1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
|
/*
* Copyright © 2018 Google, Inc.
* Copyright © 2019 Facebook, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Behdad Esfahbod
* Facebook Author(s): Behdad Esfahbod
*/
#ifndef HB_ITER_HH
#define HB_ITER_HH
#include "hb.hh"
#include "hb-algs.hh"
#include "hb-meta.hh"
/* Unified iterator object.
*
* The goal of this template is to make the same iterator interface
* available to all types, and make it very easy and compact to use.
* hb_iter_tator objects are small, light-weight, objects that can be
* copied by value. If the collection / object being iterated on
* is writable, then the iterator returns lvalues, otherwise it
* returns rvalues.
*
* TODO Document more.
*
* If iterator implementation implements operator!=, then can be
* used in range-based for loop. That already happens if the iterator
* is random-access. Otherwise, the range-based for loop incurs
* one traversal to find end(), which can be avoided if written
* as a while-style for loop, or if iterator implements a faster
* __end__() method.
* TODO When opting in for C++17, address this by changing return
* type of .end()?
*/
/*
* Base classes for iterators.
*/
/* Base class for all iterators. */
template <typename iter_t, typename Item = typename iter_t::__item_t__>
struct hb_iter_t
{
typedef Item item_t;
constexpr unsigned get_item_size () const { return hb_static_size (Item); }
static constexpr bool is_iterator = true;
static constexpr bool is_random_access_iterator = false;
static constexpr bool is_sorted_iterator = false;
private:
/* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */
const iter_t* thiz () const { return static_cast<const iter_t *> (this); }
iter_t* thiz () { return static_cast< iter_t *> (this); }
public:
/* TODO:
* Port operators below to use hb_enable_if to sniff which method implements
* an operator and use it, and remove hb_iter_fallback_mixin_t completely. */
/* Operators. */
iter_t iter () const { return *thiz(); }
iter_t operator + () const { return *thiz(); }
iter_t begin () const { return *thiz(); }
iter_t end () const { return thiz()->__end__ (); }
explicit operator bool () const { return thiz()->__more__ (); }
unsigned len () const { return thiz()->__len__ (); }
/* The following can only be enabled if item_t is reference type. Otherwise
* it will be returning pointer to temporary rvalue.
* TODO Use a wrapper return type to fix for non-reference type. */
template <typename T = item_t,
hb_enable_if (std::is_reference<T>::value)>
hb_remove_reference<item_t>* operator -> () const { return std::addressof (**thiz()); }
item_t operator * () const { return thiz()->__item__ (); }
item_t operator * () { return thiz()->__item__ (); }
item_t operator [] (unsigned i) const { return thiz()->__item_at__ (i); }
item_t operator [] (unsigned i) { return thiz()->__item_at__ (i); }
iter_t& operator += (unsigned count) & { thiz()->__forward__ (count); return *thiz(); }
iter_t operator += (unsigned count) && { thiz()->__forward__ (count); return *thiz(); }
iter_t& operator ++ () & { thiz()->__next__ (); return *thiz(); }
iter_t operator ++ () && { thiz()->__next__ (); return *thiz(); }
iter_t& operator -= (unsigned count) & { thiz()->__rewind__ (count); return *thiz(); }
iter_t operator -= (unsigned count) && { thiz()->__rewind__ (count); return *thiz(); }
iter_t& operator -- () & { thiz()->__prev__ (); return *thiz(); }
iter_t operator -- () && { thiz()->__prev__ (); return *thiz(); }
iter_t operator + (unsigned count) const { auto c = thiz()->iter (); c += count; return c; }
friend iter_t operator + (unsigned count, const iter_t &it) { return it + count; }
iter_t operator ++ (int) { iter_t c (*thiz()); ++*thiz(); return c; }
iter_t operator - (unsigned count) const { auto c = thiz()->iter (); c -= count; return c; }
iter_t operator -- (int) { iter_t c (*thiz()); --*thiz(); return c; }
template <typename T>
iter_t& operator >> (T &v) & { v = **thiz(); ++*thiz(); return *thiz(); }
template <typename T>
iter_t operator >> (T &v) && { v = **thiz(); ++*thiz(); return *thiz(); }
template <typename T>
iter_t& operator << (const T v) & { **thiz() = v; ++*thiz(); return *thiz(); }
template <typename T>
iter_t operator << (const T v) && { **thiz() = v; ++*thiz(); return *thiz(); }
protected:
hb_iter_t () = default;
hb_iter_t (const hb_iter_t &o HB_UNUSED) = default;
hb_iter_t (hb_iter_t &&o HB_UNUSED) = default;
hb_iter_t& operator = (const hb_iter_t &o HB_UNUSED) = default;
hb_iter_t& operator = (hb_iter_t &&o HB_UNUSED) = default;
};
#define HB_ITER_USING(Name) \
using item_t = typename Name::item_t; \
using Name::begin; \
using Name::end; \
using Name::get_item_size; \
using Name::is_iterator; \
using Name::iter; \
using Name::operator bool; \
using Name::len; \
using Name::operator ->; \
using Name::operator *; \
using Name::operator []; \
using Name::operator +=; \
using Name::operator ++; \
using Name::operator -=; \
using Name::operator --; \
using Name::operator +; \
using Name::operator -; \
using Name::operator >>; \
using Name::operator <<; \
static_assert (true, "")
/* Returns iterator / item type of a type. */
template <typename Iterable>
using hb_iter_type = decltype (hb_deref (hb_declval (Iterable)).iter ());
template <typename Iterable>
using hb_item_type = decltype (*hb_deref (hb_declval (Iterable)).iter ());
template <typename> struct hb_array_t;
template <typename> struct hb_sorted_array_t;
struct
{
template <typename T> hb_iter_type<T>
operator () (T&& c) const
{ return hb_deref (std::forward<T> (c)).iter (); }
/* Specialization for C arrays. */
template <typename Type> inline hb_array_t<Type>
operator () (Type *array, unsigned int length) const
{ return hb_array_t<Type> (array, length); }
template <typename Type, unsigned int length> hb_array_t<Type>
operator () (Type (&array)[length]) const
{ return hb_array_t<Type> (array, length); }
}
HB_FUNCOBJ (hb_iter);
struct
{
template <typename T> unsigned
operator () (T&& c) const
{ return c.len (); }
}
HB_FUNCOBJ (hb_len);
/* Mixin to fill in what the subclass doesn't provide. */
template <typename iter_t, typename item_t = typename iter_t::__item_t__>
struct hb_iter_fallback_mixin_t
{
private:
/* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */
const iter_t* thiz () const { return static_cast<const iter_t *> (this); }
iter_t* thiz () { return static_cast< iter_t *> (this); }
public:
/* Access: Implement __item__(), or __item_at__() if random-access. */
item_t __item__ () const { return (*thiz())[0]; }
item_t __item_at__ (unsigned i) const { return *(*thiz() + i); }
/* Termination: Implement __more__(), or __len__() if random-access. */
bool __more__ () const { return bool (thiz()->len ()); }
unsigned __len__ () const
{ iter_t c (*thiz()); unsigned l = 0; while (c) { c++; l++; } return l; }
/* Advancing: Implement __next__(), or __forward__() if random-access. */
void __next__ () { *thiz() += 1; }
void __forward__ (unsigned n) { while (*thiz() && n--) ++*thiz(); }
/* Rewinding: Implement __prev__() or __rewind__() if bidirectional. */
void __prev__ () { *thiz() -= 1; }
void __rewind__ (unsigned n) { while (*thiz() && n--) --*thiz(); }
/* Range-based for: Implement __end__() if can be done faster,
* and operator!=. */
iter_t __end__ () const
{
if (thiz()->is_random_access_iterator)
return *thiz() + thiz()->len ();
/* Above expression loops twice. Following loops once. */
auto it = *thiz();
while (it) ++it;
return it;
}
protected:
hb_iter_fallback_mixin_t () = default;
hb_iter_fallback_mixin_t (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default;
hb_iter_fallback_mixin_t (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default;
hb_iter_fallback_mixin_t& operator = (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default;
hb_iter_fallback_mixin_t& operator = (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default;
};
template <typename iter_t, typename item_t = typename iter_t::__item_t__>
struct hb_iter_with_fallback_t :
hb_iter_t<iter_t, item_t>,
hb_iter_fallback_mixin_t<iter_t, item_t>
{
protected:
hb_iter_with_fallback_t () = default;
hb_iter_with_fallback_t (const hb_iter_with_fallback_t &o HB_UNUSED) = default;
hb_iter_with_fallback_t (hb_iter_with_fallback_t &&o HB_UNUSED) = default;
hb_iter_with_fallback_t& operator = (const hb_iter_with_fallback_t &o HB_UNUSED) = default;
hb_iter_with_fallback_t& operator = (hb_iter_with_fallback_t &&o HB_UNUSED) = default;
};
/*
* Meta-programming predicates.
*/
/* hb_is_iterator() / hb_is_iterator_of() */
template<typename Iter, typename Item>
struct hb_is_iterator_of
{
template <typename Item2 = Item>
static hb_true_type impl (hb_priority<2>, hb_iter_t<Iter, hb_type_identity<Item2>> *);
static hb_false_type impl (hb_priority<0>, const void *);
public:
static constexpr bool value = decltype (impl (hb_prioritize, hb_declval (Iter*)))::value;
};
#define hb_is_iterator_of(Iter, Item) hb_is_iterator_of<Iter, Item>::value
#define hb_is_iterator(Iter) hb_is_iterator_of (Iter, typename Iter::item_t)
/* hb_is_iterable() */
template <typename T>
struct hb_is_iterable
{
private:
template <typename U>
static auto impl (hb_priority<1>) -> decltype (hb_declval (U).iter (), hb_true_type ());
template <typename>
static hb_false_type impl (hb_priority<0>);
public:
static constexpr bool value = decltype (impl<T> (hb_prioritize))::value;
};
#define hb_is_iterable(Iterable) hb_is_iterable<Iterable>::value
/* hb_is_source_of() / hb_is_sink_of() */
template<typename Iter, typename Item>
struct hb_is_source_of
{
private:
template <typename Iter2 = Iter,
hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<const Item>))>
static hb_true_type impl (hb_priority<2>);
template <typename Iter2 = Iter>
static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) >> hb_declval (Item &), hb_true_type ());
static hb_false_type impl (hb_priority<0>);
public:
static constexpr bool value = decltype (impl (hb_prioritize))::value;
};
#define hb_is_source_of(Iter, Item) hb_is_source_of<Iter, Item>::value
template<typename Iter, typename Item>
struct hb_is_sink_of
{
private:
template <typename Iter2 = Iter,
hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<Item>))>
static hb_true_type impl (hb_priority<2>);
template <typename Iter2 = Iter>
static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) << hb_declval (Item), hb_true_type ());
static hb_false_type impl (hb_priority<0>);
public:
static constexpr bool value = decltype (impl (hb_prioritize))::value;
};
#define hb_is_sink_of(Iter, Item) hb_is_sink_of<Iter, Item>::value
/* This is commonly used, so define: */
#define hb_is_sorted_source_of(Iter, Item) \
(hb_is_source_of(Iter, Item) && Iter::is_sorted_iterator)
/* Range-based 'for' for iterables. */
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ())
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ())
/* begin()/end() are NOT looked up non-ADL. So each namespace must declare them.
* Do it for namespace OT. */
namespace OT {
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ())
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ())
}
/*
* Adaptors, combiners, etc.
*/
template <typename Lhs, typename Rhs,
hb_requires (hb_is_iterator (Lhs))>
static inline auto
operator | (Lhs&& lhs, Rhs&& rhs) HB_AUTO_RETURN (std::forward<Rhs> (rhs) (std::forward<Lhs> (lhs)))
/* hb_map(), hb_filter(), hb_reduce() */
enum class hb_function_sortedness_t {
NOT_SORTED,
RETAINS_SORTING,
SORTED,
};
template <typename Iter, typename Proj, hb_function_sortedness_t Sorted,
hb_requires (hb_is_iterator (Iter))>
struct hb_map_iter_t :
hb_iter_t<hb_map_iter_t<Iter, Proj, Sorted>,
decltype (hb_get (hb_declval (Proj), *hb_declval (Iter)))>
{
hb_map_iter_t (const Iter& it, Proj f_) : it (it), f (f_) {}
typedef decltype (hb_get (hb_declval (Proj), *hb_declval (Iter))) __item_t__;
static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator;
static constexpr bool is_sorted_iterator =
Sorted == hb_function_sortedness_t::SORTED ? true :
Sorted == hb_function_sortedness_t::RETAINS_SORTING ? Iter::is_sorted_iterator :
false;
__item_t__ __item__ () const { return hb_get (f.get (), *it); }
__item_t__ __item_at__ (unsigned i) const { return hb_get (f.get (), it[i]); }
bool __more__ () const { return bool (it); }
unsigned __len__ () const { return it.len (); }
void __next__ () { ++it; }
void __forward__ (unsigned n) { it += n; }
void __prev__ () { --it; }
void __rewind__ (unsigned n) { it -= n; }
hb_map_iter_t __end__ () const { return hb_map_iter_t (it.end (), f); }
bool operator != (const hb_map_iter_t& o) const
{ return it != o.it; }
private:
Iter it;
hb_reference_wrapper<Proj> f;
};
template <typename Proj, hb_function_sortedness_t Sorted>
struct hb_map_iter_factory_t
{
hb_map_iter_factory_t (Proj f) : f (f) {}
template <typename Iter,
hb_requires (hb_is_iterator (Iter))>
hb_map_iter_t<Iter, Proj, Sorted>
operator () (Iter it)
{ return hb_map_iter_t<Iter, Proj, Sorted> (it, f); }
private:
Proj f;
};
struct
{
template <typename Proj>
hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED>
operator () (Proj&& f) const
{ return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> (f); }
}
HB_FUNCOBJ (hb_map);
struct
{
template <typename Proj>
hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING>
operator () (Proj&& f) const
{ return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> (f); }
}
HB_FUNCOBJ (hb_map_retains_sorting);
struct
{
template <typename Proj>
hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED>
operator () (Proj&& f) const
{ return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> (f); }
}
HB_FUNCOBJ (hb_map_sorted);
template <typename Iter, typename Pred, typename Proj,
hb_requires (hb_is_iterator (Iter))>
struct hb_filter_iter_t :
hb_iter_with_fallback_t<hb_filter_iter_t<Iter, Pred, Proj>,
typename Iter::item_t>
{
hb_filter_iter_t (const Iter& it_, Pred p_, Proj f_) : it (it_), p (p_), f (f_)
{ while (it && !hb_has (p.get (), hb_get (f.get (), *it))) ++it; }
typedef typename Iter::item_t __item_t__;
static constexpr bool is_sorted_iterator = Iter::is_sorted_iterator;
__item_t__ __item__ () const { return *it; }
bool __more__ () const { return bool (it); }
void __next__ () { do ++it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); }
void __prev__ () { do --it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); }
hb_filter_iter_t __end__ () const { return hb_filter_iter_t (it.end (), p, f); }
bool operator != (const hb_filter_iter_t& o) const
{ return it != o.it; }
private:
Iter it;
hb_reference_wrapper<Pred> p;
hb_reference_wrapper<Proj> f;
};
template <typename Pred, typename Proj>
struct hb_filter_iter_factory_t
{
hb_filter_iter_factory_t (Pred p, Proj f) : p (p), f (f) {}
template <typename Iter,
hb_requires (hb_is_iterator (Iter))>
hb_filter_iter_t<Iter, Pred, Proj>
operator () (Iter it)
{ return hb_filter_iter_t<Iter, Pred, Proj> (it, p, f); }
private:
Pred p;
Proj f;
};
struct
{
template <typename Pred = decltype ((hb_identity)),
typename Proj = decltype ((hb_identity))>
hb_filter_iter_factory_t<Pred, Proj>
operator () (Pred&& p = hb_identity, Proj&& f = hb_identity) const
{ return hb_filter_iter_factory_t<Pred, Proj> (p, f); }
}
HB_FUNCOBJ (hb_filter);
template <typename Redu, typename InitT>
struct hb_reduce_t
{
hb_reduce_t (Redu r, InitT init_value) : r (r), init_value (init_value) {}
template <typename Iter,
hb_requires (hb_is_iterator (Iter)),
typename AccuT = hb_decay<decltype (hb_declval (Redu) (hb_declval (InitT), hb_declval (typename Iter::item_t)))>>
AccuT
operator () (Iter it)
{
AccuT value = init_value;
for (; it; ++it)
value = r (value, *it);
return value;
}
private:
Redu r;
InitT init_value;
};
struct
{
template <typename Redu, typename InitT>
hb_reduce_t<Redu, InitT>
operator () (Redu&& r, InitT init_value) const
{ return hb_reduce_t<Redu, InitT> (r, init_value); }
}
HB_FUNCOBJ (hb_reduce);
/* hb_zip() */
template <typename A, typename B>
struct hb_zip_iter_t :
hb_iter_t<hb_zip_iter_t<A, B>,
hb_pair_t<typename A::item_t, typename B::item_t>>
{
hb_zip_iter_t () {}
hb_zip_iter_t (const A& a, const B& b) : a (a), b (b) {}
typedef hb_pair_t<typename A::item_t, typename B::item_t> __item_t__;
static constexpr bool is_random_access_iterator =
A::is_random_access_iterator &&
B::is_random_access_iterator;
/* Note. The following categorization is only valid if A is strictly sorted,
* ie. does NOT have duplicates. Previously I tried to categorize sortedness
* more granularly, see commits:
*
* 513762849a683914fc266a17ddf38f133cccf072
* 4d3cf2adb669c345cc43832d11689271995e160a
*
* However, that was not enough, since hb_sorted_array_t, hb_sorted_vector_t,
* SortedArrayOf, etc all needed to be updated to add more variants. At that
* point I saw it not worth the effort, and instead we now deem all sorted
* collections as essentially strictly-sorted for the purposes of zip.
*
* The above assumption is not as bad as it sounds. Our "sorted" comes with
* no guarantees. It's just a contract, put in place to help you remember,
* and think about, whether an iterator you receive is expected to be
* sorted or not. As such, it's not perfect by definition, and should not
* be treated so. The inaccuracy here just errs in the direction of being
* more permissive, so your code compiles instead of erring on the side of
* marking your zipped iterator unsorted in which case your code won't
* compile.
*
* This semantical limitation does NOT affect logic in any other place I
* know of as of this writing.
*/
static constexpr bool is_sorted_iterator = A::is_sorted_iterator;
__item_t__ __item__ () const { return __item_t__ (*a, *b); }
__item_t__ __item_at__ (unsigned i) const { return __item_t__ (a[i], b[i]); }
bool __more__ () const { return bool (a) && bool (b); }
unsigned __len__ () const { return hb_min (a.len (), b.len ()); }
void __next__ () { ++a; ++b; }
void __forward__ (unsigned n) { a += n; b += n; }
void __prev__ () { --a; --b; }
void __rewind__ (unsigned n) { a -= n; b -= n; }
hb_zip_iter_t __end__ () const { return hb_zip_iter_t (a.end (), b.end ()); }
/* Note, we should stop if ANY of the iters reaches end. As such two compare
* unequal if both items are unequal, NOT if either is unequal. */
bool operator != (const hb_zip_iter_t& o) const
{ return a != o.a && b != o.b; }
private:
A a;
B b;
};
struct
{ HB_PARTIALIZE(2);
template <typename A, typename B,
hb_requires (hb_is_iterable (A) && hb_is_iterable (B))>
hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>>
operator () (A&& a, B&& b) const
{ return hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); }
}
HB_FUNCOBJ (hb_zip);
/* hb_concat() */
template <typename A, typename B>
struct hb_concat_iter_t :
hb_iter_t<hb_concat_iter_t<A, B>, typename A::item_t>
{
hb_concat_iter_t () {}
hb_concat_iter_t (A& a, B& b) : a (a), b (b) {}
hb_concat_iter_t (const A& a, const B& b) : a (a), b (b) {}
typedef typename A::item_t __item_t__;
static constexpr bool is_random_access_iterator =
A::is_random_access_iterator &&
B::is_random_access_iterator;
static constexpr bool is_sorted_iterator = false;
__item_t__ __item__ () const
{
if (!a)
return *b;
return *a;
}
__item_t__ __item_at__ (unsigned i) const
{
unsigned a_len = a.len ();
if (i < a_len)
return a[i];
return b[i - a_len];
}
bool __more__ () const { return bool (a) || bool (b); }
unsigned __len__ () const { return a.len () + b.len (); }
void __next__ ()
{
if (a)
++a;
else
++b;
}
void __forward__ (unsigned n)
{
if (!n) return;
if (!is_random_access_iterator) {
while (n-- && *this) {
(*this)++;
}
return;
}
unsigned a_len = a.len ();
if (n > a_len) {
n -= a_len;
a.__forward__ (a_len);
b.__forward__ (n);
} else {
a.__forward__ (n);
}
}
hb_concat_iter_t __end__ () const { return hb_concat_iter_t (a.end (), b.end ()); }
bool operator != (const hb_concat_iter_t& o) const
{
return a != o.a
|| b != o.b;
}
private:
A a;
B b;
};
struct
{ HB_PARTIALIZE(2);
template <typename A, typename B,
hb_requires (hb_is_iterable (A) && hb_is_iterable (B))>
hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>>
operator () (A&& a, B&& b) const
{ return hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); }
}
HB_FUNCOBJ (hb_concat);
/* hb_apply() */
template <typename Appl>
struct hb_apply_t
{
hb_apply_t (Appl a) : a (a) {}
template <typename Iter,
hb_requires (hb_is_iterator (Iter))>
void operator () (Iter it)
{
for (; it; ++it)
(void) hb_invoke (a, *it);
}
private:
Appl a;
};
struct
{
template <typename Appl> hb_apply_t<Appl>
operator () (Appl&& a) const
{ return hb_apply_t<Appl> (a); }
template <typename Appl> hb_apply_t<Appl&>
operator () (Appl *a) const
{ return hb_apply_t<Appl&> (*a); }
}
HB_FUNCOBJ (hb_apply);
/* hb_range()/hb_iota()/hb_repeat() */
template <typename T, typename S>
struct hb_range_iter_t :
hb_iter_t<hb_range_iter_t<T, S>, T>
{
hb_range_iter_t (T start, T end_, S step) : v (start), end_ (end_for (start, end_, step)), step (step) {}
typedef T __item_t__;
static constexpr bool is_random_access_iterator = true;
static constexpr bool is_sorted_iterator = true;
__item_t__ __item__ () const { return hb_ridentity (v); }
__item_t__ __item_at__ (unsigned j) const { return v + j * step; }
bool __more__ () const { return v != end_; }
unsigned __len__ () const { return !step ? UINT_MAX : (end_ - v) / step; }
void __next__ () { v += step; }
void __forward__ (unsigned n) { v += n * step; }
void __prev__ () { v -= step; }
void __rewind__ (unsigned n) { v -= n * step; }
hb_range_iter_t __end__ () const { return hb_range_iter_t (end_, end_, step); }
bool operator != (const hb_range_iter_t& o) const
{ return v != o.v; }
private:
static inline T end_for (T start, T end_, S step)
{
if (!step)
return end_;
auto res = (end_ - start) % step;
if (!res)
return end_;
end_ += step - res;
return end_;
}
private:
T v;
T end_;
S step;
};
struct
{
template <typename T = unsigned> hb_range_iter_t<T, unsigned>
operator () (T end = (unsigned) -1) const
{ return hb_range_iter_t<T, unsigned> (0, end, 1u); }
template <typename T, typename S = unsigned> hb_range_iter_t<T, S>
operator () (T start, T end, S step = 1u) const
{ return hb_range_iter_t<T, S> (start, end, step); }
}
HB_FUNCOBJ (hb_range);
template <typename T, typename S>
struct hb_iota_iter_t :
hb_iter_with_fallback_t<hb_iota_iter_t<T, S>, T>
{
hb_iota_iter_t (T start, S step) : v (start), step (step) {}
private:
template <typename S2 = S>
auto
inc (hb_type_identity<S2> s, hb_priority<1>)
-> hb_void_t<decltype (hb_invoke (std::forward<S2> (s), hb_declval<T&> ()))>
{ v = hb_invoke (std::forward<S2> (s), v); }
void
inc (S s, hb_priority<0>)
{ v += s; }
public:
typedef T __item_t__;
static constexpr bool is_random_access_iterator = true;
static constexpr bool is_sorted_iterator = true;
__item_t__ __item__ () const { return hb_ridentity (v); }
bool __more__ () const { return true; }
unsigned __len__ () const { return UINT_MAX; }
void __next__ () { inc (step, hb_prioritize); }
void __prev__ () { v -= step; }
hb_iota_iter_t __end__ () const { return *this; }
bool operator != (const hb_iota_iter_t& o) const { return true; }
private:
T v;
S step;
};
struct
{
template <typename T = unsigned, typename S = unsigned> hb_iota_iter_t<T, S>
operator () (T start = 0u, S step = 1u) const
{ return hb_iota_iter_t<T, S> (start, step); }
}
HB_FUNCOBJ (hb_iota);
template <typename T>
struct hb_repeat_iter_t :
hb_iter_t<hb_repeat_iter_t<T>, T>
{
hb_repeat_iter_t (T value) : v (value) {}
typedef T __item_t__;
static constexpr bool is_random_access_iterator = true;
static constexpr bool is_sorted_iterator = true;
__item_t__ __item__ () const { return v; }
__item_t__ __item_at__ (unsigned j) const { return v; }
bool __more__ () const { return true; }
unsigned __len__ () const { return UINT_MAX; }
void __next__ () {}
void __forward__ (unsigned) {}
void __prev__ () {}
void __rewind__ (unsigned) {}
hb_repeat_iter_t __end__ () const { return *this; }
bool operator != (const hb_repeat_iter_t& o) const { return true; }
private:
T v;
};
struct
{
template <typename T> hb_repeat_iter_t<T>
operator () (T value) const
{ return hb_repeat_iter_t<T> (value); }
}
HB_FUNCOBJ (hb_repeat);
/* hb_enumerate()/hb_take() */
struct
{
template <typename Iterable,
typename Index = unsigned,
hb_requires (hb_is_iterable (Iterable))>
auto operator () (Iterable&& it, Index start = 0u) const HB_AUTO_RETURN
( hb_zip (hb_iota (start), it) )
}
HB_FUNCOBJ (hb_enumerate);
struct
{ HB_PARTIALIZE(2);
template <typename Iterable,
hb_requires (hb_is_iterable (Iterable))>
auto operator () (Iterable&& it, unsigned count) const HB_AUTO_RETURN
( hb_zip (hb_range (count), it) | hb_map (hb_second) )
/* Specialization arrays. */
template <typename Type> inline hb_array_t<Type>
operator () (hb_array_t<Type> array, unsigned count) const
{ return array.sub_array (0, count); }
template <typename Type> inline hb_sorted_array_t<Type>
operator () (hb_sorted_array_t<Type> array, unsigned count) const
{ return array.sub_array (0, count); }
}
HB_FUNCOBJ (hb_take);
struct
{ HB_PARTIALIZE(2);
template <typename Iter,
hb_requires (hb_is_iterator (Iter))>
auto operator () (Iter it, unsigned count) const HB_AUTO_RETURN
(
+ hb_iota (it, hb_add (count))
| hb_map (hb_take (count))
| hb_take ((hb_len (it) + count - 1) / count)
)
}
HB_FUNCOBJ (hb_chop);
/* hb_sink() */
template <typename Sink>
struct hb_sink_t
{
hb_sink_t (Sink s) : s (s) {}
template <typename Iter,
hb_requires (hb_is_iterator (Iter))>
void operator () (Iter it)
{
for (; it; ++it)
s << *it;
}
private:
Sink s;
};
struct
{
template <typename Sink> hb_sink_t<Sink>
operator () (Sink&& s) const
{ return hb_sink_t<Sink> (s); }
template <typename Sink> hb_sink_t<Sink&>
operator () (Sink *s) const
{ return hb_sink_t<Sink&> (*s); }
}
HB_FUNCOBJ (hb_sink);
/* hb-drain: hb_sink to void / blackhole / /dev/null. */
struct
{
template <typename Iter,
hb_requires (hb_is_iterator (Iter))>
void operator () (Iter it) const
{
for (; it; ++it)
(void) *it;
}
}
HB_FUNCOBJ (hb_drain);
/* hb_unzip(): unzip and sink to two sinks. */
template <typename Sink1, typename Sink2>
struct hb_unzip_t
{
hb_unzip_t (Sink1 s1, Sink2 s2) : s1 (s1), s2 (s2) {}
template <typename Iter,
hb_requires (hb_is_iterator (Iter))>
void operator () (Iter it)
{
for (; it; ++it)
{
const auto &v = *it;
s1 << v.first;
s2 << v.second;
}
}
private:
Sink1 s1;
Sink2 s2;
};
struct
{
template <typename Sink1, typename Sink2> hb_unzip_t<Sink1, Sink2>
operator () (Sink1&& s1, Sink2&& s2) const
{ return hb_unzip_t<Sink1, Sink2> (s1, s2); }
template <typename Sink1, typename Sink2> hb_unzip_t<Sink1&, Sink2&>
operator () (Sink1 *s1, Sink2 *s2) const
{ return hb_unzip_t<Sink1&, Sink2&> (*s1, *s2); }
}
HB_FUNCOBJ (hb_unzip);
/* hb-all, hb-any, hb-none. */
struct
{
template <typename Iterable,
typename Pred = decltype ((hb_identity)),
typename Proj = decltype ((hb_identity)),
hb_requires (hb_is_iterable (Iterable))>
bool operator () (Iterable&& c,
Pred&& p = hb_identity,
Proj&& f = hb_identity) const
{
for (auto it = hb_iter (c); it; ++it)
if (!hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it)))
return false;
return true;
}
}
HB_FUNCOBJ (hb_all);
struct
{
template <typename Iterable,
typename Pred = decltype ((hb_identity)),
typename Proj = decltype ((hb_identity)),
hb_requires (hb_is_iterable (Iterable))>
bool operator () (Iterable&& c,
Pred&& p = hb_identity,
Proj&& f = hb_identity) const
{
for (auto it = hb_iter (c); it; ++it)
if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it)))
return true;
return false;
}
}
HB_FUNCOBJ (hb_any);
struct
{
template <typename Iterable,
typename Pred = decltype ((hb_identity)),
typename Proj = decltype ((hb_identity)),
hb_requires (hb_is_iterable (Iterable))>
bool operator () (Iterable&& c,
Pred&& p = hb_identity,
Proj&& f = hb_identity) const
{
for (auto it = hb_iter (c); it; ++it)
if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it)))
return false;
return true;
}
}
HB_FUNCOBJ (hb_none);
/*
* Algorithms operating on iterators.
*/
template <typename C, typename V,
hb_requires (hb_is_iterable (C))>
inline void
hb_fill (C&& c, const V &v)
{
for (auto i = hb_iter (c); i; i++)
*i = v;
}
template <typename S, typename D>
inline void
hb_copy (S&& is, D&& id)
{
hb_iter (is) | hb_sink (id);
}
#endif /* HB_ITER_HH */
|