summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/src/dsp/dec_sse2.c
blob: b3840faf3a318800725e5827fd90016b52ed3b08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 version of some decoding functions (idct, loop filtering).
//
// Author: somnath@google.com (Somnath Banerjee)
//         cduvivier@google.com (Christian Duvivier)

#include "src/dsp/dsp.h"

#if defined(WEBP_USE_SSE2)

// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
// one it seems => disable it by default. Uncomment the following to enable:
#if !defined(USE_TRANSFORM_AC3)
#define USE_TRANSFORM_AC3 0   // ALTERNATE_CODE
#endif

#include <emmintrin.h>
#include "src/dsp/common_sse2.h"
#include "src/dec/vp8i_dec.h"
#include "src/utils/utils.h"

//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)

static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) {
  // This implementation makes use of 16-bit fixed point versions of two
  // multiply constants:
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
  //
  // To be able to use signed 16-bit integers, we use the following trick to
  // have constants within range:
  // - Associated constants are obtained by subtracting the 16-bit fixed point
  //   version of one:
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
  //      K1 = 85267  =>  k1 =  20091
  //      K2 = 35468  =>  k2 = -30068
  // - The multiplication of a variable by a constant become the sum of the
  //   variable and the multiplication of that variable by the associated
  //   constant:
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
  const __m128i k1 = _mm_set1_epi16(20091);
  const __m128i k2 = _mm_set1_epi16(-30068);
  __m128i T0, T1, T2, T3;

  // Load and concatenate the transform coefficients (we'll do two transforms
  // in parallel). In the case of only one transform, the second half of the
  // vectors will just contain random value we'll never use nor store.
  __m128i in0, in1, in2, in3;
  {
    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
    // a00 a10 a20 a30   x x x x
    // a01 a11 a21 a31   x x x x
    // a02 a12 a22 a32   x x x x
    // a03 a13 a23 a33   x x x x
    if (do_two) {
      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
      in0 = _mm_unpacklo_epi64(in0, inB0);
      in1 = _mm_unpacklo_epi64(in1, inB1);
      in2 = _mm_unpacklo_epi64(in2, inB2);
      in3 = _mm_unpacklo_epi64(in3, inB3);
      // a00 a10 a20 a30   b00 b10 b20 b30
      // a01 a11 a21 a31   b01 b11 b21 b31
      // a02 a12 a22 a32   b02 b12 b22 b32
      // a03 a13 a23 a33   b03 b13 b23 b33
    }
  }

  // Vertical pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i a = _mm_add_epi16(in0, in2);
    const __m128i b = _mm_sub_epi16(in0, in2);
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    const __m128i c3 = _mm_sub_epi16(in1, in3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    const __m128i d3 = _mm_add_epi16(in1, in3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
  }

  // Horizontal pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i four = _mm_set1_epi16(4);
    const __m128i dc = _mm_add_epi16(T0, four);
    const __m128i a =  _mm_add_epi16(dc, T2);
    const __m128i b =  _mm_sub_epi16(dc, T2);
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    const __m128i c3 = _mm_sub_epi16(T1, T3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    const __m128i d3 = _mm_add_epi16(T1, T3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
                           &T2, &T3);
  }

  // Add inverse transform to 'dst' and store.
  {
    const __m128i zero = _mm_setzero_si128();
    // Load the reference(s).
    __m128i dst0, dst1, dst2, dst3;
    if (do_two) {
      // Load eight bytes/pixels per line.
      dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
      dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
      dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
      dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
    } else {
      // Load four bytes/pixels per line.
      dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
      dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
      dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
      dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
    }
    // Convert to 16b.
    dst0 = _mm_unpacklo_epi8(dst0, zero);
    dst1 = _mm_unpacklo_epi8(dst1, zero);
    dst2 = _mm_unpacklo_epi8(dst2, zero);
    dst3 = _mm_unpacklo_epi8(dst3, zero);
    // Add the inverse transform(s).
    dst0 = _mm_add_epi16(dst0, T0);
    dst1 = _mm_add_epi16(dst1, T1);
    dst2 = _mm_add_epi16(dst2, T2);
    dst3 = _mm_add_epi16(dst3, T3);
    // Unsigned saturate to 8b.
    dst0 = _mm_packus_epi16(dst0, dst0);
    dst1 = _mm_packus_epi16(dst1, dst1);
    dst2 = _mm_packus_epi16(dst2, dst2);
    dst3 = _mm_packus_epi16(dst3, dst3);
    // Store the results.
    if (do_two) {
      // Store eight bytes/pixels per line.
      _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
      _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
      _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
      _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
    } else {
      // Store four bytes/pixels per line.
      WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
      WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
      WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
      WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
    }
  }
}

#if (USE_TRANSFORM_AC3 == 1)
#define MUL(a, b) (((a) * (b)) >> 16)
static void TransformAC3(const int16_t* in, uint8_t* dst) {
  static const int kC1 = 20091 + (1 << 16);
  static const int kC2 = 35468;
  const __m128i A = _mm_set1_epi16(in[0] + 4);
  const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
  const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
  const int c1 = MUL(in[1], kC2);
  const int d1 = MUL(in[1], kC1);
  const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
  const __m128i B = _mm_adds_epi16(A, CD);
  const __m128i m0 = _mm_adds_epi16(B, d4);
  const __m128i m1 = _mm_adds_epi16(B, c4);
  const __m128i m2 = _mm_subs_epi16(B, c4);
  const __m128i m3 = _mm_subs_epi16(B, d4);
  const __m128i zero = _mm_setzero_si128();
  // Load the source pixels.
  __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
  __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
  __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
  __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
  // Convert to 16b.
  dst0 = _mm_unpacklo_epi8(dst0, zero);
  dst1 = _mm_unpacklo_epi8(dst1, zero);
  dst2 = _mm_unpacklo_epi8(dst2, zero);
  dst3 = _mm_unpacklo_epi8(dst3, zero);
  // Add the inverse transform.
  dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
  dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
  dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
  dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
  // Unsigned saturate to 8b.
  dst0 = _mm_packus_epi16(dst0, dst0);
  dst1 = _mm_packus_epi16(dst1, dst1);
  dst2 = _mm_packus_epi16(dst2, dst2);
  dst3 = _mm_packus_epi16(dst3, dst3);
  // Store the results.
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
}
#undef MUL
#endif   // USE_TRANSFORM_AC3

//------------------------------------------------------------------------------
// Loop Filter (Paragraph 15)

// Compute abs(p - q) = subs(p - q) OR subs(q - p)
#define MM_ABS(p, q)  _mm_or_si128(                                            \
    _mm_subs_epu8((q), (p)),                                                   \
    _mm_subs_epu8((p), (q)))

// Shift each byte of "x" by 3 bits while preserving by the sign bit.
static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
  const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
  const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
  const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
  *x = _mm_packs_epi16(lo_1, hi_1);
}

#define FLIP_SIGN_BIT2(a, b) {                                                 \
  (a) = _mm_xor_si128(a, sign_bit);                                            \
  (b) = _mm_xor_si128(b, sign_bit);                                            \
}

#define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
  FLIP_SIGN_BIT2(a, b);                                                        \
  FLIP_SIGN_BIT2(c, d);                                                        \
}

// input/output is uint8_t
static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
                                       const __m128i* const p0,
                                       const __m128i* const q0,
                                       const __m128i* const q1,
                                       int hev_thresh, __m128i* const not_hev) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i t_1 = MM_ABS(*p1, *p0);
  const __m128i t_2 = MM_ABS(*q1, *q0);

  const __m128i h = _mm_set1_epi8(hev_thresh);
  const __m128i t_max = _mm_max_epu8(t_1, t_2);

  const __m128i t_max_h = _mm_subs_epu8(t_max, h);
  *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
}

// input pixels are int8_t
static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
                                          const __m128i* const p0,
                                          const __m128i* const q0,
                                          const __m128i* const q1,
                                          __m128i* const delta) {
  // beware of addition order, for saturation!
  const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
  const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
  const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
  const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
  const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
  *delta = s3;
}

// input and output are int8_t
static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
                                            __m128i* const q0,
                                            const __m128i* const fl) {
  const __m128i k3 = _mm_set1_epi8(3);
  const __m128i k4 = _mm_set1_epi8(4);
  __m128i v3 = _mm_adds_epi8(*fl, k3);
  __m128i v4 = _mm_adds_epi8(*fl, k4);

  SignedShift8b_SSE2(&v4);             // v4 >> 3
  SignedShift8b_SSE2(&v3);             // v3 >> 3
  *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
  *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
}

// Updates values of 2 pixels at MB edge during complex filtering.
// Update operations:
// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
                                           const __m128i* const a0_lo,
                                           const __m128i* const a0_hi) {
  const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
  const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
  const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
  const __m128i sign_bit = _mm_set1_epi8(0x80);
  *pi = _mm_adds_epi8(*pi, delta);
  *qi = _mm_subs_epi8(*qi, delta);
  FLIP_SIGN_BIT2(*pi, *qi);
}

// input pixels are uint8_t
static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
                                         const __m128i* const p0,
                                         const __m128i* const q0,
                                         const __m128i* const q1,
                                         int thresh, __m128i* const mask) {
  const __m128i m_thresh = _mm_set1_epi8(thresh);
  const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
  const __m128i kFE = _mm_set1_epi8(0xFE);
  const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
  const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2

  const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
  const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
  const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2

  const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
  *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
}

//------------------------------------------------------------------------------
// Edge filtering functions

// Applies filter on 2 pixels (p0 and q0)
static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
                                       __m128i* const q0, __m128i* const q1,
                                       int thresh) {
  __m128i a, mask;
  const __m128i sign_bit = _mm_set1_epi8(0x80);
  // convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);

  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);

  FLIP_SIGN_BIT2(*p0, *q0);
  GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
  a = _mm_and_si128(a, mask);     // mask filter values we don't care about
  DoSimpleFilter_SSE2(p0, q0, &a);
  FLIP_SIGN_BIT2(*p0, *q0);
}

// Applies filter on 4 pixels (p1, p0, q0 and q1)
static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
                                       __m128i* const q0, __m128i* const q1,
                                       const __m128i* const mask,
                                       int hev_thresh) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i sign_bit = _mm_set1_epi8(0x80);
  const __m128i k64 = _mm_set1_epi8(64);
  const __m128i k3 = _mm_set1_epi8(3);
  const __m128i k4 = _mm_set1_epi8(4);
  __m128i not_hev;
  __m128i t1, t2, t3;

  // compute hev mask
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);

  // convert to signed values
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);

  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about

  t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
  t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
  SignedShift8b_SSE2(&t2);           // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
  SignedShift8b_SSE2(&t3);           // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
  *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
  *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
  FLIP_SIGN_BIT2(*p0, *q0);

  // this is equivalent to signed (a + 1) >> 1 calculation
  t2 = _mm_add_epi8(t3, sign_bit);
  t3 = _mm_avg_epu8(t2, zero);
  t3 = _mm_sub_epi8(t3, k64);

  t3 = _mm_and_si128(not_hev, t3);   // if !hev
  *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
  *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
  FLIP_SIGN_BIT2(*p1, *q1);
}

// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
                                       __m128i* const p0, __m128i* const q0,
                                       __m128i* const q1, __m128i* const q2,
                                       const __m128i* const mask,
                                       int hev_thresh) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i sign_bit = _mm_set1_epi8(0x80);
  __m128i a, not_hev;

  // compute hev mask
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);

  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
  FLIP_SIGN_BIT2(*p2, *q2);
  GetBaseDelta_SSE2(p1, p0, q0, q1, &a);

  { // do simple filter on pixels with hev
    const __m128i m = _mm_andnot_si128(not_hev, *mask);
    const __m128i f = _mm_and_si128(a, m);
    DoSimpleFilter_SSE2(p0, q0, &f);
  }

  { // do strong filter on pixels with not hev
    const __m128i k9 = _mm_set1_epi16(0x0900);
    const __m128i k63 = _mm_set1_epi16(63);

    const __m128i m = _mm_and_si128(not_hev, *mask);
    const __m128i f = _mm_and_si128(a, m);

    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);

    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9

    const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
    const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63

    const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
    const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63

    const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
    const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63

    Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
    Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
    Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
  }
}

// reads 8 rows across a vertical edge.
static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
                                     __m128i* const p, __m128i* const q) {
  // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
  // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
  const __m128i A0 = _mm_set_epi32(
      WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
      WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
  const __m128i A1 = _mm_set_epi32(
      WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
      WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));

  // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
  // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
  const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
  const __m128i B1 = _mm_unpackhi_epi8(A0, A1);

  // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
  // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
  const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
  const __m128i C1 = _mm_unpackhi_epi16(B0, B1);

  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
  *p = _mm_unpacklo_epi32(C0, C1);
  *q = _mm_unpackhi_epi32(C0, C1);
}

static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
                                      const uint8_t* const r8,
                                      int stride,
                                      __m128i* const p1, __m128i* const p0,
                                      __m128i* const q0, __m128i* const q1) {
  // Assume the pixels around the edge (|) are numbered as follows
  //                00 01 | 02 03
  //                10 11 | 12 13
  //                 ...  |  ...
  //                e0 e1 | e2 e3
  //                f0 f1 | f2 f3
  //
  // r0 is pointing to the 0th row (00)
  // r8 is pointing to the 8th row (80)

  // Load
  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
  Load8x4_SSE2(r0, stride, p1, q0);
  Load8x4_SSE2(r8, stride, p0, q1);

  {
    // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
    // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
    // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
    // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
    const __m128i t1 = *p1;
    const __m128i t2 = *q0;
    *p1 = _mm_unpacklo_epi64(t1, *p0);
    *p0 = _mm_unpackhi_epi64(t1, *p0);
    *q0 = _mm_unpacklo_epi64(t2, *q1);
    *q1 = _mm_unpackhi_epi64(t2, *q1);
  }
}

static WEBP_INLINE void Store4x4_SSE2(__m128i* const x,
                                      uint8_t* dst, int stride) {
  int i;
  for (i = 0; i < 4; ++i, dst += stride) {
    WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
    *x = _mm_srli_si128(*x, 4);
  }
}

// Transpose back and store
static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
                                       const __m128i* const p0,
                                       const __m128i* const q0,
                                       const __m128i* const q1,
                                       uint8_t* r0, uint8_t* r8,
                                       int stride) {
  __m128i t1, p1_s, p0_s, q0_s, q1_s;

  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
  t1 = *p0;
  p0_s = _mm_unpacklo_epi8(*p1, t1);
  p1_s = _mm_unpackhi_epi8(*p1, t1);

  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
  t1 = *q0;
  q0_s = _mm_unpacklo_epi8(t1, *q1);
  q1_s = _mm_unpackhi_epi8(t1, *q1);

  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
  t1 = p0_s;
  p0_s = _mm_unpacklo_epi16(t1, q0_s);
  q0_s = _mm_unpackhi_epi16(t1, q0_s);

  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
  t1 = p1_s;
  p1_s = _mm_unpacklo_epi16(t1, q1_s);
  q1_s = _mm_unpackhi_epi16(t1, q1_s);

  Store4x4_SSE2(&p0_s, r0, stride);
  r0 += 4 * stride;
  Store4x4_SSE2(&q0_s, r0, stride);

  Store4x4_SSE2(&p1_s, r8, stride);
  r8 += 4 * stride;
  Store4x4_SSE2(&q1_s, r8, stride);
}

//------------------------------------------------------------------------------
// Simple In-loop filtering (Paragraph 15.2)

static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
  // Load
  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);

  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);

  // Store
  _mm_storeu_si128((__m128i*)&p[-stride], p0);
  _mm_storeu_si128((__m128i*)&p[0], q0);
}

static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
  __m128i p1, p0, q0, q1;

  p -= 2;  // beginning of p1

  Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
  Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
}

static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4 * stride;
    SimpleVFilter16_SSE2(p, stride, thresh);
  }
}

static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4;
    SimpleHFilter16_SSE2(p, stride, thresh);
  }
}

//------------------------------------------------------------------------------
// Complex In-loop filtering (Paragraph 15.3)

#define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
  (m) = MM_ABS(p1, p0);                                                        \
  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
} while (0)

#define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
  (m) = _mm_max_epu8(m, MM_ABS(p1, p0));                                       \
  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
} while (0)

#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
  (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]);                        \
  (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]);                        \
  (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]);                        \
  (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]);                        \
}

#define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
  const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
  const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
  (p) = _mm_unpacklo_epi64(U, V);                                              \
} while (0)

#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
  LOADUV_H_EDGE(e1, u, v, 0 * (stride));                                       \
  LOADUV_H_EDGE(e2, u, v, 1 * (stride));                                       \
  LOADUV_H_EDGE(e3, u, v, 2 * (stride));                                       \
  LOADUV_H_EDGE(e4, u, v, 3 * (stride));                                       \
}

#define STOREUV(p, u, v, stride) {                                             \
  _mm_storel_epi64((__m128i*)&(u)[(stride)], p);                               \
  (p) = _mm_srli_si128(p, 8);                                                  \
  _mm_storel_epi64((__m128i*)&(v)[(stride)], p);                               \
}

static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
                                         const __m128i* const p0,
                                         const __m128i* const q0,
                                         const __m128i* const q1,
                                         int thresh, int ithresh,
                                         __m128i* const mask) {
  const __m128i it = _mm_set1_epi8(ithresh);
  const __m128i diff = _mm_subs_epu8(*mask, it);
  const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
  __m128i filter_mask;
  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
  *mask = _mm_and_si128(thresh_mask, filter_mask);
}

// on macroblock edges
static void VFilter16_SSE2(uint8_t* p, int stride,
                           int thresh, int ithresh, int hev_thresh) {
  __m128i t1;
  __m128i mask;
  __m128i p2, p1, p0, q0, q1, q2;

  // Load p3, p2, p1, p0
  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
  MAX_DIFF1(t1, p2, p1, p0, mask);

  // Load q0, q1, q2, q3
  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
  MAX_DIFF2(t1, q2, q1, q0, mask);

  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  // Store
  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
  _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
  _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
  _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
}

static void HFilter16_SSE2(uint8_t* p, int stride,
                           int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;

  uint8_t* const b = p - 4;
  Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
  MAX_DIFF1(p3, p2, p1, p0, mask);

  Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
  MAX_DIFF2(q3, q2, q1, q0, mask);

  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
  Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
}

// on three inner edges
static void VFilter16i_SSE2(uint8_t* p, int stride,
                            int thresh, int ithresh, int hev_thresh) {
  int k;
  __m128i p3, p2, p1, p0;   // loop invariants

  LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue

  for (k = 3; k > 0; --k) {
    __m128i mask, tmp1, tmp2;
    uint8_t* const b = p + 2 * stride;   // beginning of p1
    p += 4 * stride;

    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);

    // p3 and p2 are not just temporary variables here: they will be
    // re-used for next span. And q2/q3 will become p1/p0 accordingly.
    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);

    // Store
    _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
    _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
    _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
    _mm_storeu_si128((__m128i*)&b[3 * stride], p2);

    // rotate samples
    p1 = tmp1;
    p0 = tmp2;
  }
}

static void HFilter16i_SSE2(uint8_t* p, int stride,
                            int thresh, int ithresh, int hev_thresh) {
  int k;
  __m128i p3, p2, p1, p0;   // loop invariants

  Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue

  for (k = 3; k > 0; --k) {
    __m128i mask, tmp1, tmp2;
    uint8_t* const b = p + 2;   // beginning of p1

    p += 4;  // beginning of q0 (and next span)

    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);

    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);

    Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);

    // rotate samples
    p1 = tmp1;
    p0 = tmp2;
  }
}

// 8-pixels wide variant, for chroma filtering
static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
                          int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i t1, p2, p1, p0, q0, q1, q2;

  // Load p3, p2, p1, p0
  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
  MAX_DIFF1(t1, p2, p1, p0, mask);

  // Load q0, q1, q2, q3
  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
  MAX_DIFF2(t1, q2, q1, q0, mask);

  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  // Store
  STOREUV(p2, u, v, -3 * stride);
  STOREUV(p1, u, v, -2 * stride);
  STOREUV(p0, u, v, -1 * stride);
  STOREUV(q0, u, v, 0 * stride);
  STOREUV(q1, u, v, 1 * stride);
  STOREUV(q2, u, v, 2 * stride);
}

static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
                          int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;

  uint8_t* const tu = u - 4;
  uint8_t* const tv = v - 4;
  Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
  MAX_DIFF1(p3, p2, p1, p0, mask);

  Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
  MAX_DIFF2(q3, q2, q1, q0, mask);

  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
  Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
}

static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
                           int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i t1, t2, p1, p0, q0, q1;

  // Load p3, p2, p1, p0
  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
  MAX_DIFF1(t2, t1, p1, p0, mask);

  u += 4 * stride;
  v += 4 * stride;

  // Load q0, q1, q2, q3
  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
  MAX_DIFF2(t2, t1, q1, q0, mask);

  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);

  // Store
  STOREUV(p1, u, v, -2 * stride);
  STOREUV(p0, u, v, -1 * stride);
  STOREUV(q0, u, v, 0 * stride);
  STOREUV(q1, u, v, 1 * stride);
}

static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
                           int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i t1, t2, p1, p0, q0, q1;
  Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
  MAX_DIFF1(t2, t1, p1, p0, mask);

  u += 4;  // beginning of q0
  v += 4;
  Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
  MAX_DIFF2(t2, t1, q1, q0, mask);

  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);

  u -= 2;  // beginning of p1
  v -= 2;
  Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
}

//------------------------------------------------------------------------------
// 4x4 predictions

#define DST(x, y) dst[(x) + (y) * BPS]
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)

// We use the following 8b-arithmetic tricks:
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
// and:
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1

static void VE4_SSE2(uint8_t* dst) {    // vertical
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
  const __m128i b = _mm_subs_epu8(a, lsb);
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
  const uint32_t vals = _mm_cvtsi128_si32(avg);
  int i;
  for (i = 0; i < 4; ++i) {
    WebPUint32ToMem(dst + i * BPS, vals);
  }
}

static void LD4_SSE2(uint8_t* dst) {   // Down-Left
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
}

static void VR4_SSE2(uint8_t* dst) {   // Vertical-Right
  const __m128i one = _mm_set1_epi8(1);
  const int I = dst[-1 + 0 * BPS];
  const int J = dst[-1 + 1 * BPS];
  const int K = dst[-1 + 2 * BPS];
  const int X = dst[-1 - BPS];
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));

  // these two are hard to implement in SSE2, so we keep the C-version:
  DST(0, 2) = AVG3(J, I, X);
  DST(0, 3) = AVG3(K, J, I);
}

static void VL4_SSE2(uint8_t* dst) {   // Vertical-Left
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
  const __m128i abbc = _mm_or_si128(ab, bc);
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
  const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));

  // these two are hard to get and irregular
  DST(3, 2) = (extra_out >> 0) & 0xff;
  DST(3, 3) = (extra_out >> 8) & 0xff;
}

static void RD4_SSE2(uint8_t* dst) {   // Down-right
  const __m128i one = _mm_set1_epi8(1);
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
  const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
  const uint32_t I = dst[-1 + 0 * BPS];
  const uint32_t J = dst[-1 + 1 * BPS];
  const uint32_t K = dst[-1 + 2 * BPS];
  const uint32_t L = dst[-1 + 3 * BPS];
  const __m128i LKJI_____ =
      _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
  const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
}

#undef DST
#undef AVG3

//------------------------------------------------------------------------------
// Luma 16x16

static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
  const uint8_t* top = dst - BPS;
  const __m128i zero = _mm_setzero_si128();
  int y;
  if (size == 4) {
    const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
    for (y = 0; y < 4; ++y, dst += BPS) {
      const int val = dst[-1] - top[-1];
      const __m128i base = _mm_set1_epi16(val);
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
      WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
    }
  } else if (size == 8) {
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
    for (y = 0; y < 8; ++y, dst += BPS) {
      const int val = dst[-1] - top[-1];
      const __m128i base = _mm_set1_epi16(val);
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
      _mm_storel_epi64((__m128i*)dst, out);
    }
  } else {
    const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
    for (y = 0; y < 16; ++y, dst += BPS) {
      const int val = dst[-1] - top[-1];
      const __m128i base = _mm_set1_epi16(val);
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
      const __m128i out = _mm_packus_epi16(out_0, out_1);
      _mm_storeu_si128((__m128i*)dst, out);
    }
  }
}

static void TM4_SSE2(uint8_t* dst)   { TrueMotion_SSE2(dst, 4); }
static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
static void TM16_SSE2(uint8_t* dst)  { TrueMotion_SSE2(dst, 16); }

static void VE16_SSE2(uint8_t* dst) {
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
  int j;
  for (j = 0; j < 16; ++j) {
    _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
  }
}

static void HE16_SSE2(uint8_t* dst) {     // horizontal
  int j;
  for (j = 16; j > 0; --j) {
    const __m128i values = _mm_set1_epi8(dst[-1]);
    _mm_storeu_si128((__m128i*)dst, values);
    dst += BPS;
  }
}

static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
  int j;
  const __m128i values = _mm_set1_epi8(v);
  for (j = 0; j < 16; ++j) {
    _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
  }
}

static void DC16_SSE2(uint8_t* dst) {  // DC
  const __m128i zero = _mm_setzero_si128();
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
  int left = 0;
  int j;
  for (j = 0; j < 16; ++j) {
    left += dst[-1 + j * BPS];
  }
  {
    const int DC = _mm_cvtsi128_si32(sum) + left + 16;
    Put16_SSE2(DC >> 5, dst);
  }
}

static void DC16NoTop_SSE2(uint8_t* dst) {  // DC with top samples unavailable
  int DC = 8;
  int j;
  for (j = 0; j < 16; ++j) {
    DC += dst[-1 + j * BPS];
  }
  Put16_SSE2(DC >> 4, dst);
}

static void DC16NoLeft_SSE2(uint8_t* dst) {  // DC with left samples unavailable
  const __m128i zero = _mm_setzero_si128();
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
  const int DC = _mm_cvtsi128_si32(sum) + 8;
  Put16_SSE2(DC >> 4, dst);
}

static void DC16NoTopLeft_SSE2(uint8_t* dst) {  // DC with no top & left samples
  Put16_SSE2(0x80, dst);
}

//------------------------------------------------------------------------------
// Chroma

static void VE8uv_SSE2(uint8_t* dst) {    // vertical
  int j;
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
  for (j = 0; j < 8; ++j) {
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
  }
}

// helper for chroma-DC predictions
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
  int j;
  const __m128i values = _mm_set1_epi8(v);
  for (j = 0; j < 8; ++j) {
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
  }
}

static void DC8uv_SSE2(uint8_t* dst) {     // DC
  const __m128i zero = _mm_setzero_si128();
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
  const __m128i sum = _mm_sad_epu8(top, zero);
  int left = 0;
  int j;
  for (j = 0; j < 8; ++j) {
    left += dst[-1 + j * BPS];
  }
  {
    const int DC = _mm_cvtsi128_si32(sum) + left + 8;
    Put8x8uv_SSE2(DC >> 4, dst);
  }
}

static void DC8uvNoLeft_SSE2(uint8_t* dst) {   // DC with no left samples
  const __m128i zero = _mm_setzero_si128();
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
  const __m128i sum = _mm_sad_epu8(top, zero);
  const int DC = _mm_cvtsi128_si32(sum) + 4;
  Put8x8uv_SSE2(DC >> 3, dst);
}

static void DC8uvNoTop_SSE2(uint8_t* dst) {  // DC with no top samples
  int dc0 = 4;
  int i;
  for (i = 0; i < 8; ++i) {
    dc0 += dst[-1 + i * BPS];
  }
  Put8x8uv_SSE2(dc0 >> 3, dst);
}

static void DC8uvNoTopLeft_SSE2(uint8_t* dst) {    // DC with nothing
  Put8x8uv_SSE2(0x80, dst);
}

//------------------------------------------------------------------------------
// Entry point

extern void VP8DspInitSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
  VP8Transform = Transform_SSE2;
#if (USE_TRANSFORM_AC3 == 1)
  VP8TransformAC3 = TransformAC3_SSE2;
#endif

  VP8VFilter16 = VFilter16_SSE2;
  VP8HFilter16 = HFilter16_SSE2;
  VP8VFilter8 = VFilter8_SSE2;
  VP8HFilter8 = HFilter8_SSE2;
  VP8VFilter16i = VFilter16i_SSE2;
  VP8HFilter16i = HFilter16i_SSE2;
  VP8VFilter8i = VFilter8i_SSE2;
  VP8HFilter8i = HFilter8i_SSE2;

  VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
  VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
  VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
  VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;

  VP8PredLuma4[1] = TM4_SSE2;
  VP8PredLuma4[2] = VE4_SSE2;
  VP8PredLuma4[4] = RD4_SSE2;
  VP8PredLuma4[5] = VR4_SSE2;
  VP8PredLuma4[6] = LD4_SSE2;
  VP8PredLuma4[7] = VL4_SSE2;

  VP8PredLuma16[0] = DC16_SSE2;
  VP8PredLuma16[1] = TM16_SSE2;
  VP8PredLuma16[2] = VE16_SSE2;
  VP8PredLuma16[3] = HE16_SSE2;
  VP8PredLuma16[4] = DC16NoTop_SSE2;
  VP8PredLuma16[5] = DC16NoLeft_SSE2;
  VP8PredLuma16[6] = DC16NoTopLeft_SSE2;

  VP8PredChroma8[0] = DC8uv_SSE2;
  VP8PredChroma8[1] = TM8uv_SSE2;
  VP8PredChroma8[2] = VE8uv_SSE2;
  VP8PredChroma8[4] = DC8uvNoTop_SSE2;
  VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
  VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(VP8DspInitSSE2)

#endif  // WEBP_USE_SSE2