1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
|
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Frame-reconstruction function. Memory allocation.
//
// Author: Skal (pascal.massimino@gmail.com)
#include <stdlib.h>
#include "src/dec/vp8i_dec.h"
#include "src/utils/utils.h"
//------------------------------------------------------------------------------
// Main reconstruction function.
static const uint16_t kScan[16] = {
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
};
static int CheckMode(int mb_x, int mb_y, int mode) {
if (mode == B_DC_PRED) {
if (mb_x == 0) {
return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
} else {
return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
}
}
return mode;
}
static void Copy32b(uint8_t* const dst, const uint8_t* const src) {
memcpy(dst, src, 4);
}
static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
uint8_t* const dst) {
switch (bits >> 30) {
case 3:
VP8Transform(src, dst, 0);
break;
case 2:
VP8TransformAC3(src, dst);
break;
case 1:
VP8TransformDC(src, dst);
break;
default:
break;
}
}
static void DoUVTransform(uint32_t bits, const int16_t* const src,
uint8_t* const dst) {
if (bits & 0xff) { // any non-zero coeff at all?
if (bits & 0xaa) { // any non-zero AC coefficient?
VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V
} else {
VP8TransformDCUV(src, dst);
}
}
}
static void ReconstructRow(const VP8Decoder* const dec,
const VP8ThreadContext* ctx) {
int j;
int mb_x;
const int mb_y = ctx->mb_y_;
const int cache_id = ctx->id_;
uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
// Initialize left-most block.
for (j = 0; j < 16; ++j) {
y_dst[j * BPS - 1] = 129;
}
for (j = 0; j < 8; ++j) {
u_dst[j * BPS - 1] = 129;
v_dst[j * BPS - 1] = 129;
}
// Init top-left sample on left column too.
if (mb_y > 0) {
y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
} else {
// we only need to do this init once at block (0,0).
// Afterward, it remains valid for the whole topmost row.
memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
memset(u_dst - BPS - 1, 127, 8 + 1);
memset(v_dst - BPS - 1, 127, 8 + 1);
}
// Reconstruct one row.
for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
const VP8MBData* const block = ctx->mb_data_ + mb_x;
// Rotate in the left samples from previously decoded block. We move four
// pixels at a time for alignment reason, and because of in-loop filter.
if (mb_x > 0) {
for (j = -1; j < 16; ++j) {
Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
}
for (j = -1; j < 8; ++j) {
Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
}
}
{
// bring top samples into the cache
VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
const int16_t* const coeffs = block->coeffs_;
uint32_t bits = block->non_zero_y_;
int n;
if (mb_y > 0) {
memcpy(y_dst - BPS, top_yuv[0].y, 16);
memcpy(u_dst - BPS, top_yuv[0].u, 8);
memcpy(v_dst - BPS, top_yuv[0].v, 8);
}
// predict and add residuals
if (block->is_i4x4_) { // 4x4
uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
if (mb_y > 0) {
if (mb_x >= dec->mb_w_ - 1) { // on rightmost border
memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
} else {
memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
}
}
// replicate the top-right pixels below
top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
// predict and add residuals for all 4x4 blocks in turn.
for (n = 0; n < 16; ++n, bits <<= 2) {
uint8_t* const dst = y_dst + kScan[n];
VP8PredLuma4[block->imodes_[n]](dst);
DoTransform(bits, coeffs + n * 16, dst);
}
} else { // 16x16
const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]);
VP8PredLuma16[pred_func](y_dst);
if (bits != 0) {
for (n = 0; n < 16; ++n, bits <<= 2) {
DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
}
}
}
{
// Chroma
const uint32_t bits_uv = block->non_zero_uv_;
const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
VP8PredChroma8[pred_func](u_dst);
VP8PredChroma8[pred_func](v_dst);
DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
}
// stash away top samples for next block
if (mb_y < dec->mb_h_ - 1) {
memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8);
memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8);
}
}
// Transfer reconstructed samples from yuv_b_ cache to final destination.
{
const int y_offset = cache_id * 16 * dec->cache_y_stride_;
const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
for (j = 0; j < 16; ++j) {
memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
}
for (j = 0; j < 8; ++j) {
memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
}
}
}
}
//------------------------------------------------------------------------------
// Filtering
// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
// for caching, given a filtering level.
// Simple filter: up to 2 luma samples are read and 1 is written.
// Complex filter: up to 4 luma samples are read and 3 are written. Same for
// U/V, so it's 8 samples total (because of the 2x upsampling).
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
const int cache_id = ctx->id_;
const int y_bps = dec->cache_y_stride_;
const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
const int ilevel = f_info->f_ilevel_;
const int limit = f_info->f_limit_;
if (limit == 0) {
return;
}
assert(limit >= 3);
if (dec->filter_type_ == 1) { // simple
if (mb_x > 0) {
VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
}
if (f_info->f_inner_) {
VP8SimpleHFilter16i(y_dst, y_bps, limit);
}
if (mb_y > 0) {
VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
}
if (f_info->f_inner_) {
VP8SimpleVFilter16i(y_dst, y_bps, limit);
}
} else { // complex
const int uv_bps = dec->cache_uv_stride_;
uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
const int hev_thresh = f_info->hev_thresh_;
if (mb_x > 0) {
VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
}
if (f_info->f_inner_) {
VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
}
if (mb_y > 0) {
VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
}
if (f_info->f_inner_) {
VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
}
}
}
// Filter the decoded macroblock row (if needed)
static void FilterRow(const VP8Decoder* const dec) {
int mb_x;
const int mb_y = dec->thread_ctx_.mb_y_;
assert(dec->thread_ctx_.filter_row_);
for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
DoFilter(dec, mb_x, mb_y);
}
}
//------------------------------------------------------------------------------
// Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
if (dec->filter_type_ > 0) {
int s;
const VP8FilterHeader* const hdr = &dec->filter_hdr_;
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
int i4x4;
// First, compute the initial level
int base_level;
if (dec->segment_hdr_.use_segment_) {
base_level = dec->segment_hdr_.filter_strength_[s];
if (!dec->segment_hdr_.absolute_delta_) {
base_level += hdr->level_;
}
} else {
base_level = hdr->level_;
}
for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
int level = base_level;
if (hdr->use_lf_delta_) {
level += hdr->ref_lf_delta_[0];
if (i4x4) {
level += hdr->mode_lf_delta_[0];
}
}
level = (level < 0) ? 0 : (level > 63) ? 63 : level;
if (level > 0) {
int ilevel = level;
if (hdr->sharpness_ > 0) {
if (hdr->sharpness_ > 4) {
ilevel >>= 2;
} else {
ilevel >>= 1;
}
if (ilevel > 9 - hdr->sharpness_) {
ilevel = 9 - hdr->sharpness_;
}
}
if (ilevel < 1) ilevel = 1;
info->f_ilevel_ = ilevel;
info->f_limit_ = 2 * level + ilevel;
info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
} else {
info->f_limit_ = 0; // no filtering
}
info->f_inner_ = i4x4;
}
}
}
}
//------------------------------------------------------------------------------
// Dithering
// minimal amp that will provide a non-zero dithering effect
#define MIN_DITHER_AMP 4
#define DITHER_AMP_TAB_SIZE 12
static const uint8_t kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
// roughly, it's dqm->uv_mat_[1]
8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
};
void VP8InitDithering(const WebPDecoderOptions* const options,
VP8Decoder* const dec) {
assert(dec != NULL);
if (options != NULL) {
const int d = options->dithering_strength;
const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
if (f > 0) {
int s;
int all_amp = 0;
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
VP8QuantMatrix* const dqm = &dec->dqm_[s];
if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
// TODO(skal): should we specially dither more for uv_quant_ < 0?
const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
}
all_amp |= dqm->dither_;
}
if (all_amp != 0) {
VP8InitRandom(&dec->dithering_rg_, 1.0f);
dec->dither_ = 1;
}
}
// potentially allow alpha dithering
dec->alpha_dithering_ = options->alpha_dithering_strength;
if (dec->alpha_dithering_ > 100) {
dec->alpha_dithering_ = 100;
} else if (dec->alpha_dithering_ < 0) {
dec->alpha_dithering_ = 0;
}
}
}
// Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
uint8_t dither[64];
int i;
for (i = 0; i < 8 * 8; ++i) {
dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp);
}
VP8DitherCombine8x8(dither, dst, bps);
}
static void DitherRow(VP8Decoder* const dec) {
int mb_x;
assert(dec->dither_);
for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
const VP8MBData* const data = ctx->mb_data_ + mb_x;
const int cache_id = ctx->id_;
const int uv_bps = dec->cache_uv_stride_;
if (data->dither_ >= MIN_DITHER_AMP) {
uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
}
}
}
//------------------------------------------------------------------------------
// This function is called after a row of macroblocks is finished decoding.
// It also takes into account the following restrictions:
// * In case of in-loop filtering, we must hold off sending some of the bottom
// pixels as they are yet unfiltered. They will be when the next macroblock
// row is decoded. Meanwhile, we must preserve them by rotating them in the
// cache area. This doesn't hold for the very bottom row of the uncropped
// picture of course.
// * we must clip the remaining pixels against the cropping area. The VP8Io
// struct must have the following fields set correctly before calling put():
#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
// Finalize and transmit a complete row. Return false in case of user-abort.
static int FinishRow(void* arg1, void* arg2) {
VP8Decoder* const dec = (VP8Decoder*)arg1;
VP8Io* const io = (VP8Io*)arg2;
int ok = 1;
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
const int cache_id = ctx->id_;
const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
const int ysize = extra_y_rows * dec->cache_y_stride_;
const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
const int y_offset = cache_id * 16 * dec->cache_y_stride_;
const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
const int mb_y = ctx->mb_y_;
const int is_first_row = (mb_y == 0);
const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
if (dec->mt_method_ == 2) {
ReconstructRow(dec, ctx);
}
if (ctx->filter_row_) {
FilterRow(dec);
}
if (dec->dither_) {
DitherRow(dec);
}
if (io->put != NULL) {
int y_start = MACROBLOCK_VPOS(mb_y);
int y_end = MACROBLOCK_VPOS(mb_y + 1);
if (!is_first_row) {
y_start -= extra_y_rows;
io->y = ydst;
io->u = udst;
io->v = vdst;
} else {
io->y = dec->cache_y_ + y_offset;
io->u = dec->cache_u_ + uv_offset;
io->v = dec->cache_v_ + uv_offset;
}
if (!is_last_row) {
y_end -= extra_y_rows;
}
if (y_end > io->crop_bottom) {
y_end = io->crop_bottom; // make sure we don't overflow on last row.
}
// If dec->alpha_data_ is not NULL, we have some alpha plane present.
io->a = NULL;
if (dec->alpha_data_ != NULL && y_start < y_end) {
io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start);
if (io->a == NULL) {
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
"Could not decode alpha data.");
}
}
if (y_start < io->crop_top) {
const int delta_y = io->crop_top - y_start;
y_start = io->crop_top;
assert(!(delta_y & 1));
io->y += dec->cache_y_stride_ * delta_y;
io->u += dec->cache_uv_stride_ * (delta_y >> 1);
io->v += dec->cache_uv_stride_ * (delta_y >> 1);
if (io->a != NULL) {
io->a += io->width * delta_y;
}
}
if (y_start < y_end) {
io->y += io->crop_left;
io->u += io->crop_left >> 1;
io->v += io->crop_left >> 1;
if (io->a != NULL) {
io->a += io->crop_left;
}
io->mb_y = y_start - io->crop_top;
io->mb_w = io->crop_right - io->crop_left;
io->mb_h = y_end - y_start;
ok = io->put(io);
}
}
// rotate top samples if needed
if (cache_id + 1 == dec->num_caches_) {
if (!is_last_row) {
memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
}
}
return ok;
}
#undef MACROBLOCK_VPOS
//------------------------------------------------------------------------------
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
int ok = 1;
VP8ThreadContext* const ctx = &dec->thread_ctx_;
const int filter_row =
(dec->filter_type_ > 0) &&
(dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
if (dec->mt_method_ == 0) {
// ctx->id_ and ctx->f_info_ are already set
ctx->mb_y_ = dec->mb_y_;
ctx->filter_row_ = filter_row;
ReconstructRow(dec, ctx);
ok = FinishRow(dec, io);
} else {
WebPWorker* const worker = &dec->worker_;
// Finish previous job *before* updating context
ok &= WebPGetWorkerInterface()->Sync(worker);
assert(worker->status_ == OK);
if (ok) { // spawn a new deblocking/output job
ctx->io_ = *io;
ctx->id_ = dec->cache_id_;
ctx->mb_y_ = dec->mb_y_;
ctx->filter_row_ = filter_row;
if (dec->mt_method_ == 2) { // swap macroblock data
VP8MBData* const tmp = ctx->mb_data_;
ctx->mb_data_ = dec->mb_data_;
dec->mb_data_ = tmp;
} else {
// perform reconstruction directly in main thread
ReconstructRow(dec, ctx);
}
if (filter_row) { // swap filter info
VP8FInfo* const tmp = ctx->f_info_;
ctx->f_info_ = dec->f_info_;
dec->f_info_ = tmp;
}
// (reconstruct)+filter in parallel
WebPGetWorkerInterface()->Launch(worker);
if (++dec->cache_id_ == dec->num_caches_) {
dec->cache_id_ = 0;
}
}
}
return ok;
}
//------------------------------------------------------------------------------
// Finish setting up the decoding parameter once user's setup() is called.
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
// Call setup() first. This may trigger additional decoding features on 'io'.
// Note: Afterward, we must call teardown() no matter what.
if (io->setup != NULL && !io->setup(io)) {
VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
return dec->status_;
}
// Disable filtering per user request
if (io->bypass_filtering) {
dec->filter_type_ = 0;
}
// Define the area where we can skip in-loop filtering, in case of cropping.
//
// 'Simple' filter reads two luma samples outside of the macroblock
// and filters one. It doesn't filter the chroma samples. Hence, we can
// avoid doing the in-loop filtering before crop_top/crop_left position.
// For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
// Means: there's a dependency chain that goes all the way up to the
// top-left corner of the picture (MB #0). We must filter all the previous
// macroblocks.
{
const int extra_pixels = kFilterExtraRows[dec->filter_type_];
if (dec->filter_type_ == 2) {
// For complex filter, we need to preserve the dependency chain.
dec->tl_mb_x_ = 0;
dec->tl_mb_y_ = 0;
} else {
// For simple filter, we can filter only the cropped region.
// We include 'extra_pixels' on the other side of the boundary, since
// vertical or horizontal filtering of the previous macroblock can
// modify some abutting pixels.
dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
}
// We need some 'extra' pixels on the right/bottom.
dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
if (dec->br_mb_x_ > dec->mb_w_) {
dec->br_mb_x_ = dec->mb_w_;
}
if (dec->br_mb_y_ > dec->mb_h_) {
dec->br_mb_y_ = dec->mb_h_;
}
}
PrecomputeFilterStrengths(dec);
return VP8_STATUS_OK;
}
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
int ok = 1;
if (dec->mt_method_ > 0) {
ok = WebPGetWorkerInterface()->Sync(&dec->worker_);
}
if (io->teardown != NULL) {
io->teardown(io);
}
return ok;
}
//------------------------------------------------------------------------------
// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
//
// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
// immediately, and needs to wait for first few rows of the next macroblock to
// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
// on strength).
// With two threads, the vertical positions of the rows being decoded are:
// Decode: [ 0..15][16..31][32..47][48..63][64..79][...
// Deblock: [ 0..11][12..27][28..43][44..59][...
// If we use two threads and two caches of 16 pixels, the sequence would be:
// Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
// Deblock: [ 0..11][12..27!!][-4..11][12..27][...
// The problem occurs during row [12..15!!] that both the decoding and
// deblocking threads are writing simultaneously.
// With 3 cache lines, one get a safe write pattern:
// Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
// Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28...
// Note that multi-threaded output _without_ deblocking can make use of two
// cache lines of 16 pixels only, since there's no lagging behind. The decoding
// and output process have non-concurrent writing:
// Decode: [ 0..15][16..31][ 0..15][16..31][...
// io->put: [ 0..15][16..31][ 0..15][...
#define MT_CACHE_LINES 3
#define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case
// Initialize multi/single-thread worker
static int InitThreadContext(VP8Decoder* const dec) {
dec->cache_id_ = 0;
if (dec->mt_method_ > 0) {
WebPWorker* const worker = &dec->worker_;
if (!WebPGetWorkerInterface()->Reset(worker)) {
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
"thread initialization failed.");
}
worker->data1 = dec;
worker->data2 = (void*)&dec->thread_ctx_.io_;
worker->hook = FinishRow;
dec->num_caches_ =
(dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
} else {
dec->num_caches_ = ST_CACHE_LINES;
}
return 1;
}
int VP8GetThreadMethod(const WebPDecoderOptions* const options,
const WebPHeaderStructure* const headers,
int width, int height) {
if (options == NULL || options->use_threads == 0) {
return 0;
}
(void)headers;
(void)width;
(void)height;
assert(headers == NULL || !headers->is_lossless);
#if defined(WEBP_USE_THREAD)
if (width < MIN_WIDTH_FOR_THREADS) return 0;
// TODO(skal): tune the heuristic further
#if 0
if (height < 2 * width) return 2;
#endif
return 2;
#else // !WEBP_USE_THREAD
return 0;
#endif
}
#undef MT_CACHE_LINES
#undef ST_CACHE_LINES
//------------------------------------------------------------------------------
// Memory setup
static int AllocateMemory(VP8Decoder* const dec) {
const int num_caches = dec->num_caches_;
const int mb_w = dec->mb_w_;
// Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
const size_t top_size = sizeof(VP8TopSamples) * mb_w;
const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
const size_t f_info_size =
(dec->filter_type_ > 0) ?
mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
: 0;
const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
const size_t mb_data_size =
(dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
const size_t cache_height = (16 * num_caches
+ kFilterExtraRows[dec->filter_type_]) * 3 / 2;
const size_t cache_size = top_size * cache_height;
// alpha_size is the only one that scales as width x height.
const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
(uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
const uint64_t needed = (uint64_t)intra_pred_mode_size
+ top_size + mb_info_size + f_info_size
+ yuv_size + mb_data_size
+ cache_size + alpha_size + WEBP_ALIGN_CST;
uint8_t* mem;
if (needed != (size_t)needed) return 0; // check for overflow
if (needed > dec->mem_size_) {
WebPSafeFree(dec->mem_);
dec->mem_size_ = 0;
dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
if (dec->mem_ == NULL) {
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
"no memory during frame initialization.");
}
// down-cast is ok, thanks to WebPSafeMalloc() above.
dec->mem_size_ = (size_t)needed;
}
mem = (uint8_t*)dec->mem_;
dec->intra_t_ = mem;
mem += intra_pred_mode_size;
dec->yuv_t_ = (VP8TopSamples*)mem;
mem += top_size;
dec->mb_info_ = ((VP8MB*)mem) + 1;
mem += mb_info_size;
dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
mem += f_info_size;
dec->thread_ctx_.id_ = 0;
dec->thread_ctx_.f_info_ = dec->f_info_;
if (dec->mt_method_ > 0) {
// secondary cache line. The deblocking process need to make use of the
// filtering strength from previous macroblock row, while the new ones
// are being decoded in parallel. We'll just swap the pointers.
dec->thread_ctx_.f_info_ += mb_w;
}
mem = (uint8_t*)WEBP_ALIGN(mem);
assert((yuv_size & WEBP_ALIGN_CST) == 0);
dec->yuv_b_ = mem;
mem += yuv_size;
dec->mb_data_ = (VP8MBData*)mem;
dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
if (dec->mt_method_ == 2) {
dec->thread_ctx_.mb_data_ += mb_w;
}
mem += mb_data_size;
dec->cache_y_stride_ = 16 * mb_w;
dec->cache_uv_stride_ = 8 * mb_w;
{
const int extra_rows = kFilterExtraRows[dec->filter_type_];
const int extra_y = extra_rows * dec->cache_y_stride_;
const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
dec->cache_y_ = mem + extra_y;
dec->cache_u_ = dec->cache_y_
+ 16 * num_caches * dec->cache_y_stride_ + extra_uv;
dec->cache_v_ = dec->cache_u_
+ 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
dec->cache_id_ = 0;
}
mem += cache_size;
// alpha plane
dec->alpha_plane_ = alpha_size ? mem : NULL;
mem += alpha_size;
assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
// note: left/top-info is initialized once for all.
memset(dec->mb_info_ - 1, 0, mb_info_size);
VP8InitScanline(dec); // initialize left too.
// initialize top
memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
return 1;
}
static void InitIo(VP8Decoder* const dec, VP8Io* io) {
// prepare 'io'
io->mb_y = 0;
io->y = dec->cache_y_;
io->u = dec->cache_u_;
io->v = dec->cache_v_;
io->y_stride = dec->cache_y_stride_;
io->uv_stride = dec->cache_uv_stride_;
io->a = NULL;
}
int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) {
if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_.
if (!AllocateMemory(dec)) return 0;
InitIo(dec, io);
VP8DspInit(); // Init critical function pointers and look-up tables.
return 1;
}
//------------------------------------------------------------------------------
|