summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/dsp/enc_sse41.c
blob: a1783901a6b48af3d9d2f040b3fd509726a45439 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE4 version of some encoding functions.
//
// Author: Skal (pascal.massimino@gmail.com)

#include "./dsp.h"

#if defined(WEBP_USE_SSE41)
#include <smmintrin.h>
#include <stdlib.h>  // for abs()

#include "./common_sse2.h"
#include "../enc/vp8enci.h"

//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms.

static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
                             int start_block, int end_block,
                             VP8Histogram* const histo) {
  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
  int j;
  int distribution[MAX_COEFF_THRESH + 1] = { 0 };
  for (j = start_block; j < end_block; ++j) {
    int16_t out[16];
    int k;

    VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);

    // Convert coefficients to bin (within out[]).
    {
      // Load.
      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
      // v = abs(out) >> 3
      const __m128i abs0 = _mm_abs_epi16(out0);
      const __m128i abs1 = _mm_abs_epi16(out1);
      const __m128i v0 = _mm_srai_epi16(abs0, 3);
      const __m128i v1 = _mm_srai_epi16(abs1, 3);
      // bin = min(v, MAX_COEFF_THRESH)
      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
      // Store.
      _mm_storeu_si128((__m128i*)&out[0], bin0);
      _mm_storeu_si128((__m128i*)&out[8], bin1);
    }

    // Convert coefficients to bin.
    for (k = 0; k < 16; ++k) {
      ++distribution[out[k]];
    }
  }
  VP8SetHistogramData(distribution, histo);
}

//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.

// Hadamard transform
// Returns the weighted sum of the absolute value of transformed coefficients.
// w[] contains a row-major 4 by 4 symmetric matrix.
static int TTransform(const uint8_t* inA, const uint8_t* inB,
                      const uint16_t* const w) {
  int32_t sum[4];
  __m128i tmp_0, tmp_1, tmp_2, tmp_3;

  // Load and combine inputs.
  {
    const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]);
    const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]);
    const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]);
    // In SSE4.1, with gcc 4.8 at least (maybe other versions),
    // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump
    // of inA and inB, _mm_loadl_epi64 is still used not to have an out of
    // bound read.
    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
    const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]);
    const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]);
    const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]);
    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);

    // Combine inA and inB (we'll do two transforms in parallel).
    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
    tmp_0 = _mm_cvtepu8_epi16(inAB_0);
    tmp_1 = _mm_cvtepu8_epi16(inAB_1);
    tmp_2 = _mm_cvtepu8_epi16(inAB_2);
    tmp_3 = _mm_cvtepu8_epi16(inAB_3);
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33
  }

  // Vertical pass first to avoid a transpose (vertical and horizontal passes
  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
  {
    // Calculate a and b (two 4x4 at once).
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    const __m128i b0 = _mm_add_epi16(a0, a1);
    const __m128i b1 = _mm_add_epi16(a3, a2);
    const __m128i b2 = _mm_sub_epi16(a3, a2);
    const __m128i b3 = _mm_sub_epi16(a0, a1);
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
  }

  // Horizontal pass and difference of weighted sums.
  {
    // Load all inputs.
    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);

    // Calculate a and b (two 4x4 at once).
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    const __m128i b0 = _mm_add_epi16(a0, a1);
    const __m128i b1 = _mm_add_epi16(a3, a2);
    const __m128i b2 = _mm_sub_epi16(a3, a2);
    const __m128i b3 = _mm_sub_epi16(a0, a1);

    // Separate the transforms of inA and inB.
    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);

    A_b0 = _mm_abs_epi16(A_b0);
    A_b2 = _mm_abs_epi16(A_b2);
    B_b0 = _mm_abs_epi16(B_b0);
    B_b2 = _mm_abs_epi16(B_b2);

    // weighted sums
    A_b0 = _mm_madd_epi16(A_b0, w_0);
    A_b2 = _mm_madd_epi16(A_b2, w_8);
    B_b0 = _mm_madd_epi16(B_b0, w_0);
    B_b2 = _mm_madd_epi16(B_b2, w_8);
    A_b0 = _mm_add_epi32(A_b0, A_b2);
    B_b0 = _mm_add_epi32(B_b0, B_b2);

    // difference of weighted sums
    A_b2 = _mm_sub_epi32(A_b0, B_b0);
    _mm_storeu_si128((__m128i*)&sum[0], A_b2);
  }
  return sum[0] + sum[1] + sum[2] + sum[3];
}

static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
                    const uint16_t* const w) {
  const int diff_sum = TTransform(a, b, w);
  return abs(diff_sum) >> 5;
}

static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
                      const uint16_t* const w) {
  int D = 0;
  int x, y;
  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    for (x = 0; x < 16; x += 4) {
      D += Disto4x4(a + x + y, b + x + y, w);
    }
  }
  return D;
}

//------------------------------------------------------------------------------
// Quantization
//

// Generates a pshufb constant for shuffling 16b words.
#define PSHUFB_CST(A,B,C,D,E,F,G,H) \
  _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
               2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
               2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
               2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)

static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
                                       const uint16_t* const sharpen,
                                       const VP8Matrix* const mtx) {
  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
  const __m128i zero = _mm_setzero_si128();
  __m128i out0, out8;
  __m128i packed_out;

  // Load all inputs.
  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);

  // coeff = abs(in)
  __m128i coeff0 = _mm_abs_epi16(in0);
  __m128i coeff8 = _mm_abs_epi16(in8);

  // coeff = abs(in) + sharpen
  if (sharpen != NULL) {
    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
    coeff0 = _mm_add_epi16(coeff0, sharpen0);
    coeff8 = _mm_add_epi16(coeff8, sharpen8);
  }

  // out = (coeff * iQ + B) >> QFIX
  {
    // doing calculations with 32b precision (QFIX=17)
    // out = (coeff * iQ)
    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    // out = (coeff * iQ + B)
    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
    out_00 = _mm_add_epi32(out_00, bias_00);
    out_04 = _mm_add_epi32(out_04, bias_04);
    out_08 = _mm_add_epi32(out_08, bias_08);
    out_12 = _mm_add_epi32(out_12, bias_12);
    // out = QUANTDIV(coeff, iQ, B, QFIX)
    out_00 = _mm_srai_epi32(out_00, QFIX);
    out_04 = _mm_srai_epi32(out_04, QFIX);
    out_08 = _mm_srai_epi32(out_08, QFIX);
    out_12 = _mm_srai_epi32(out_12, QFIX);

    // pack result as 16b
    out0 = _mm_packs_epi32(out_00, out_04);
    out8 = _mm_packs_epi32(out_08, out_12);

    // if (coeff > 2047) coeff = 2047
    out0 = _mm_min_epi16(out0, max_coeff_2047);
    out8 = _mm_min_epi16(out8, max_coeff_2047);
  }

  // put sign back
  out0 = _mm_sign_epi16(out0, in0);
  out8 = _mm_sign_epi16(out8, in8);

  // in = out * Q
  in0 = _mm_mullo_epi16(out0, q0);
  in8 = _mm_mullo_epi16(out8, q8);

  _mm_storeu_si128((__m128i*)&in[0], in0);
  _mm_storeu_si128((__m128i*)&in[8], in8);

  // zigzag the output before storing it. The re-ordering is:
  //    0 1 2 3 4 5 6 7 | 8  9 10 11 12 13 14 15
  // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
  // There's only two misplaced entries ([8] and [7]) that are crossing the
  // reg's boundaries.
  // We use pshufb instead of pshuflo/pshufhi.
  {
    const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
    const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
    const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
    const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7);  // extract #7
    const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
    const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
    const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
    const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8);  // extract #8
    const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
    const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
    _mm_storeu_si128((__m128i*)&out[0], out_z0);
    _mm_storeu_si128((__m128i*)&out[8], out_z8);
    packed_out = _mm_packs_epi16(out_z0, out_z8);
  }

  // detect if all 'out' values are zeroes or not
  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
}

#undef PSHUFB_CST

static int QuantizeBlock(int16_t in[16], int16_t out[16],
                         const VP8Matrix* const mtx) {
  return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
}

static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
                            const VP8Matrix* const mtx) {
  return DoQuantizeBlock(in, out, NULL, mtx);
}

static int Quantize2Blocks(int16_t in[32], int16_t out[32],
                           const VP8Matrix* const mtx) {
  int nz;
  const uint16_t* const sharpen = &mtx->sharpen_[0];
  nz  = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
  nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
  return nz;
}

//------------------------------------------------------------------------------
// Entry point

extern void VP8EncDspInitSSE41(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
  VP8CollectHistogram = CollectHistogram;
  VP8EncQuantizeBlock = QuantizeBlock;
  VP8EncQuantize2Blocks = Quantize2Blocks;
  VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
  VP8TDisto4x4 = Disto4x4;
  VP8TDisto16x16 = Disto16x16;
}

#else  // !WEBP_USE_SSE41

WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)

#endif  // WEBP_USE_SSE41