summaryrefslogtreecommitdiff
path: root/thirdparty/harfbuzz/src/OT/glyf/Glyph.hh
blob: 3efe538f370391f9ea446f45631db5ca63981bbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#ifndef OT_GLYF_GLYPH_HH
#define OT_GLYF_GLYPH_HH


#include "../../hb-open-type.hh"

#include "GlyphHeader.hh"
#include "SimpleGlyph.hh"
#include "CompositeGlyph.hh"


namespace OT {

struct glyf_accelerator_t;

namespace glyf_impl {


enum phantom_point_index_t
{
  PHANTOM_LEFT   = 0,
  PHANTOM_RIGHT  = 1,
  PHANTOM_TOP    = 2,
  PHANTOM_BOTTOM = 3,
  PHANTOM_COUNT  = 4
};

struct Glyph
{
  enum glyph_type_t { EMPTY, SIMPLE, COMPOSITE };

  public:
  composite_iter_t get_composite_iterator () const
  {
    if (type != COMPOSITE) return composite_iter_t ();
    return CompositeGlyph (*header, bytes).iter ();
  }

  const hb_bytes_t trim_padding () const
  {
    switch (type) {
    case COMPOSITE: return CompositeGlyph (*header, bytes).trim_padding ();
    case SIMPLE:    return SimpleGlyph (*header, bytes).trim_padding ();
    default:        return bytes;
    }
  }

  void drop_hints ()
  {
    switch (type) {
    case COMPOSITE: CompositeGlyph (*header, bytes).drop_hints (); return;
    case SIMPLE:    SimpleGlyph (*header, bytes).drop_hints (); return;
    default:        return;
    }
  }

  void set_overlaps_flag ()
  {
    switch (type) {
    case COMPOSITE: CompositeGlyph (*header, bytes).set_overlaps_flag (); return;
    case SIMPLE:    SimpleGlyph (*header, bytes).set_overlaps_flag (); return;
    default:        return;
    }
  }

  void drop_hints_bytes (hb_bytes_t &dest_start, hb_bytes_t &dest_end) const
  {
    switch (type) {
    case COMPOSITE: CompositeGlyph (*header, bytes).drop_hints_bytes (dest_start); return;
    case SIMPLE:    SimpleGlyph (*header, bytes).drop_hints_bytes (dest_start, dest_end); return;
    default:        return;
    }
  }

  /* Note: Recursively calls itself.
   * all_points includes phantom points
   */
  template <typename accelerator_t>
  bool get_points (hb_font_t *font, const accelerator_t &glyf_accelerator,
		   contour_point_vector_t &all_points /* OUT */,
		   bool phantom_only = false,
		   unsigned int depth = 0) const
  {
    if (unlikely (depth > HB_MAX_NESTING_LEVEL)) return false;
    contour_point_vector_t stack_points;
    bool inplace = type == SIMPLE && all_points.length == 0;
    /* Load into all_points if it's empty, as an optimization. */
    contour_point_vector_t &points = inplace ? all_points : stack_points;

    switch (type) {
    case COMPOSITE:
    {
      /* pseudo component points for each component in composite glyph */
      unsigned num_points = hb_len (CompositeGlyph (*header, bytes).iter ());
      if (unlikely (!points.resize (num_points))) return false;
      break;
    }
    case SIMPLE:
      if (unlikely (!SimpleGlyph (*header, bytes).get_contour_points (points, phantom_only)))
	return false;
      break;
    }

    /* Init phantom points */
    if (unlikely (!points.resize (points.length + PHANTOM_COUNT))) return false;
    hb_array_t<contour_point_t> phantoms = points.sub_array (points.length - PHANTOM_COUNT, PHANTOM_COUNT);
    {
      int lsb = 0;
      int h_delta = glyf_accelerator.hmtx->get_leading_bearing_without_var_unscaled (gid, &lsb) ?
		    (int) header->xMin - lsb : 0;
      int tsb = 0;
      int v_orig  = (int) header->yMax +
#ifndef HB_NO_VERTICAL
		    ((void) glyf_accelerator.vmtx->get_leading_bearing_without_var_unscaled (gid, &tsb), tsb)
#else
		    0
#endif
		    ;
      unsigned h_adv = glyf_accelerator.hmtx->get_advance_without_var_unscaled (gid);
      unsigned v_adv =
#ifndef HB_NO_VERTICAL
		       glyf_accelerator.vmtx->get_advance_without_var_unscaled (gid)
#else
		       - font->face->get_upem ()
#endif
		       ;
      phantoms[PHANTOM_LEFT].x = h_delta;
      phantoms[PHANTOM_RIGHT].x = h_adv + h_delta;
      phantoms[PHANTOM_TOP].y = v_orig;
      phantoms[PHANTOM_BOTTOM].y = v_orig - (int) v_adv;
    }

#ifndef HB_NO_VAR
    glyf_accelerator.gvar->apply_deltas_to_points (gid, font, points.as_array ());
#endif

    switch (type) {
    case SIMPLE:
      if (!inplace)
	all_points.extend (points.as_array ());
      break;
    case COMPOSITE:
    {
      contour_point_vector_t comp_points;
      unsigned int comp_index = 0;
      for (auto &item : get_composite_iterator ())
      {
        comp_points.reset ();
	if (unlikely (!glyf_accelerator.glyph_for_gid (item.get_gid ())
				       .get_points (font, glyf_accelerator, comp_points,
						    phantom_only, depth + 1)))
	  return false;

	/* Copy phantom points from component if USE_MY_METRICS flag set */
	if (item.is_use_my_metrics ())
	  for (unsigned int i = 0; i < PHANTOM_COUNT; i++)
	    phantoms[i] = comp_points[comp_points.length - PHANTOM_COUNT + i];

	/* Apply component transformation & translation */
	item.transform_points (comp_points);

	/* Apply translation from gvar */
	comp_points.translate (points[comp_index]);

	if (item.is_anchored ())
	{
	  unsigned int p1, p2;
	  item.get_anchor_points (p1, p2);
	  if (likely (p1 < all_points.length && p2 < comp_points.length))
	  {
	    contour_point_t delta;
	    delta.init (all_points[p1].x - comp_points[p2].x,
			all_points[p1].y - comp_points[p2].y);

	    comp_points.translate (delta);
	  }
	}

	all_points.extend (comp_points.sub_array (0, comp_points.length - PHANTOM_COUNT));

	comp_index++;
      }

      all_points.extend (phantoms);
    } break;
    default:
      all_points.extend (phantoms);
    }

    if (depth == 0) /* Apply at top level */
    {
      /* Undocumented rasterizer behavior:
       * Shift points horizontally by the updated left side bearing
       */
      contour_point_t delta;
      delta.init (-phantoms[PHANTOM_LEFT].x, 0.f);
      if (delta.x) all_points.translate (delta);
    }

    return !all_points.in_error ();
  }

  bool get_extents_without_var_scaled (hb_font_t *font, const glyf_accelerator_t &glyf_accelerator,
				       hb_glyph_extents_t *extents) const
  {
    if (type == EMPTY) return true; /* Empty glyph; zero extents. */
    return header->get_extents_without_var_scaled (font, glyf_accelerator, gid, extents);
  }

  hb_bytes_t get_bytes () const { return bytes; }

  Glyph (hb_bytes_t bytes_ = hb_bytes_t (),
	 hb_codepoint_t gid_ = (hb_codepoint_t) -1) : bytes (bytes_),
						      header (bytes.as<GlyphHeader> ()),
						      gid (gid_)
  {
    int num_contours = header->numberOfContours;
    if (unlikely (num_contours == 0)) type = EMPTY;
    else if (num_contours > 0) type = SIMPLE;
    else type = COMPOSITE; /* negative numbers */
  }

  protected:
  hb_bytes_t bytes;
  const GlyphHeader *header;
  hb_codepoint_t gid;
  unsigned type;
};


} /* namespace glyf_impl */
} /* namespace OT */


#endif /* OT_GLYF_GLYPH_HH */