += 4) {
    const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
    __m128i avgTTR, avgLTL, avg, res;
    Average2_m128i(&T, &TR, &avgTTR);
    Average2_m128i(&L, &TL, &avgLTL);
    Average2_m128i(&avgTTR, &avgLTL, &avg);
    res = _mm_sub_epi8(src, avg);
    _mm_storeu_si128((__m128i*)&out[i], res);
  }
  if (i != num_pixels) {
    VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
  }
}

// Predictor11: select.
static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
                                 __m128i* const out) {
  // We can unpack with any value on the upper 32 bits, provided it's the same
  // on both operands (to that their sum of abs diff is zero). Here we use *A.
  const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
  const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
  const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
  const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
  const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
  const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
  *out = _mm_packs_epi32(s_lo, s_hi);
}

static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
                                int num_pixels, uint32_t* out) {
  int i;
  for (i = 0; i + 4 <= num_pixels; i += 4) {
    const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    __m128i pa, pb;
    GetSumAbsDiff32_SSE2(&T, &TL, &pa);   // pa = sum |T-TL|
    GetSumAbsDiff32_SSE2(&L, &TL, &pb);   // pb = sum |L-TL|
    {
      const __m128i mask = _mm_cmpgt_epi32(pb, pa);
      const __m128i A = _mm_and_si128(mask, L);
      const __m128i B = _mm_andnot_si128(mask, T);
      const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
      const __m128i res = _mm_sub_epi8(src, pred);
      _mm_storeu_si128((__m128i*)&out[i], res);
    }
  }
  if (i != num_pixels) {
    VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
  }
}

// Predictor12: ClampedSubSubtractFull.
static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
                                int num_pixels, uint32_t* out) {
  int i;
  const __m128i zero = _mm_setzero_si128();
  for (i = 0; i + 4 <= num_pixels; i += 4) {
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
    const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
    const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
    const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
    const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
    const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
    const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
    const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
    const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
    const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
    const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
    const __m128i res = _mm_sub_epi8(src, pred);
    _mm_storeu_si128((__m128i*)&out[i], res);
  }
  if (i != num_pixels) {
    VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
  }
}

// Predictors13: ClampedAddSubtractHalf
static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
                                int num_pixels, uint32_t* out) {
  int i;
  const __m128i zero = _mm_setzero_si128();
  for (i = 0; i + 2 <= num_pixels; i += 2) {
    // we can only process two pixels at a time
    const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
    const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
    const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
    const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
    const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
    const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
    const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
    const __m128i sum = _mm_add_epi16(T_lo, L_lo);
    const __m128i avg = _mm_srli_epi16(sum, 1);
    const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
    const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
    const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
    const __m128i A3 = _mm_srai_epi16(A2, 1);
    const __m128i A4 = _mm_add_epi16(avg, A3);
    const __m128i pred = _mm_packus_epi16(A4, A4);
    const __m128i res = _mm_sub_epi8(src, pred);
    _mm_storel_epi64((__m128i*)&out[i], res);
  }
  if (i != num_pixels) {
    VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
  }
}

//------------------------------------------------------------------------------
// Entry point

extern void VP8LEncDspInitSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
  VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
  VP8LTransformColor = TransformColor_SSE2;
  VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
  VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
  VP8LHistogramAdd = HistogramAdd_SSE2;
  VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
  VP8LVectorMismatch = VectorMismatch_SSE2;
  VP8LBundleColorMap = BundleColorMap_SSE2;

  VP8LPredictorsSub[0] = PredictorSub0_SSE2;
  VP8LPredictorsSub[1] = PredictorSub1_SSE2;
  VP8LPredictorsSub[2] = PredictorSub2_SSE2;
  VP8LPredictorsSub[3] = PredictorSub3_SSE2;
  VP8LPredictorsSub[4] = PredictorSub4_SSE2;
  VP8LPredictorsSub[5] = PredictorSub5_SSE2;
  VP8LPredictorsSub[6] = PredictorSub6_SSE2;
  VP8LPredictorsSub[7] = PredictorSub7_SSE2;
  VP8LPredictorsSub[8] = PredictorSub8_SSE2;
  VP8LPredictorsSub[9] = PredictorSub9_SSE2;
  VP8LPredictorsSub[10] = PredictorSub10_SSE2;
  VP8LPredictorsSub[11] = PredictorSub11_SSE2;
  VP8LPredictorsSub[12] = PredictorSub12_SSE2;
  VP8LPredictorsSub[13] = PredictorSub13_SSE2;
  VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
  VP8LPredictorsSub[15] = PredictorSub0_SSE2;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)

#endif  // WEBP_USE_SSE2