summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/dsp/alpha_processing_neon.c
blob: 606a401cf795d1f3ecb46c5698c33e3551147645 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Copyright 2017 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for processing transparent channel, NEON version.
//
// Author: Skal (pascal.massimino@gmail.com)

#include "./dsp.h"

#if defined(WEBP_USE_NEON)

#include "./neon.h"

//------------------------------------------------------------------------------

#define MULTIPLIER(a) ((a) * 0x8081)
#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)

#define MULTIPLY_BY_ALPHA(V, ALPHA, OTHER) do {                        \
  const uint8x8_t alpha = (V).val[(ALPHA)];                            \
  const uint16x8_t r1 = vmull_u8((V).val[1], alpha);                   \
  const uint16x8_t g1 = vmull_u8((V).val[2], alpha);                   \
  const uint16x8_t b1 = vmull_u8((V).val[(OTHER)], alpha);             \
  /* we use: v / 255 = (v + 1 + (v >> 8)) >> 8 */                      \
  const uint16x8_t r2 = vsraq_n_u16(r1, r1, 8);                        \
  const uint16x8_t g2 = vsraq_n_u16(g1, g1, 8);                        \
  const uint16x8_t b2 = vsraq_n_u16(b1, b1, 8);                        \
  const uint16x8_t r3 = vaddq_u16(r2, kOne);                           \
  const uint16x8_t g3 = vaddq_u16(g2, kOne);                           \
  const uint16x8_t b3 = vaddq_u16(b2, kOne);                           \
  (V).val[1] = vshrn_n_u16(r3, 8);                                     \
  (V).val[2] = vshrn_n_u16(g3, 8);                                     \
  (V).val[(OTHER)] = vshrn_n_u16(b3, 8);                               \
} while (0)

static void ApplyAlphaMultiply_NEON(uint8_t* rgba, int alpha_first,
                                    int w, int h, int stride) {
  const uint16x8_t kOne = vdupq_n_u16(1u);
  while (h-- > 0) {
    uint32_t* const rgbx = (uint32_t*)rgba;
    int i = 0;
    if (alpha_first) {
      for (; i + 8 <= w; i += 8) {
        // load aaaa...|rrrr...|gggg...|bbbb...
        uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i));
        MULTIPLY_BY_ALPHA(RGBX, 0, 3);
        vst4_u8((uint8_t*)(rgbx + i), RGBX);
      }
    } else {
      for (; i + 8 <= w; i += 8) {
        uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i));
        MULTIPLY_BY_ALPHA(RGBX, 3, 0);
        vst4_u8((uint8_t*)(rgbx + i), RGBX);
      }
    }
    // Finish with left-overs.
    for (; i < w; ++i) {
      uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
      const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
      const uint32_t a = alpha[4 * i];
      if (a != 0xff) {
        const uint32_t mult = MULTIPLIER(a);
        rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
        rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
        rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
      }
    }
    rgba += stride;
  }
}
#undef MULTIPLY_BY_ALPHA
#undef MULTIPLIER
#undef PREMULTIPLY

//------------------------------------------------------------------------------

static int DispatchAlpha_NEON(const uint8_t* alpha, int alpha_stride,
                              int width, int height,
                              uint8_t* dst, int dst_stride) {
  uint32_t alpha_mask = 0xffffffffu;
  uint8x8_t mask8 = vdup_n_u8(0xff);
  uint32_t tmp[2];
  int i, j;
  for (j = 0; j < height; ++j) {
    // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb
    // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store.
    // Hence the test with 'width - 1' instead of just 'width'.
    for (i = 0; i + 8 <= width - 1; i += 8) {
      uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(dst + 4 * i));
      const uint8x8_t alphas = vld1_u8(alpha + i);
      rgbX.val[0] = alphas;
      vst4_u8((uint8_t*)(dst + 4 * i), rgbX);
      mask8 = vand_u8(mask8, alphas);
    }
    for (; i < width; ++i) {
      const uint32_t alpha_value = alpha[i];
      dst[4 * i] = alpha_value;
      alpha_mask &= alpha_value;
    }
    alpha += alpha_stride;
    dst += dst_stride;
  }
  vst1_u8((uint8_t*)tmp, mask8);
  alpha_mask &= tmp[0];
  alpha_mask &= tmp[1];
  return (alpha_mask != 0xffffffffu);
}

static void DispatchAlphaToGreen_NEON(const uint8_t* alpha, int alpha_stride,
                                      int width, int height,
                                      uint32_t* dst, int dst_stride) {
  int i, j;
  uint8x8x4_t greens;   // leave A/R/B channels zero'd.
  greens.val[0] = vdup_n_u8(0);
  greens.val[2] = vdup_n_u8(0);
  greens.val[3] = vdup_n_u8(0);
  for (j = 0; j < height; ++j) {
    for (i = 0; i + 8 <= width; i += 8) {
      greens.val[1] = vld1_u8(alpha + i);
      vst4_u8((uint8_t*)(dst + i), greens);
    }
    for (; i < width; ++i) dst[i] = alpha[i] << 8;
    alpha += alpha_stride;
    dst += dst_stride;
  }
}

static int ExtractAlpha_NEON(const uint8_t* argb, int argb_stride,
                             int width, int height,
                             uint8_t* alpha, int alpha_stride) {
  uint32_t alpha_mask = 0xffffffffu;
  uint8x8_t mask8 = vdup_n_u8(0xff);
  uint32_t tmp[2];
  int i, j;
  for (j = 0; j < height; ++j) {
    // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb
    // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store.
    // Hence the test with 'width - 1' instead of just 'width'.
    for (i = 0; i + 8 <= width - 1; i += 8) {
      const uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(argb + 4 * i));
      const uint8x8_t alphas = rgbX.val[0];
      vst1_u8((uint8_t*)(alpha + i), alphas);
      mask8 = vand_u8(mask8, alphas);
    }
    for (; i < width; ++i) {
      alpha[i] = argb[4 * i];
      alpha_mask &= alpha[i];
    }
    argb += argb_stride;
    alpha += alpha_stride;
  }
  vst1_u8((uint8_t*)tmp, mask8);
  alpha_mask &= tmp[0];
  alpha_mask &= tmp[1];
  return (alpha_mask == 0xffffffffu);
}

static void ExtractGreen_NEON(const uint32_t* argb,
                              uint8_t* alpha, int size) {
  int i;
  for (i = 0; i + 16 <= size; i += 16) {
    const uint8x16x4_t rgbX = vld4q_u8((const uint8_t*)(argb + i));
    const uint8x16_t greens = rgbX.val[1];
    vst1q_u8(alpha + i, greens);
  }
  for (; i < size; ++i) alpha[i] = (argb[i] >> 8) & 0xff;
}

//------------------------------------------------------------------------------

extern void WebPInitAlphaProcessingNEON(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingNEON(void) {
  WebPApplyAlphaMultiply = ApplyAlphaMultiply_NEON;
  WebPDispatchAlpha = DispatchAlpha_NEON;
  WebPDispatchAlphaToGreen = DispatchAlphaToGreen_NEON;
  WebPExtractAlpha = ExtractAlpha_NEON;
  WebPExtractGreen = ExtractGreen_NEON;
}

#else  // !WEBP_USE_NEON

WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingNEON)

#endif  // WEBP_USE_NEON