summaryrefslogtreecommitdiff
path: root/thirdparty/icu4c/common/lstmbe.cpp
blob: f6114cdfe25e19b6c201f99c7395c20e9551cc13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// © 2021 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html

#include <complex>
#include <utility>

#include "unicode/utypes.h"

#if !UCONFIG_NO_BREAK_ITERATION

#include "brkeng.h"
#include "charstr.h"
#include "cmemory.h"
#include "lstmbe.h"
#include "putilimp.h"
#include "uassert.h"
#include "ubrkimpl.h"
#include "uresimp.h"
#include "uvectr32.h"
#include "uvector.h"

#include "unicode/brkiter.h"
#include "unicode/resbund.h"
#include "unicode/ubrk.h"
#include "unicode/uniset.h"
#include "unicode/ustring.h"
#include "unicode/utf.h"

U_NAMESPACE_BEGIN

// Uncomment the following #define to debug.
// #define LSTM_DEBUG 1
// #define LSTM_VECTORIZER_DEBUG 1

/**
 * Interface for reading 1D array.
 */
class ReadArray1D {
public:
    virtual ~ReadArray1D();
    virtual int32_t d1() const = 0;
    virtual float get(int32_t i) const = 0;

#ifdef LSTM_DEBUG
    void print() const {
        printf("\n[");
        for (int32_t i = 0; i < d1(); i++) {
           printf("%0.8e ", get(i));
           if (i % 4 == 3) printf("\n");
        }
        printf("]\n");
    }
#endif
};

ReadArray1D::~ReadArray1D()
{
}

/**
 * Interface for reading 2D array.
 */
class ReadArray2D {
public:
    virtual ~ReadArray2D();
    virtual int32_t d1() const = 0;
    virtual int32_t d2() const = 0;
    virtual float get(int32_t i, int32_t j) const = 0;
};

ReadArray2D::~ReadArray2D()
{
}

/**
 * A class to index a float array as a 1D Array without owning the pointer or
 * copy the data.
 */
class ConstArray1D : public ReadArray1D {
public:
    ConstArray1D() : data_(nullptr), d1_(0) {}

    ConstArray1D(const float* data, int32_t d1) : data_(data), d1_(d1) {}

    virtual ~ConstArray1D();

    // Init the object, the object does not own the data nor copy.
    // It is designed to directly use data from memory mapped resources.
    void init(const int32_t* data, int32_t d1) {
        U_ASSERT(IEEE_754 == 1);
        data_ = reinterpret_cast<const float*>(data);
        d1_ = d1;
    }

    // ReadArray1D methods.
    virtual int32_t d1() const override { return d1_; }
    virtual float get(int32_t i) const override {
        U_ASSERT(i < d1_);
        return data_[i];
    }

private:
    const float* data_;
    int32_t d1_;
};

ConstArray1D::~ConstArray1D()
{
}

/**
 * A class to index a float array as a 2D Array without owning the pointer or
 * copy the data.
 */
class ConstArray2D : public ReadArray2D {
public:
    ConstArray2D() : data_(nullptr), d1_(0), d2_(0) {}

    ConstArray2D(const float* data, int32_t d1, int32_t d2)
        : data_(data), d1_(d1), d2_(d2) {}

    virtual ~ConstArray2D();

    // Init the object, the object does not own the data nor copy.
    // It is designed to directly use data from memory mapped resources.
    void init(const int32_t* data, int32_t d1, int32_t d2) {
        U_ASSERT(IEEE_754 == 1);
        data_ = reinterpret_cast<const float*>(data);
        d1_ = d1;
        d2_ = d2;
    }

    // ReadArray2D methods.
    inline int32_t d1() const override { return d1_; }
    inline int32_t d2() const override { return d2_; }
    float get(int32_t i, int32_t j) const override {
        U_ASSERT(i < d1_);
        U_ASSERT(j < d2_);
        return data_[i * d2_ + j];
    }

    // Expose the ith row as a ConstArray1D
    inline ConstArray1D row(int32_t i) const {
        U_ASSERT(i < d1_);
        return ConstArray1D(data_ + i * d2_, d2_);
    }

private:
    const float* data_;
    int32_t d1_;
    int32_t d2_;
};

ConstArray2D::~ConstArray2D()
{
}

/**
 * A class to allocate data as a writable 1D array.
 * This is the main class implement matrix operation.
 */
class Array1D : public ReadArray1D {
public:
    Array1D() : memory_(nullptr), data_(nullptr), d1_(0) {}
    Array1D(int32_t d1, UErrorCode &status)
        : memory_(uprv_malloc(d1 * sizeof(float))),
          data_((float*)memory_), d1_(d1) {
        if (U_SUCCESS(status)) {
            if (memory_ == nullptr) {
                status = U_MEMORY_ALLOCATION_ERROR;
                return;
            }
            clear();
        }
    }

    virtual ~Array1D();

    // A special constructor which does not own the memory but writeable
    // as a slice of an array.
    Array1D(float* data, int32_t d1)
        : memory_(nullptr), data_(data), d1_(d1) {}

    // ReadArray1D methods.
    virtual int32_t d1() const override { return d1_; }
    virtual float get(int32_t i) const override {
        U_ASSERT(i < d1_);
        return data_[i];
    }

    // Return the index which point to the max data in the array.
    inline int32_t maxIndex() const {
        int32_t index = 0;
        float max = data_[0];
        for (int32_t i = 1; i < d1_; i++) {
            if (data_[i] > max) {
                max = data_[i];
                index = i;
            }
        }
        return index;
    }

    // Slice part of the array to a new one.
    inline Array1D slice(int32_t from, int32_t size) const {
        U_ASSERT(from >= 0);
        U_ASSERT(from < d1_);
        U_ASSERT(from + size <= d1_);
        return Array1D(data_ + from, size);
    }

    // Add dot product of a 1D array and a 2D array into this one.
    inline Array1D& addDotProduct(const ReadArray1D& a, const ReadArray2D& b) {
        U_ASSERT(a.d1() == b.d1());
        U_ASSERT(b.d2() == d1());
        for (int32_t i = 0; i < d1(); i++) {
            for (int32_t j = 0; j < a.d1(); j++) {
                data_[i] += a.get(j) * b.get(j, i);
            }
        }
        return *this;
    }

    // Hadamard Product the values of another array of the same size into this one.
    inline Array1D& hadamardProduct(const ReadArray1D& a) {
        U_ASSERT(a.d1() == d1());
        for (int32_t i = 0; i < d1(); i++) {
            data_[i] *= a.get(i);
        }
        return *this;
    }

    // Add the Hadamard Product of two arrays of the same size into this one.
    inline Array1D& addHadamardProduct(const ReadArray1D& a, const ReadArray1D& b) {
        U_ASSERT(a.d1() == d1());
        U_ASSERT(b.d1() == d1());
        for (int32_t i = 0; i < d1(); i++) {
            data_[i] += a.get(i) * b.get(i);
        }
        return *this;
    }

    // Add the values of another array of the same size into this one.
    inline Array1D& add(const ReadArray1D& a) {
        U_ASSERT(a.d1() == d1());
        for (int32_t i = 0; i < d1(); i++) {
            data_[i] += a.get(i);
        }
        return *this;
    }

    // Assign the values of another array of the same size into this one.
    inline Array1D& assign(const ReadArray1D& a) {
        U_ASSERT(a.d1() == d1());
        for (int32_t i = 0; i < d1(); i++) {
            data_[i] = a.get(i);
        }
        return *this;
    }

    // Apply tanh to all the elements in the array.
    inline Array1D& tanh() {
        return tanh(*this);
    }

    // Apply tanh of a and store into this array.
    inline Array1D& tanh(const Array1D& a) {
        U_ASSERT(a.d1() == d1());
        for (int32_t i = 0; i < d1_; i++) {
            data_[i] = std::tanh(a.get(i));
        }
        return *this;
    }

    // Apply sigmoid to all the elements in the array.
    inline Array1D& sigmoid() {
        for (int32_t i = 0; i < d1_; i++) {
            data_[i] = 1.0f/(1.0f + expf(-data_[i]));
        }
        return *this;
    }

    inline Array1D& clear() {
        uprv_memset(data_, 0, d1_ * sizeof(float));
        return *this;
    }

private:
    void* memory_;
    float* data_;
    int32_t d1_;
};

Array1D::~Array1D()
{
    uprv_free(memory_);
}

class Array2D : public ReadArray2D {
public:
    Array2D() : memory_(nullptr), data_(nullptr), d1_(0), d2_(0) {}
    Array2D(int32_t d1, int32_t d2, UErrorCode &status)
        : memory_(uprv_malloc(d1 * d2 * sizeof(float))),
          data_((float*)memory_), d1_(d1), d2_(d2) {
        if (U_SUCCESS(status)) {
            if (memory_ == nullptr) {
                status = U_MEMORY_ALLOCATION_ERROR;
                return;
            }
            clear();
        }
    }
    virtual ~Array2D();

    // ReadArray2D methods.
    virtual int32_t d1() const override { return d1_; }
    virtual int32_t d2() const override { return d2_; }
    virtual float get(int32_t i, int32_t j) const override {
        U_ASSERT(i < d1_);
        U_ASSERT(j < d2_);
        return data_[i * d2_ + j];
    }

    inline Array1D row(int32_t i) const {
        U_ASSERT(i < d1_);
        return Array1D(data_ + i * d2_, d2_);
    }

    inline Array2D& clear() {
        uprv_memset(data_, 0, d1_ * d2_ * sizeof(float));
        return *this;
    }

private:
    void* memory_;
    float* data_;
    int32_t d1_;
    int32_t d2_;
};

Array2D::~Array2D()
{
    uprv_free(memory_);
}

typedef enum {
    BEGIN,
    INSIDE,
    END,
    SINGLE
} LSTMClass;

typedef enum {
    UNKNOWN,
    CODE_POINTS,
    GRAPHEME_CLUSTER,
} EmbeddingType;

struct LSTMData : public UMemory {
    LSTMData(UResourceBundle* rb, UErrorCode &status);
    ~LSTMData();
    UHashtable* fDict;
    EmbeddingType fType;
    const UChar* fName;
    ConstArray2D fEmbedding;
    ConstArray2D fForwardW;
    ConstArray2D fForwardU;
    ConstArray1D fForwardB;
    ConstArray2D fBackwardW;
    ConstArray2D fBackwardU;
    ConstArray1D fBackwardB;
    ConstArray2D fOutputW;
    ConstArray1D fOutputB;

private:
    UResourceBundle* fBundle;
};

LSTMData::LSTMData(UResourceBundle* rb, UErrorCode &status)
    : fDict(nullptr), fType(UNKNOWN), fName(nullptr),
      fBundle(rb)
{
    if (U_FAILURE(status)) {
        return;
    }
    if (IEEE_754 != 1) {
        status = U_UNSUPPORTED_ERROR;
        return;
    }
    LocalUResourceBundlePointer embeddings_res(
        ures_getByKey(rb, "embeddings", nullptr, &status));
    int32_t embedding_size = ures_getInt(embeddings_res.getAlias(), &status);
    LocalUResourceBundlePointer hunits_res(
        ures_getByKey(rb, "hunits", nullptr, &status));
    if (U_FAILURE(status)) return;
    int32_t hunits = ures_getInt(hunits_res.getAlias(), &status);
    const UChar* type = ures_getStringByKey(rb, "type", nullptr, &status);
    if (U_FAILURE(status)) return;
    if (u_strCompare(type, -1, u"codepoints", -1, false) == 0) {
        fType = CODE_POINTS;
    } else if (u_strCompare(type, -1, u"graphclust", -1, false) == 0) {
        fType = GRAPHEME_CLUSTER;
    }
    fName = ures_getStringByKey(rb, "model", nullptr, &status);
    LocalUResourceBundlePointer dataRes(ures_getByKey(rb, "data", nullptr, &status));
    if (U_FAILURE(status)) return;
    int32_t data_len = 0;
    const int32_t* data = ures_getIntVector(dataRes.getAlias(), &data_len, &status);
    fDict = uhash_open(uhash_hashUChars, uhash_compareUChars, nullptr, &status);

    StackUResourceBundle stackTempBundle;
    ResourceDataValue value;
    ures_getValueWithFallback(rb, "dict", stackTempBundle.getAlias(), value, status);
    ResourceArray stringArray = value.getArray(status);
    int32_t num_index = stringArray.getSize();
    if (U_FAILURE(status)) { return; }

    // put dict into hash
    int32_t stringLength;
    for (int32_t idx = 0; idx < num_index; idx++) {
        stringArray.getValue(idx, value);
        const UChar* str = value.getString(stringLength, status);
        uhash_putiAllowZero(fDict, (void*)str, idx, &status);
        if (U_FAILURE(status)) return;
#ifdef LSTM_VECTORIZER_DEBUG
        printf("Assign [");
        while (*str != 0x0000) {
            printf("U+%04x ", *str);
            str++;
        }
        printf("] map to %d\n", idx-1);
#endif
    }
    int32_t mat1_size = (num_index + 1) * embedding_size;
    int32_t mat2_size = embedding_size * 4 * hunits;
    int32_t mat3_size = hunits * 4 * hunits;
    int32_t mat4_size = 4 * hunits;
    int32_t mat5_size = mat2_size;
    int32_t mat6_size = mat3_size;
    int32_t mat7_size = mat4_size;
    int32_t mat8_size = 2 * hunits * 4;
#if U_DEBUG
    int32_t mat9_size = 4;
    U_ASSERT(data_len == mat1_size + mat2_size + mat3_size + mat4_size + mat5_size +
        mat6_size + mat7_size + mat8_size + mat9_size);
#endif

    fEmbedding.init(data, (num_index + 1), embedding_size);
    data += mat1_size;
    fForwardW.init(data, embedding_size, 4 * hunits);
    data += mat2_size;
    fForwardU.init(data, hunits, 4 * hunits);
    data += mat3_size;
    fForwardB.init(data, 4 * hunits);
    data += mat4_size;
    fBackwardW.init(data, embedding_size, 4 * hunits);
    data += mat5_size;
    fBackwardU.init(data, hunits, 4 * hunits);
    data += mat6_size;
    fBackwardB.init(data, 4 * hunits);
    data += mat7_size;
    fOutputW.init(data, 2 * hunits, 4);
    data += mat8_size;
    fOutputB.init(data, 4);
}

LSTMData::~LSTMData() {
    uhash_close(fDict);
    ures_close(fBundle);
}

class Vectorizer : public UMemory {
public:
    Vectorizer(UHashtable* dict) : fDict(dict) {}
    virtual ~Vectorizer();
    virtual void vectorize(UText *text, int32_t startPos, int32_t endPos,
                           UVector32 &offsets, UVector32 &indices,
                           UErrorCode &status) const = 0;
protected:
    int32_t stringToIndex(const UChar* str) const {
        UBool found = false;
        int32_t ret = uhash_getiAndFound(fDict, (const void*)str, &found);
        if (!found) {
            ret = fDict->count;
        }
#ifdef LSTM_VECTORIZER_DEBUG
        printf("[");
        while (*str != 0x0000) {
            printf("U+%04x ", *str);
            str++;
        }
        printf("] map to %d\n", ret);
#endif
        return ret;
    }

private:
    UHashtable* fDict;
};

Vectorizer::~Vectorizer()
{
}

class CodePointsVectorizer : public Vectorizer {
public:
    CodePointsVectorizer(UHashtable* dict) : Vectorizer(dict) {}
    virtual ~CodePointsVectorizer();
    virtual void vectorize(UText *text, int32_t startPos, int32_t endPos,
                           UVector32 &offsets, UVector32 &indices,
                           UErrorCode &status) const override;
};

CodePointsVectorizer::~CodePointsVectorizer()
{
}

void CodePointsVectorizer::vectorize(
    UText *text, int32_t startPos, int32_t endPos,
    UVector32 &offsets, UVector32 &indices, UErrorCode &status) const
{
    if (offsets.ensureCapacity(endPos - startPos, status) &&
            indices.ensureCapacity(endPos - startPos, status)) {
        if (U_FAILURE(status)) return;
        utext_setNativeIndex(text, startPos);
        int32_t current;
        UChar str[2] = {0, 0};
        while (U_SUCCESS(status) &&
               (current = (int32_t)utext_getNativeIndex(text)) < endPos) {
            // Since the LSTMBreakEngine is currently only accept chars in BMP,
            // we can ignore the possibility of hitting supplementary code
            // point.
            str[0] = (UChar) utext_next32(text);
            U_ASSERT(!U_IS_SURROGATE(str[0]));
            offsets.addElement(current, status);
            indices.addElement(stringToIndex(str), status);
        }
    }
}

class GraphemeClusterVectorizer : public Vectorizer {
public:
    GraphemeClusterVectorizer(UHashtable* dict)
        : Vectorizer(dict)
    {
    }
    virtual ~GraphemeClusterVectorizer();
    virtual void vectorize(UText *text, int32_t startPos, int32_t endPos,
                           UVector32 &offsets, UVector32 &indices,
                           UErrorCode &status) const override;
};

GraphemeClusterVectorizer::~GraphemeClusterVectorizer()
{
}

constexpr int32_t MAX_GRAPHEME_CLSTER_LENGTH = 10;

void GraphemeClusterVectorizer::vectorize(
    UText *text, int32_t startPos, int32_t endPos,
    UVector32 &offsets, UVector32 &indices, UErrorCode &status) const
{
    if (U_FAILURE(status)) return;
    if (!offsets.ensureCapacity(endPos - startPos, status) ||
            !indices.ensureCapacity(endPos - startPos, status)) {
        return;
    }
    if (U_FAILURE(status)) return;
    LocalPointer<BreakIterator> graphemeIter(BreakIterator::createCharacterInstance(Locale(), status));
    if (U_FAILURE(status)) return;
    graphemeIter->setText(text, status);
    if (U_FAILURE(status)) return;

    if (startPos != 0) {
        graphemeIter->preceding(startPos);
    }
    int32_t last = startPos;
    int32_t current = startPos;
    UChar str[MAX_GRAPHEME_CLSTER_LENGTH];
    while ((current = graphemeIter->next()) != BreakIterator::DONE) {
        if (current >= endPos) {
            break;
        }
        if (current > startPos) {
            utext_extract(text, last, current, str, MAX_GRAPHEME_CLSTER_LENGTH, &status);
            if (U_FAILURE(status)) return;
            offsets.addElement(last, status);
            indices.addElement(stringToIndex(str), status);
            if (U_FAILURE(status)) return;
        }
        last = current;
    }
    if (U_FAILURE(status) || last >= endPos) {
        return;
    }
    utext_extract(text, last, endPos, str, MAX_GRAPHEME_CLSTER_LENGTH, &status);
    if (U_SUCCESS(status)) {
        offsets.addElement(last, status);
        indices.addElement(stringToIndex(str), status);
    }
}

// Computing LSTM as stated in
// https://en.wikipedia.org/wiki/Long_short-term_memory#LSTM_with_a_forget_gate
// ifco is temp array allocate outside which does not need to be
// input/output value but could avoid unnecessary memory alloc/free if passing
// in.
void compute(
    int32_t hunits,
    const ReadArray2D& W, const ReadArray2D& U, const ReadArray1D& b,
    const ReadArray1D& x, Array1D& h, Array1D& c,
    Array1D& ifco)
{
    // ifco = x * W + h * U + b
    ifco.assign(b)
        .addDotProduct(x, W)
        .addDotProduct(h, U);

    ifco.slice(0*hunits, hunits).sigmoid();  // i: sigmod
    ifco.slice(1*hunits, hunits).sigmoid(); // f: sigmoid
    ifco.slice(2*hunits, hunits).tanh(); // c_: tanh
    ifco.slice(3*hunits, hunits).sigmoid(); // o: sigmod

    c.hadamardProduct(ifco.slice(hunits, hunits))
        .addHadamardProduct(ifco.slice(0, hunits), ifco.slice(2*hunits, hunits));

    h.tanh(c)
        .hadamardProduct(ifco.slice(3*hunits, hunits));
}

// Minimum word size
static const int32_t MIN_WORD = 2;

// Minimum number of characters for two words
static const int32_t MIN_WORD_SPAN = MIN_WORD * 2;

int32_t
LSTMBreakEngine::divideUpDictionaryRange( UText *text,
                                                int32_t startPos,
                                                int32_t endPos,
                                                UVector32 &foundBreaks,
                                                UBool /* isPhraseBreaking */,
                                                UErrorCode& status) const {
    if (U_FAILURE(status)) return 0;
    int32_t beginFoundBreakSize = foundBreaks.size();
    utext_setNativeIndex(text, startPos);
    utext_moveIndex32(text, MIN_WORD_SPAN);
    if (utext_getNativeIndex(text) >= endPos) {
        return 0;       // Not enough characters for two words
    }
    utext_setNativeIndex(text, startPos);

    UVector32 offsets(status);
    UVector32 indices(status);
    if (U_FAILURE(status)) return 0;
    fVectorizer->vectorize(text, startPos, endPos, offsets, indices, status);
    if (U_FAILURE(status)) return 0;
    int32_t* offsetsBuf = offsets.getBuffer();
    int32_t* indicesBuf = indices.getBuffer();

    int32_t input_seq_len = indices.size();
    int32_t hunits = fData->fForwardU.d1();

    // ----- Begin of all the Array memory allocation needed for this function
    // Allocate temp array used inside compute()
    Array1D ifco(4 * hunits, status);

    Array1D c(hunits, status);
    Array1D logp(4, status);

    // TODO: limit size of hBackward. If input_seq_len is too big, we could
    // run out of memory.
    // Backward LSTM
    Array2D hBackward(input_seq_len, hunits, status);

    // Allocate fbRow and slice the internal array in two.
    Array1D fbRow(2 * hunits, status);

    // ----- End of all the Array memory allocation needed for this function
    if (U_FAILURE(status)) return 0;

    // To save the needed memory usage, the following is different from the
    // Python or ICU4X implementation. We first perform the Backward LSTM
    // and then merge the iteration of the forward LSTM and the output layer
    // together because we only neetdto remember the h[t-1] for Forward LSTM.
    for (int32_t i = input_seq_len - 1; i >= 0; i--) {
        Array1D hRow = hBackward.row(i);
        if (i != input_seq_len - 1) {
            hRow.assign(hBackward.row(i+1));
        }
#ifdef LSTM_DEBUG
        printf("hRow %d\n", i);
        hRow.print();
        printf("indicesBuf[%d] = %d\n", i, indicesBuf[i]);
        printf("fData->fEmbedding.row(indicesBuf[%d]):\n", i);
        fData->fEmbedding.row(indicesBuf[i]).print();
#endif  // LSTM_DEBUG
        compute(hunits,
                fData->fBackwardW, fData->fBackwardU, fData->fBackwardB,
                fData->fEmbedding.row(indicesBuf[i]),
                hRow, c, ifco);
    }


    Array1D forwardRow = fbRow.slice(0, hunits);  // point to first half of data in fbRow.
    Array1D backwardRow = fbRow.slice(hunits, hunits);  // point to second half of data n fbRow.

    // The following iteration merge the forward LSTM and the output layer
    // together.
    c.clear();  // reuse c since it is the same size.
    for (int32_t i = 0; i < input_seq_len; i++) {
#ifdef LSTM_DEBUG
        printf("forwardRow %d\n", i);
        forwardRow.print();
#endif  // LSTM_DEBUG
        // Forward LSTM
        // Calculate the result into forwardRow, which point to the data in the first half
        // of fbRow.
        compute(hunits,
                fData->fForwardW, fData->fForwardU, fData->fForwardB,
                fData->fEmbedding.row(indicesBuf[i]),
                forwardRow, c, ifco);

        // assign the data from hBackward.row(i) to second half of fbRowa.
        backwardRow.assign(hBackward.row(i));

        logp.assign(fData->fOutputB).addDotProduct(fbRow, fData->fOutputW);
#ifdef LSTM_DEBUG
        printf("backwardRow %d\n", i);
        backwardRow.print();
        printf("logp %d\n", i);
        logp.print();
#endif  // LSTM_DEBUG

        // current = argmax(logp)
        LSTMClass current = (LSTMClass)logp.maxIndex();
        // BIES logic.
        if (current == BEGIN || current == SINGLE) {
            if (i != 0) {
                foundBreaks.addElement(offsetsBuf[i], status);
                if (U_FAILURE(status)) return 0;
            }
        }
    }
    return foundBreaks.size() - beginFoundBreakSize;
}

Vectorizer* createVectorizer(const LSTMData* data, UErrorCode &status) {
    if (U_FAILURE(status)) {
        return nullptr;
    }
    switch (data->fType) {
        case CODE_POINTS:
            return new CodePointsVectorizer(data->fDict);
            break;
        case GRAPHEME_CLUSTER:
            return new GraphemeClusterVectorizer(data->fDict);
            break;
        default:
            break;
    }
    UPRV_UNREACHABLE_EXIT;
}

LSTMBreakEngine::LSTMBreakEngine(const LSTMData* data, const UnicodeSet& set, UErrorCode &status)
    : DictionaryBreakEngine(), fData(data), fVectorizer(createVectorizer(fData, status))
{
    if (U_FAILURE(status)) {
      fData = nullptr;  // If failure, we should not delete fData in destructor because the caller will do so.
      return;
    }
    setCharacters(set);
}

LSTMBreakEngine::~LSTMBreakEngine() {
    delete fData;
    delete fVectorizer;
}

const UChar* LSTMBreakEngine::name() const {
    return fData->fName;
}

UnicodeString defaultLSTM(UScriptCode script, UErrorCode& status) {
    // open root from brkitr tree.
    UResourceBundle *b = ures_open(U_ICUDATA_BRKITR, "", &status);
    b = ures_getByKeyWithFallback(b, "lstm", b, &status);
    UnicodeString result = ures_getUnicodeStringByKey(b, uscript_getShortName(script), &status);
    ures_close(b);
    return result;
}

U_CAPI const LSTMData* U_EXPORT2 CreateLSTMDataForScript(UScriptCode script, UErrorCode& status)
{
    if (script != USCRIPT_KHMER && script != USCRIPT_LAO && script != USCRIPT_MYANMAR && script != USCRIPT_THAI) {
        return nullptr;
    }
    UnicodeString name = defaultLSTM(script, status);
    if (U_FAILURE(status)) return nullptr;
    CharString namebuf;
    namebuf.appendInvariantChars(name, status).truncate(namebuf.lastIndexOf('.'));

    LocalUResourceBundlePointer rb(
        ures_openDirect(U_ICUDATA_BRKITR, namebuf.data(), &status));
    if (U_FAILURE(status)) return nullptr;

    return CreateLSTMData(rb.orphan(), status);
}

U_CAPI const LSTMData* U_EXPORT2 CreateLSTMData(UResourceBundle* rb, UErrorCode& status)
{
    return new LSTMData(rb, status);
}

U_CAPI const LanguageBreakEngine* U_EXPORT2
CreateLSTMBreakEngine(UScriptCode script, const LSTMData* data, UErrorCode& status)
{
    UnicodeString unicodeSetString;
    switch(script) {
        case USCRIPT_THAI:
            unicodeSetString = UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]");
            break;
        case USCRIPT_MYANMAR:
            unicodeSetString = UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]");
            break;
        default:
            delete data;
            return nullptr;
    }
    UnicodeSet unicodeSet;
    unicodeSet.applyPattern(unicodeSetString, status);
    const LanguageBreakEngine* engine = new LSTMBreakEngine(data, unicodeSet, status);
    if (U_FAILURE(status) || engine == nullptr) {
        if (engine != nullptr) {
            delete engine;
        } else {
            status = U_MEMORY_ALLOCATION_ERROR;
        }
        return nullptr;
    }
    return engine;
}

U_CAPI void U_EXPORT2 DeleteLSTMData(const LSTMData* data)
{
    delete data;
}

U_CAPI const UChar* U_EXPORT2 LSTMDataName(const LSTMData* data)
{
    return data->fName;
}

U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_BREAK_ITERATION */