summaryrefslogtreecommitdiff
path: root/thirdparty/libtheora/collect.c
blob: c0d8a2733fc826ad5e67cdc4d3c4004501d7a012 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/********************************************************************
 *                                                                  *
 * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
 *                                                                  *
 * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2011                *
 * by the Xiph.Org Foundation http://www.xiph.org/                  *
 *                                                                  *
 ********************************************************************

  function: mode selection code
  last mod: $Id$

 ********************************************************************/
#include <stdio.h>
#include <limits.h>
#include <math.h>
#include <string.h>
#include "collect.h"

#if defined(OC_COLLECT_METRICS)

int              OC_HAS_MODE_METRICS;
double           OC_MODE_RD_WEIGHT_SATD[OC_LOGQ_BINS][3][2][OC_COMP_BINS];
double           OC_MODE_RD_WEIGHT_SAD[OC_LOGQ_BINS][3][2][OC_COMP_BINS];
oc_mode_metrics  OC_MODE_METRICS_SATD[OC_LOGQ_BINS-1][3][2][OC_COMP_BINS];
oc_mode_metrics  OC_MODE_METRICS_SAD[OC_LOGQ_BINS-1][3][2][OC_COMP_BINS];
const char      *OC_MODE_METRICS_FILENAME="modedec.stats";

void oc_mode_metrics_add(oc_mode_metrics *_metrics,
 double _w,int _s,int _q,int _r,double _d){
  if(_metrics->w>0){
    double ds;
    double dq;
    double dr;
    double dd;
    double ds2;
    double dq2;
    double s2;
    double sq;
    double q2;
    double sr;
    double qr;
    double sd;
    double qd;
    double s2q;
    double sq2;
    double w;
    double wa;
    double rwa;
    double rwa2;
    double rwb;
    double rwb2;
    double rw2;
    double rw3;
    double rw4;
    wa=_metrics->w;
    ds=_s-_metrics->s/wa;
    dq=_q-_metrics->q/wa;
    dr=_r-_metrics->r/wa;
    dd=_d-_metrics->d/wa;
    ds2=ds*ds;
    dq2=dq*dq;
    s2=_metrics->s2;
    sq=_metrics->sq;
    q2=_metrics->q2;
    sr=_metrics->sr;
    qr=_metrics->qr;
    sd=_metrics->sd;
    qd=_metrics->qd;
    s2q=_metrics->s2q;
    sq2=_metrics->sq2;
    w=wa+_w;
    rwa=wa/w;
    rwb=_w/w;
    rwa2=rwa*rwa;
    rwb2=rwb*rwb;
    rw2=wa*rwb;
    rw3=rw2*(rwa2-rwb2);
    rw4=_w*rwa2*rwa2+wa*rwb2*rwb2;
    _metrics->s2q2+=-2*(ds*sq2+dq*s2q)*rwb
     +(ds2*q2+4*ds*dq*sq+dq2*s2)*rwb2+ds2*dq2*rw4;
    _metrics->s2q+=(-2*ds*sq-dq*s2)*rwb+ds2*dq*rw3;
    _metrics->sq2+=(-ds*q2-2*dq*sq)*rwb+ds*dq2*rw3;
    _metrics->sqr+=(-ds*qr-dq*sr-dr*sq)*rwb+ds*dq*dr*rw3;
    _metrics->sqd+=(-ds*qd-dq*sd-dd*sq)*rwb+ds*dq*dd*rw3;
    _metrics->s2+=ds2*rw2;
    _metrics->sq+=ds*dq*rw2;
    _metrics->q2+=dq2*rw2;
    _metrics->sr+=ds*dr*rw2;
    _metrics->qr+=dq*dr*rw2;
    _metrics->r2+=dr*dr*rw2;
    _metrics->sd+=ds*dd*rw2;
    _metrics->qd+=dq*dd*rw2;
    _metrics->d2+=dd*dd*rw2;
  }
  _metrics->w+=_w;
  _metrics->s+=_s*_w;
  _metrics->q+=_q*_w;
  _metrics->r+=_r*_w;
  _metrics->d+=_d*_w;
}

void oc_mode_metrics_merge(oc_mode_metrics *_dst,
 const oc_mode_metrics *_src,int _n){
  int i;
  /*Find a non-empty set of metrics.*/
  for(i=0;i<_n&&_src[i].w==0;i++);
  if(i>=_n){
    memset(_dst,0,sizeof(*_dst));
    return;
  }
  memcpy(_dst,_src+i,sizeof(*_dst));
  /*And iterate over the remaining non-empty sets of metrics.*/
  for(i++;i<_n;i++)if(_src[i].w!=0){
    double ds;
    double dq;
    double dr;
    double dd;
    double ds2;
    double dq2;
    double s2a;
    double s2b;
    double sqa;
    double sqb;
    double q2a;
    double q2b;
    double sra;
    double srb;
    double qra;
    double qrb;
    double sda;
    double sdb;
    double qda;
    double qdb;
    double s2qa;
    double s2qb;
    double sq2a;
    double sq2b;
    double w;
    double wa;
    double wb;
    double rwa;
    double rwb;
    double rwa2;
    double rwb2;
    double rw2;
    double rw3;
    double rw4;
    wa=_dst->w;
    wb=_src[i].w;
    ds=_src[i].s/wb-_dst->s/wa;
    dq=_src[i].q/wb-_dst->q/wa;
    dr=_src[i].r/wb-_dst->r/wa;
    dd=_src[i].d/wb-_dst->d/wa;
    ds2=ds*ds;
    dq2=dq*dq;
    s2a=_dst->s2;
    sqa=_dst->sq;
    q2a=_dst->q2;
    sra=_dst->sr;
    qra=_dst->qr;
    sda=_dst->sd;
    qda=_dst->qd;
    s2qa=_dst->s2q;
    sq2a=_dst->sq2;
    s2b=_src[i].s2;
    sqb=_src[i].sq;
    q2b=_src[i].q2;
    srb=_src[i].sr;
    qrb=_src[i].qr;
    sdb=_src[i].sd;
    qdb=_src[i].qd;
    s2qb=_src[i].s2q;
    sq2b=_src[i].sq2;
    w=wa+wb;
    if(w==0)rwa=rwb=0;
    else{
      rwa=wa/w;
      rwb=wb/w;
    }
    rwa2=rwa*rwa;
    rwb2=rwb*rwb;
    rw2=wa*rwb;
    rw3=rw2*(rwa2-rwb2);
    rw4=wb*rwa2*rwa2+wa*rwb2*rwb2;
    /*
    (1,1,1) ->
     (0,0,0)#
     (1,0,0) C(1,1)*C(1,0)*C(1,0)->  d^{1,0,0}*(rwa*B_{0,1,1}-rwb*A_{0,1,1})
     (0,1,0) C(1,0)*C(1,1)*C(1,0)->  d^{0,1,0}*(rwa*B_{1,0,1}-rwb*A_{1,0,1})
     (0,0,1) C(1,0)*C(1,0)*C(1,1)->  d^{0,0,1}*(rwa*B_{1,1,0}-rwb*A_{1,1,0})
     (1,1,0)*
     (1,0,1)*
     (0,1,1)*
     (1,1,1) C(1,1)*C(1,1)*C(1,1)->  d^{1,1,1}*(rwa^3*wb-rwb^3*wa)
    (2,1) ->
     (0,0)#
     (1,0) C(2,1)*C(1,1)->2*d^{1,0}*(rwa*B_{1,1}-rwb*A_{1,1})
     (0,1) C(2,0)*C(1,1)->  d^{0,1}*(rwa*B_{2,0}-rwb*A_{2,0})
     (2,0)*
     (1,1)*
     (2,1) C(2,2)*C(1,1)->  d^{2,1}*(rwa^3*wb-rwb^3*wa)
    (2,2) ->
     (0,0)#
     (1,0) C(2,1)*C(2,0)->2*d^{1,0}*(rwa*B_{1,2}-rwb*A_{1,2})
     (0,1) C(2,0)*C(2,1)->2*d^{0,1}*(rwa*B_{2,1}-rwb*A_{2,1})
     (2,0) C(2,2)*C(2,0)->  d^{2,0}*(rwa^2*B_{0,2}+rwb^2*A_{0,2})
     (1,1) C(2,1)*C(2,1)->4*d^{1,1}*(rwa^2*B_{1,1}+rwb^2*A_{1,1})
     (0,2) C(2,0)*C(2,2)->  d^{0,2}*(rwa^2*B_{2,0}+rwb^2*A_{2,0})
     (1,2)*
     (2,1)*
     (2,2) C(2,2)*C(2,2)*d^{2,2}*(rwa^4*wb+rwb^4*wa)
    */
    _dst->s2q2+=_src[i].s2q2+2*(ds*(rwa*sq2b-rwb*sq2a)+dq*(rwa*s2qb-rwb*s2qa))
     +ds2*(rwa2*q2b+rwb2*q2a)+4*ds*dq*(rwa2*sqb+rwb2*sqa)
     +dq2*(rwa2*s2b+rwb2*s2a)+ds2*dq2*rw4;
    _dst->s2q+=_src[i].s2q+2*ds*(rwa*sqb-rwb*sqa)
     +dq*(rwa*s2b-rwb*s2a)+ds2*dq*rw3;
    _dst->sq2+=_src[i].sq2+ds*(rwa*q2b-rwb*q2a)
     +2*dq*(rwa*sqb-rwb*sqa)+ds*dq2*rw3;
    _dst->sqr+=_src[i].sqr+ds*(rwa*qrb-rwb*qra)+dq*(rwa*srb-rwb*sra)
     +dr*(rwa*sqb-rwb*sqa)+ds*dq*dr*rw3;
    _dst->sqd+=_src[i].sqd+ds*(rwa*qdb-rwb*qda)+dq*(rwa*sdb-rwb*sda)
     +dd*(rwa*sqb-rwb*sqa)+ds*dq*dd*rw3;
    _dst->s2+=_src[i].s2+ds2*rw2;
    _dst->sq+=_src[i].sq+ds*dq*rw2;
    _dst->q2+=_src[i].q2+dq2*rw2;
    _dst->sr+=_src[i].sr+ds*dr*rw2;
    _dst->qr+=_src[i].qr+dq*dr*rw2;
    _dst->r2+=_src[i].r2+dr*dr*rw2;
    _dst->sd+=_src[i].sd+ds*dd*rw2;
    _dst->qd+=_src[i].qd+dq*dd*rw2;
    _dst->d2+=_src[i].d2+dd*dd*rw2;
    _dst->w+=_src[i].w;
    _dst->s+=_src[i].s;
    _dst->q+=_src[i].q;
    _dst->r+=_src[i].r;
    _dst->d+=_src[i].d;
  }
}

/*Adjust a single corner of a set of metric bins to minimize the squared
   prediction error of R and D.
  Each bin is assumed to cover a quad like so:
    (s0,q0)    (s1,q0)
       A----------B
       |          |
       |          |
       |          |
       |          |
       C----------Z
    (s0,q1)    (s1,q1)
  The values A, B, and C are fixed, and Z is the free parameter.
  Then, for example, R_i is predicted via bilinear interpolation as
    x_i=(s_i-s0)/(s1-s0)
    y_i=(q_i-q0)/(q1-q0)
    dRds1_i=A+(B-A)*x_i
    dRds2_i=C+(Z-C)*x_i
    R_i=dRds1_i+(dRds2_i-dRds1_i)*y_i
  To find the Z that minimizes the squared prediction error over i, this can
   be rewritten as
    R_i-(A+(B-A)*x_i+(C-A)*y_i+(A-B-C)*x_i*y_i)=x_i*y_i*Z
  Letting X={...,x_i*y_i,...}^T and
   Y={...,R_i-(A+(B-A)*x_i+(C-A)*y_i+(A-B-C)*x_i*y_i),...}^T,
   the optimal Z is given by Z=(X^T.Y)/(X^T.X).
  Now, we need to compute these dot products without actually storing data for
   each sample.
  Starting with X^T.X, we have
   X^T.X = sum(x_i^2*y_i^2) = sum((s_i-s0)^2*(q_i-q0)^2)/((s1-s0)^2*(q1-q0)^2).
  Expanding the interior of the sum in a monomial basis of s_i and q_i gives
    s0^2*q0^2  *(1)
     -2*s0*q0^2*(s_i)
     -2*s0^2*q0*(q_i)
     +q0^2     *(s_i^2)
     +4*s0*q0  *(s_i*q_i)
     +s0^2     *(q_i^2)
     -2*q0     *(s_i^2*q_i)
     -2*s0     *(s_i*q_i^2)
     +1        *(s_i^2*q_i^2).
  However, computing things directly in this basis leads to gross numerical
   errors, as most of the terms will have similar size and destructive
   cancellation results.
  A much better basis is the central (co-)moment basis:
    {1,s_i-sbar,q_i-qbar,(s_i-sbar)^2,(s_i-sbar)*(q_i-qbar),(q_i-qbar)^2,
     (s_i-sbar)^2*(q_i-qbar),(s_i-sbar)*(q_i-qbar)^2,(s_i-sbar)^2*(q_i-qbar)^2},
   where sbar and qbar are the average s and q values over the bin,
   respectively.
  In that basis, letting ds=sbar-s0 and dq=qbar-q0, (s_i-s0)^2*(q_i-q0)^2 is
    ds^2*dq^2*(1)
     +dq^2   *((s_i-sbar)^2)
     +4*ds*dq*((s_i-sbar)*(q_i-qbar))
     +ds^2   *((q_i-qbar)^2)
     +2*dq   *((s_i-sbar)^2*(q_i-qbar))
     +2*ds   *((s_i-sbar)*(q_i-qbar)^2)
     +1      *((s_i-sbar)^2*(q_i-qbar)^2).
  With these expressions in the central (co-)moment bases, all we need to do
   is compute sums over the (co-)moment terms, which can be done
   incrementally (see oc_mode_metrics_add() and oc_mode_metrics_merge()),
   with no need to store the individual samples.
  Now, for X^T.Y, we have
    X^T.Y = sum((R_i-A-((B-A)/(s1-s0))*(s_i-s0)-((C-A)/(q1-q0))*(q_i-q0)
     -((A-B-C)/((s1-s0)*(q1-q0)))*(s_i-s0)*(q_i-q0))*(s_i-s0)*(q_i-q0))/
     ((s1-s0)*(q1-q0)),
   or, rewriting the constants to simplify notation,
    X^T.Y = sum((C0+C1*(s_i-s0)+C2*(q_i-q0)
     +C3*(s_i-s0)*(q_i-q0)+R_i)*(s_i-s0)*(q_i-q0))/((s1-s0)*(q1-q0)).
  Again, converting to the central (co-)moment basis, the interior of the
   above sum is
    ds*dq*(rbar+C0+C1*ds+C2*dq+C3*ds*dq)  *(1)
     +(C1*dq+C3*dq^2)                     *((s_i-sbar)^2)
     +(rbar+C0+2*C1*ds+2*C2*dq+4*C3*ds*dq)*((s_i-sbar)*(q_i-qbar))
     +(C2*ds+C3*ds^2)                     *((q_i-qbar)^2)
     +dq                                  *((s_i-sbar)*(r_i-rbar))
     +ds                                  *((q_i-qbar)*(r_i-rbar))
     +(C1+2*C3*dq)                        *((s_i-sbar)^2*(q_i-qbar))
     +(C2+2*C3*ds)                        *((s_i-sbar)*(q_i-qbar)^2)
     +1                                   *((s_i-sbar)*(q_i-qbar)*(r_i-rbar))
     +C3                                  *((s_i-sbar)^2*(q_i-qbar)^2).
  You might think it would be easier (if perhaps slightly less robust) to
   accumulate terms directly around s0 and q0.
  However, we update each corner of the bins in turn, so we would have to
   change basis to move the sums from corner to corner anyway.*/
double oc_mode_metrics_solve(double *_r,double *_d,
 const oc_mode_metrics *_metrics,const int *_s0,const int *_s1,
 const int *_q0,const int *_q1,
 const double *_ra,const double *_rb,const double *_rc,
 const double *_da,const double *_db,const double *_dc,int _n){
  double xx;
  double rxy;
  double dxy;
  double wt;
  int i;
  xx=rxy=dxy=wt=0;
  for(i=0;i<_n;i++)if(_metrics[i].w>0){
    double s10;
    double q10;
    double sq10;
    double ds;
    double dq;
    double ds2;
    double dq2;
    double r;
    double d;
    double s2;
    double sq;
    double q2;
    double sr;
    double qr;
    double sd;
    double qd;
    double s2q;
    double sq2;
    double sqr;
    double sqd;
    double s2q2;
    double c0;
    double c1;
    double c2;
    double c3;
    double w;
    w=_metrics[i].w;
    wt+=w;
    s10=_s1[i]-_s0[i];
    q10=_q1[i]-_q0[i];
    sq10=s10*q10;
    ds=_metrics[i].s/w-_s0[i];
    dq=_metrics[i].q/w-_q0[i];
    ds2=ds*ds;
    dq2=dq*dq;
    s2=_metrics[i].s2;
    sq=_metrics[i].sq;
    q2=_metrics[i].q2;
    s2q=_metrics[i].s2q;
    sq2=_metrics[i].sq2;
    s2q2=_metrics[i].s2q2;
    xx+=(dq2*(ds2*w+s2)+4*ds*dq*sq+ds2*q2+2*(dq*s2q+ds*sq2)+s2q2)/(sq10*sq10);
    r=_metrics[i].r/w;
    sr=_metrics[i].sr;
    qr=_metrics[i].qr;
    sqr=_metrics[i].sqr;
    c0=-_ra[i];
    c1=-(_rb[i]-_ra[i])/s10;
    c2=-(_rc[i]-_ra[i])/q10;
    c3=-(_ra[i]-_rb[i]-_rc[i])/sq10;
    rxy+=(ds*dq*(r+c0+c1*ds+c2*dq+c3*ds*dq)*w+(c1*dq+c3*dq2)*s2
     +(r+c0+2*(c1*ds+(c2+2*c3*ds)*dq))*sq+(c2*ds+c3*ds2)*q2+dq*sr+ds*qr
     +(c1+2*c3*dq)*s2q+(c2+2*c3*ds)*sq2+sqr+c3*s2q2)/sq10;
    d=_metrics[i].d/w;
    sd=_metrics[i].sd;
    qd=_metrics[i].qd;
    sqd=_metrics[i].sqd;
    c0=-_da[i];
    c1=-(_db[i]-_da[i])/s10;
    c2=-(_dc[i]-_da[i])/q10;
    c3=-(_da[i]-_db[i]-_dc[i])/sq10;
    dxy+=(ds*dq*(d+c0+c1*ds+c2*dq+c3*ds*dq)*w+(c1*dq+c3*dq2)*s2
     +(d+c0+2*(c1*ds+(c2+2*c3*ds)*dq))*sq+(c2*ds+c3*ds2)*q2+dq*sd+ds*qd
     +(c1+2*c3*dq)*s2q+(c2+2*c3*ds)*sq2+sqd+c3*s2q2)/sq10;
  }
  if(xx>1E-3){
    *_r=rxy/xx;
    *_d=dxy/xx;
  }
  else{
    *_r=0;
    *_d=0;
  }
  return wt;
}

/*Compile collected SATD/logq/rate/RMSE metrics into a form that's immediately
   useful for mode decision.*/
void oc_mode_metrics_update(oc_mode_metrics (*_metrics)[3][2][OC_COMP_BINS],
 int _niters_min,int _reweight,oc_mode_rd (*_table)[3][2][OC_COMP_BINS],
 int _shift,double (*_weight)[3][2][OC_COMP_BINS]){
  int niters;
  int prevdr;
  int prevdd;
  int dr;
  int dd;
  int pli;
  int qti;
  int qi;
  int si;
  dd=dr=INT_MAX;
  niters=0;
  /*The encoder interpolates rate and RMSE terms bilinearly from an
     OC_LOGQ_BINS by OC_COMP_BINS grid of sample points in _table.
    To find the sample values at the grid points that minimize the total
     squared prediction error actually requires solving a relatively sparse
     linear system with a number of variables equal to the number of grid
     points.
    Instead of writing a general sparse linear system solver, we just use
     Gauss-Seidel iteration, i.e., we update one grid point at time until
     they stop changing.*/
  do{
    prevdr=dr;
    prevdd=dd;
    dd=dr=0;
    for(pli=0;pli<3;pli++){
      for(qti=0;qti<2;qti++){
        for(qi=0;qi<OC_LOGQ_BINS;qi++){
          for(si=0;si<OC_COMP_BINS;si++){
            oc_mode_metrics m[4];
            int             s0[4];
            int             s1[4];
            int             q0[4];
            int             q1[4];
            double          ra[4];
            double          rb[4];
            double          rc[4];
            double          da[4];
            double          db[4];
            double          dc[4];
            double          r;
            double          d;
            int             rate;
            int             rmse;
            int             ds;
            int             n;
            n=0;
            /*Collect the statistics for the (up to) four bins grid point
               (si,qi) touches.*/
            if(qi>0&&si>0){
              q0[n]=OC_MODE_LOGQ[qi-1][pli][qti];
              q1[n]=OC_MODE_LOGQ[qi][pli][qti];
              s0[n]=si-1<<_shift;
              s1[n]=si<<_shift;
              ra[n]=ldexp(_table[qi-1][pli][qti][si-1].rate,-OC_BIT_SCALE);
              da[n]=ldexp(_table[qi-1][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
              rb[n]=ldexp(_table[qi-1][pli][qti][si].rate,-OC_BIT_SCALE);
              db[n]=ldexp(_table[qi-1][pli][qti][si].rmse,-OC_RMSE_SCALE);
              rc[n]=ldexp(_table[qi][pli][qti][si-1].rate,-OC_BIT_SCALE);
              dc[n]=ldexp(_table[qi][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
              *(m+n++)=*(_metrics[qi-1][pli][qti]+si-1);
            }
            if(qi>0){
              ds=si+1<OC_COMP_BINS?1:-1;
              q0[n]=OC_MODE_LOGQ[qi-1][pli][qti];
              q1[n]=OC_MODE_LOGQ[qi][pli][qti];
              s0[n]=si+ds<<_shift;
              s1[n]=si<<_shift;
              ra[n]=ldexp(_table[qi-1][pli][qti][si+ds].rate,-OC_BIT_SCALE);
              da[n]=
               ldexp(_table[qi-1][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
              rb[n]=ldexp(_table[qi-1][pli][qti][si].rate,-OC_BIT_SCALE);
              db[n]=ldexp(_table[qi-1][pli][qti][si].rmse,-OC_RMSE_SCALE);
              rc[n]=ldexp(_table[qi][pli][qti][si+ds].rate,-OC_BIT_SCALE);
              dc[n]=ldexp(_table[qi][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
              *(m+n++)=*(_metrics[qi-1][pli][qti]+si);
            }
            if(qi+1<OC_LOGQ_BINS&&si>0){
              q0[n]=OC_MODE_LOGQ[qi+1][pli][qti];
              q1[n]=OC_MODE_LOGQ[qi][pli][qti];
              s0[n]=si-1<<_shift;
              s1[n]=si<<_shift;
              ra[n]=ldexp(_table[qi+1][pli][qti][si-1].rate,-OC_BIT_SCALE);
              da[n]=ldexp(_table[qi+1][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
              rb[n]=ldexp(_table[qi+1][pli][qti][si].rate,-OC_BIT_SCALE);
              db[n]=ldexp(_table[qi+1][pli][qti][si].rmse,-OC_RMSE_SCALE);
              rc[n]=ldexp(_table[qi][pli][qti][si-1].rate,-OC_BIT_SCALE);
              dc[n]=ldexp(_table[qi][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
              *(m+n++)=*(_metrics[qi][pli][qti]+si-1);
            }
            if(qi+1<OC_LOGQ_BINS){
              ds=si+1<OC_COMP_BINS?1:-1;
              q0[n]=OC_MODE_LOGQ[qi+1][pli][qti];
              q1[n]=OC_MODE_LOGQ[qi][pli][qti];
              s0[n]=si+ds<<_shift;
              s1[n]=si<<_shift;
              ra[n]=ldexp(_table[qi+1][pli][qti][si+ds].rate,-OC_BIT_SCALE);
              da[n]=
               ldexp(_table[qi+1][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
              rb[n]=ldexp(_table[qi+1][pli][qti][si].rate,-OC_BIT_SCALE);
              db[n]=ldexp(_table[qi+1][pli][qti][si].rmse,-OC_RMSE_SCALE);
              rc[n]=ldexp(_table[qi][pli][qti][si+ds].rate,-OC_BIT_SCALE);
              dc[n]=ldexp(_table[qi][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
              *(m+n++)=*(_metrics[qi][pli][qti]+si);
            }
            /*On the first pass, initialize with a simple weighted average of
               the neighboring bins.*/
            if(!OC_HAS_MODE_METRICS&&niters==0){
              double w;
              w=r=d=0;
              while(n-->0){
                w+=m[n].w;
                r+=m[n].r;
                d+=m[n].d;
              }
              r=w>1E-3?r/w:0;
              d=w>1E-3?d/w:0;
              _weight[qi][pli][qti][si]=w;
            }
            else{
              /*Update the grid point and save the weight for later.*/
              _weight[qi][pli][qti][si]=
               oc_mode_metrics_solve(&r,&d,m,s0,s1,q0,q1,ra,rb,rc,da,db,dc,n);
            }
            rate=OC_CLAMPI(-32768,(int)(ldexp(r,OC_BIT_SCALE)+0.5),32767);
            rmse=OC_CLAMPI(-32768,(int)(ldexp(d,OC_RMSE_SCALE)+0.5),32767);
            dr+=abs(rate-_table[qi][pli][qti][si].rate);
            dd+=abs(rmse-_table[qi][pli][qti][si].rmse);
            _table[qi][pli][qti][si].rate=(ogg_int16_t)rate;
            _table[qi][pli][qti][si].rmse=(ogg_int16_t)rmse;
          }
        }
      }
    }
  }
  /*After a fixed number of initial iterations, only iterate so long as the
     total change is decreasing.
    This ensures we don't oscillate forever, which is a danger, as all of our
     results are rounded fairly coarsely.*/
  while((dr>0||dd>0)&&(niters++<_niters_min||(dr<prevdr&&dd<prevdd)));
  if(_reweight){
    /*Now, reduce the values of the optimal solution until we get enough
       samples in each bin to overcome the constant OC_ZWEIGHT factor.
      This encourages sampling under-populated bins and prevents a single large
       sample early on from discouraging coding in that bin ever again.*/
    for(pli=0;pli<3;pli++){
      for(qti=0;qti<2;qti++){
        for(qi=0;qi<OC_LOGQ_BINS;qi++){
          for(si=0;si<OC_COMP_BINS;si++){
            double wt;
            wt=_weight[qi][pli][qti][si];
            wt/=OC_ZWEIGHT+wt;
            _table[qi][pli][qti][si].rate=(ogg_int16_t)
             (_table[qi][pli][qti][si].rate*wt+0.5);
            _table[qi][pli][qti][si].rmse=(ogg_int16_t)
             (_table[qi][pli][qti][si].rmse*wt+0.5);
          }
        }
      }
    }
  }
}

/*Dump the in memory mode metrics to a file.
  Note this data format isn't portable between different platforms.*/
void oc_mode_metrics_dump(void){
  FILE *fmetrics;
  fmetrics=fopen(OC_MODE_METRICS_FILENAME,"wb");
  if(fmetrics!=NULL){
    (void)fwrite(OC_MODE_LOGQ,sizeof(OC_MODE_LOGQ),1,fmetrics);
    (void)fwrite(OC_MODE_METRICS_SATD,sizeof(OC_MODE_METRICS_SATD),1,fmetrics);
    (void)fwrite(OC_MODE_METRICS_SAD,sizeof(OC_MODE_METRICS_SAD),1,fmetrics);
    fclose(fmetrics);
  }
}

void oc_mode_metrics_print_rd(FILE *_fout,const char *_table_name,
#if !defined(OC_COLLECT_METRICS)
 const oc_mode_rd (*_mode_rd_table)[3][2][OC_COMP_BINS]){
#else
 oc_mode_rd (*_mode_rd_table)[3][2][OC_COMP_BINS]){
#endif
  int qii;
  fprintf(_fout,
   "# if !defined(OC_COLLECT_METRICS)\n"
   "static const\n"
   "# endif\n"
   "oc_mode_rd %s[OC_LOGQ_BINS][3][2][OC_COMP_BINS]={\n",_table_name);
  for(qii=0;qii<OC_LOGQ_BINS;qii++){
    int pli;
    fprintf(_fout,"  {\n");
    for(pli=0;pli<3;pli++){
      int qti;
      fprintf(_fout,"    {\n");
      for(qti=0;qti<2;qti++){
        int bin;
        int qi;
        static const char *pl_names[3]={"Y'","Cb","Cr"};
        static const char *qti_names[2]={"INTRA","INTER"};
        qi=(63*qii+(OC_LOGQ_BINS-1>>1))/(OC_LOGQ_BINS-1);
        fprintf(_fout,"      /*%s  qi=%i  %s*/\n",
         pl_names[pli],qi,qti_names[qti]);
        fprintf(_fout,"      {\n");
        fprintf(_fout,"        ");
        for(bin=0;bin<OC_COMP_BINS;bin++){
          if(bin&&!(bin&0x3))fprintf(_fout,"\n        ");
          fprintf(_fout,"{%5i,%5i}",
           _mode_rd_table[qii][pli][qti][bin].rate,
           _mode_rd_table[qii][pli][qti][bin].rmse);
          if(bin+1<OC_COMP_BINS)fprintf(_fout,",");
        }
        fprintf(_fout,"\n      }");
        if(qti<1)fprintf(_fout,",");
        fprintf(_fout,"\n");
      }
      fprintf(_fout,"    }");
      if(pli<2)fprintf(_fout,",");
      fprintf(_fout,"\n");
    }
    fprintf(_fout,"  }");
    if(qii+1<OC_LOGQ_BINS)fprintf(_fout,",");
    fprintf(_fout,"\n");
  }
  fprintf(_fout,
   "};\n"
   "\n");
}

void oc_mode_metrics_print(FILE *_fout){
  int qii;
  fprintf(_fout,
   "/*File generated by libtheora with OC_COLLECT_METRICS"
   " defined at compile time.*/\n"
   "#if !defined(_modedec_H)\n"
   "# define _modedec_H (1)\n"
   "# include \"encint.h\"\n"
   "\n"
   "\n"
   "\n"
   "/*The log of the average quantizer for each of the OC_MODE_RD table rows\n"
   "   (e.g., for the represented qi's, and each pli and qti), in Q10 format.\n"
   "  The actual statistics used by the encoder will be interpolated from\n"
   "   that table based on log_plq for the actual quantization matrix used.*/\n"
   "# if !defined(OC_COLLECT_METRICS)\n"
   "static const\n"
   "# endif\n"
   "ogg_int16_t OC_MODE_LOGQ[OC_LOGQ_BINS][3][2]={\n");
  for(qii=0;qii<OC_LOGQ_BINS;qii++){
    fprintf(_fout,"  { {0x%04X,0x%04X},{0x%04X,0x%04X},{0x%04X,0x%04X} }%s\n",
     OC_MODE_LOGQ[qii][0][0],OC_MODE_LOGQ[qii][0][1],OC_MODE_LOGQ[qii][1][0],
     OC_MODE_LOGQ[qii][1][1],OC_MODE_LOGQ[qii][2][0],OC_MODE_LOGQ[qii][2][1],
     qii+1<OC_LOGQ_BINS?",":"");
  }
  fprintf(_fout,
   "};\n"
   "\n");
  oc_mode_metrics_print_rd(_fout,"OC_MODE_RD_SATD",OC_MODE_RD_SATD);
  oc_mode_metrics_print_rd(_fout,"OC_MODE_RD_SAD",OC_MODE_RD_SAD);
  fprintf(_fout,
   "#endif\n");
}


# if !defined(OC_COLLECT_NO_ENC_FUNCS)
void oc_enc_mode_metrics_load(oc_enc_ctx *_enc){
  oc_restore_fpu(&_enc->state);
  /*Load any existing mode metrics if we haven't already.*/
  if(!OC_HAS_MODE_METRICS){
    FILE *fmetrics;
    memset(OC_MODE_METRICS_SATD,0,sizeof(OC_MODE_METRICS_SATD));
    memset(OC_MODE_METRICS_SAD,0,sizeof(OC_MODE_METRICS_SAD));
    fmetrics=fopen(OC_MODE_METRICS_FILENAME,"rb");
    if(fmetrics!=NULL){
      /*Read in the binary structures as written my oc_mode_metrics_dump().
        Note this format isn't portable between different platforms.*/
      (void)fread(OC_MODE_LOGQ,sizeof(OC_MODE_LOGQ),1,fmetrics);
      (void)fread(OC_MODE_METRICS_SATD,sizeof(OC_MODE_METRICS_SATD),1,fmetrics);
      (void)fread(OC_MODE_METRICS_SAD,sizeof(OC_MODE_METRICS_SAD),1,fmetrics);
      fclose(fmetrics);
    }
    else{
      int qii;
      int qi;
      int pli;
      int qti;
      for(qii=0;qii<OC_LOGQ_BINS;qii++){
        qi=(63*qii+(OC_LOGQ_BINS-1>>1))/(OC_LOGQ_BINS-1);
        for(pli=0;pli<3;pli++)for(qti=0;qti<2;qti++){
          OC_MODE_LOGQ[qii][pli][qti]=_enc->log_plq[qi][pli][qti];
        }
      }
    }
    oc_mode_metrics_update(OC_MODE_METRICS_SATD,100,1,
     OC_MODE_RD_SATD,OC_SATD_SHIFT,OC_MODE_RD_WEIGHT_SATD);
    oc_mode_metrics_update(OC_MODE_METRICS_SAD,100,1,
     OC_MODE_RD_SAD,OC_SAD_SHIFT,OC_MODE_RD_WEIGHT_SAD);
    OC_HAS_MODE_METRICS=1;
  }
}

/*The following token skipping code used to also be used in the decoder (and
   even at one point other places in the encoder).
  However, it was obsoleted by other optimizations, and is now only used here.
  It has been moved here to avoid generating the code when it's not needed.*/

/*Determines the number of blocks or coefficients to be skipped for a given
   token value.
  _token:      The token value to skip.
  _extra_bits: The extra bits attached to this token.
  Return: A positive value indicates that number of coefficients are to be
           skipped in the current block.
          Otherwise, the negative of the return value indicates that number of
           blocks are to be ended.*/
typedef ptrdiff_t (*oc_token_skip_func)(int _token,int _extra_bits);

/*Handles the simple end of block tokens.*/
static ptrdiff_t oc_token_skip_eob(int _token,int _extra_bits){
  int nblocks_adjust;
  nblocks_adjust=OC_UNIBBLE_TABLE32(0,1,2,3,7,15,0,0,_token)+1;
  return -_extra_bits-nblocks_adjust;
}

/*The last EOB token has a special case, where an EOB run of size zero ends all
   the remaining blocks in the frame.*/
static ptrdiff_t oc_token_skip_eob6(int _token,int _extra_bits){
  /*Note: We want to return -PTRDIFF_MAX, but that requires C99, which is not
     yet available everywhere; this should be equivalent.*/
  if(!_extra_bits)return -(~(size_t)0>>1);
  return -_extra_bits;
}

/*Handles the pure zero run tokens.*/
static ptrdiff_t oc_token_skip_zrl(int _token,int _extra_bits){
  return _extra_bits+1;
}

/*Handles a normal coefficient value token.*/
static ptrdiff_t oc_token_skip_val(void){
  return 1;
}

/*Handles a category 1A zero run/coefficient value combo token.*/
static ptrdiff_t oc_token_skip_run_cat1a(int _token){
  return _token-OC_DCT_RUN_CAT1A+2;
}

/*Handles category 1b, 1c, 2a, and 2b zero run/coefficient value combo tokens.*/
static ptrdiff_t oc_token_skip_run(int _token,int _extra_bits){
  int run_cati;
  int ncoeffs_mask;
  int ncoeffs_adjust;
  run_cati=_token-OC_DCT_RUN_CAT1B;
  ncoeffs_mask=OC_BYTE_TABLE32(3,7,0,1,run_cati);
  ncoeffs_adjust=OC_BYTE_TABLE32(7,11,2,3,run_cati);
  return (_extra_bits&ncoeffs_mask)+ncoeffs_adjust;
}

/*A jump table for computing the number of coefficients or blocks to skip for
   a given token value.
  This reduces all the conditional branches, etc., needed to parse these token
   values down to one indirect jump.*/
static const oc_token_skip_func OC_TOKEN_SKIP_TABLE[TH_NDCT_TOKENS]={
  oc_token_skip_eob,
  oc_token_skip_eob,
  oc_token_skip_eob,
  oc_token_skip_eob,
  oc_token_skip_eob,
  oc_token_skip_eob,
  oc_token_skip_eob6,
  oc_token_skip_zrl,
  oc_token_skip_zrl,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_val,
  (oc_token_skip_func)oc_token_skip_run_cat1a,
  (oc_token_skip_func)oc_token_skip_run_cat1a,
  (oc_token_skip_func)oc_token_skip_run_cat1a,
  (oc_token_skip_func)oc_token_skip_run_cat1a,
  (oc_token_skip_func)oc_token_skip_run_cat1a,
  oc_token_skip_run,
  oc_token_skip_run,
  oc_token_skip_run,
  oc_token_skip_run
};

/*Determines the number of blocks or coefficients to be skipped for a given
   token value.
  _token:      The token value to skip.
  _extra_bits: The extra bits attached to this token.
  Return: A positive value indicates that number of coefficients are to be
           skipped in the current block.
          Otherwise, the negative of the return value indicates that number of
           blocks are to be ended.
          0 will never be returned, so that at least one coefficient in one
           block will always be decoded for every token.*/
static ptrdiff_t oc_dct_token_skip(int _token,int _extra_bits){
  return (*OC_TOKEN_SKIP_TABLE[_token])(_token,_extra_bits);
}


void oc_enc_mode_metrics_collect(oc_enc_ctx *_enc){
  static const unsigned char OC_ZZI_HUFF_OFFSET[64]={
     0,16,16,16,16,16,32,32,
    32,32,32,32,32,32,32,48,
    48,48,48,48,48,48,48,48,
    48,48,48,48,64,64,64,64,
    64,64,64,64,64,64,64,64,
    64,64,64,64,64,64,64,64,
    64,64,64,64,64,64,64,64
  };
  const oc_fragment *frags;
  const unsigned    *frag_sad;
  const unsigned    *frag_satd;
  const unsigned    *frag_ssd;
  const ptrdiff_t   *coded_fragis;
  ptrdiff_t          ncoded_fragis;
  ptrdiff_t          fragii;
  double             fragw;
  int                modelines[3][3][2];
  int                qti;
  int                qii;
  int                qi;
  int                pli;
  int                zzi;
  int                token;
  int                eb;
  oc_restore_fpu(&_enc->state);
  /*Figure out which metric bins to use for this frame's quantizers.*/
  for(qii=0;qii<_enc->state.nqis;qii++){
    for(pli=0;pli<3;pli++){
      for(qti=0;qti<2;qti++){
        int log_plq;
        int modeline;
        log_plq=_enc->log_plq[_enc->state.qis[qii]][pli][qti];
        for(modeline=0;modeline<OC_LOGQ_BINS-1&&
         OC_MODE_LOGQ[modeline+1][pli][qti]>log_plq;modeline++);
        modelines[qii][pli][qti]=modeline;
      }
    }
  }
  qti=_enc->state.frame_type;
  frags=_enc->state.frags;
  frag_sad=_enc->frag_sad;
  frag_satd=_enc->frag_satd;
  frag_ssd=_enc->frag_ssd;
  coded_fragis=_enc->state.coded_fragis;
  ncoded_fragis=fragii=0;
  /*Weight the fragments by the inverse frame size; this prevents HD content
     from dominating the statistics.*/
  fragw=1.0/_enc->state.nfrags;
  for(pli=0;pli<3;pli++){
    ptrdiff_t ti[64];
    int       eob_token[64];
    int       eob_run[64];
    /*Set up token indices and eob run counts.
      We don't bother trying to figure out the real cost of the runs that span
       coefficients; instead we use the costs that were available when R-D
       token optimization was done.*/
    for(zzi=0;zzi<64;zzi++){
      ti[zzi]=_enc->dct_token_offs[pli][zzi];
      if(ti[zzi]>0){
        token=_enc->dct_tokens[pli][zzi][0];
        eb=_enc->extra_bits[pli][zzi][0];
        eob_token[zzi]=token;
        eob_run[zzi]=-oc_dct_token_skip(token,eb);
      }
      else{
        eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
        eob_run[zzi]=0;
      }
    }
    /*Scan the list of coded fragments for this plane.*/
    ncoded_fragis+=_enc->state.ncoded_fragis[pli];
    for(;fragii<ncoded_fragis;fragii++){
      ptrdiff_t fragi;
      int       frag_bits;
      int       huffi;
      int       skip;
      int       mb_mode;
      unsigned  sad;
      unsigned  satd;
      double    sqrt_ssd;
      int       bin;
      int       qtj;
      fragi=coded_fragis[fragii];
      frag_bits=0;
      for(zzi=0;zzi<64;){
        if(eob_run[zzi]>0){
          /*We've reached the end of the block.*/
          eob_run[zzi]--;
          break;
        }
        huffi=_enc->huff_idxs[qti][zzi>0][pli+1>>1]
         +OC_ZZI_HUFF_OFFSET[zzi];
        if(eob_token[zzi]<OC_NDCT_EOB_TOKEN_MAX){
          /*This token caused an EOB run to be flushed.
            Therefore it gets the bits associated with it.*/
          frag_bits+=_enc->huff_codes[huffi][eob_token[zzi]].nbits
           +OC_DCT_TOKEN_EXTRA_BITS[eob_token[zzi]];
          eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
        }
        token=_enc->dct_tokens[pli][zzi][ti[zzi]];
        eb=_enc->extra_bits[pli][zzi][ti[zzi]];
        ti[zzi]++;
        skip=oc_dct_token_skip(token,eb);
        if(skip<0){
          eob_token[zzi]=token;
          eob_run[zzi]=-skip;
        }
        else{
          /*A regular DCT value token; accumulate the bits for it.*/
          frag_bits+=_enc->huff_codes[huffi][token].nbits
           +OC_DCT_TOKEN_EXTRA_BITS[token];
          zzi+=skip;
        }
      }
      mb_mode=frags[fragi].mb_mode;
      qii=frags[fragi].qii;
      qi=_enc->state.qis[qii];
      sad=frag_sad[fragi]<<(pli+1&2);
      satd=frag_satd[fragi]<<(pli+1&2);
      sqrt_ssd=sqrt(frag_ssd[fragi]);
      qtj=mb_mode!=OC_MODE_INTRA;
      /*Accumulate statistics.
        The rate (frag_bits) and RMSE (sqrt(frag_ssd)) are not scaled by
         OC_BIT_SCALE and OC_RMSE_SCALE; this lets us change the scale factor
         yet still use old data.*/
      bin=OC_MINI(satd>>OC_SATD_SHIFT,OC_COMP_BINS-1);
      oc_mode_metrics_add(
       OC_MODE_METRICS_SATD[modelines[qii][pli][qtj]][pli][qtj]+bin,
       fragw,satd,_enc->log_plq[qi][pli][qtj],frag_bits,sqrt_ssd);
      bin=OC_MINI(sad>>OC_SAD_SHIFT,OC_COMP_BINS-1);
      oc_mode_metrics_add(
       OC_MODE_METRICS_SAD[modelines[qii][pli][qtj]][pli][qtj]+bin,
       fragw,sad,_enc->log_plq[qi][pli][qtj],frag_bits,sqrt_ssd);
    }
  }
  /*Update global SA(T)D/logq/rate/RMSE estimation matrix.*/
  oc_mode_metrics_update(OC_MODE_METRICS_SATD,4,1,
   OC_MODE_RD_SATD,OC_SATD_SHIFT,OC_MODE_RD_WEIGHT_SATD);
  oc_mode_metrics_update(OC_MODE_METRICS_SAD,4,1,
   OC_MODE_RD_SAD,OC_SAD_SHIFT,OC_MODE_RD_WEIGHT_SAD);
}
# endif

#endif