summaryrefslogtreecommitdiff
path: root/thirdparty/glslang/glslang/MachineIndependent/SymbolTable.h
blob: db16c19bca186a2ac7fa846da0990be1ba00aee6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
//
// Copyright (C) 2002-2005  3Dlabs Inc. Ltd.
// Copyright (C) 2013 LunarG, Inc.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//

#ifndef _SYMBOL_TABLE_INCLUDED_
#define _SYMBOL_TABLE_INCLUDED_

//
// Symbol table for parsing.  Has these design characteristics:
//
// * Same symbol table can be used to compile many shaders, to preserve
//   effort of creating and loading with the large numbers of built-in
//   symbols.
//
// -->  This requires a copy mechanism, so initial pools used to create
//   the shared information can be popped.  Done through "clone"
//   methods.
//
// * Name mangling will be used to give each function a unique name
//   so that symbol table lookups are never ambiguous.  This allows
//   a simpler symbol table structure.
//
// * Pushing and popping of scope, so symbol table will really be a stack
//   of symbol tables.  Searched from the top, with new inserts going into
//   the top.
//
// * Constants:  Compile time constant symbols will keep their values
//   in the symbol table.  The parser can substitute constants at parse
//   time, including doing constant folding and constant propagation.
//
// * No temporaries:  Temporaries made from operations (+, --, .xy, etc.)
//   are tracked in the intermediate representation, not the symbol table.
//

#include "../Include/Common.h"
#include "../Include/intermediate.h"
#include "../Include/InfoSink.h"

namespace glslang {

//
// Symbol base class.  (Can build functions or variables out of these...)
//

class TVariable;
class TFunction;
class TAnonMember;

typedef TVector<const char*> TExtensionList;

class TSymbol {
public:
    POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
    explicit TSymbol(const TString *n) :  name(n), extensions(0), writable(true) { }
    virtual TSymbol* clone() const = 0;
    virtual ~TSymbol() { }  // rely on all symbol owned memory coming from the pool

    virtual const TString& getName() const { return *name; }
    virtual void changeName(const TString* newName) { name = newName; }
    virtual void addPrefix(const char* prefix)
    {
        TString newName(prefix);
        newName.append(*name);
        changeName(NewPoolTString(newName.c_str()));
    }
    virtual const TString& getMangledName() const { return getName(); }
    virtual TFunction* getAsFunction() { return 0; }
    virtual const TFunction* getAsFunction() const { return 0; }
    virtual TVariable* getAsVariable() { return 0; }
    virtual const TVariable* getAsVariable() const { return 0; }
    virtual const TAnonMember* getAsAnonMember() const { return 0; }
    virtual const TType& getType() const = 0;
    virtual TType& getWritableType() = 0;
    virtual void setUniqueId(int id) { uniqueId = id; }
    virtual int getUniqueId() const { return uniqueId; }
    virtual void setExtensions(int numExts, const char* const exts[])
    {
        assert(extensions == 0);
        assert(numExts > 0);
        extensions = NewPoolObject(extensions);
        for (int e = 0; e < numExts; ++e)
            extensions->push_back(exts[e]);
    }
    virtual int getNumExtensions() const { return extensions == nullptr ? 0 : (int)extensions->size(); }
    virtual const char** getExtensions() const { return extensions->data(); }

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const = 0;
    void dumpExtensions(TInfoSink& infoSink) const;
#endif

    virtual bool isReadOnly() const { return ! writable; }
    virtual void makeReadOnly() { writable = false; }

protected:
    explicit TSymbol(const TSymbol&);
    TSymbol& operator=(const TSymbol&);

    const TString *name;
    unsigned int uniqueId;      // For cross-scope comparing during code generation

    // For tracking what extensions must be present
    // (don't use if correct version/profile is present).
    TExtensionList* extensions; // an array of pointers to existing constant char strings

    //
    // N.B.: Non-const functions that will be generally used should assert on this,
    // to avoid overwriting shared symbol-table information.
    //
    bool writable;
};

//
// Variable class, meaning a symbol that's not a function.
//
// There could be a separate class hierarchy for Constant variables;
// Only one of int, bool, or float, (or none) is correct for
// any particular use, but it's easy to do this way, and doesn't
// seem worth having separate classes, and "getConst" can't simply return
// different values for different types polymorphically, so this is
// just simple and pragmatic.
//
class TVariable : public TSymbol {
public:
    TVariable(const TString *name, const TType& t, bool uT = false )
        : TSymbol(name),
          userType(uT),
          constSubtree(nullptr),
          memberExtensions(nullptr),
          anonId(-1)
        { type.shallowCopy(t); }
    virtual TVariable* clone() const;
    virtual ~TVariable() { }

    virtual TVariable* getAsVariable() { return this; }
    virtual const TVariable* getAsVariable() const { return this; }
    virtual const TType& getType() const { return type; }
    virtual TType& getWritableType() { assert(writable); return type; }
    virtual bool isUserType() const { return userType; }
    virtual const TConstUnionArray& getConstArray() const { return constArray; }
    virtual TConstUnionArray& getWritableConstArray() { assert(writable); return constArray; }
    virtual void setConstArray(const TConstUnionArray& array) { constArray = array; }
    virtual void setConstSubtree(TIntermTyped* subtree) { constSubtree = subtree; }
    virtual TIntermTyped* getConstSubtree() const { return constSubtree; }
    virtual void setAnonId(int i) { anonId = i; }
    virtual int getAnonId() const { return anonId; }

    virtual void setMemberExtensions(int member, int numExts, const char* const exts[])
    {
        assert(type.isStruct());
        assert(numExts > 0);
        if (memberExtensions == nullptr) {
            memberExtensions = NewPoolObject(memberExtensions);
            memberExtensions->resize(type.getStruct()->size());
        }
        for (int e = 0; e < numExts; ++e)
            (*memberExtensions)[member].push_back(exts[e]);
    }
    virtual bool hasMemberExtensions() const { return memberExtensions != nullptr; }
    virtual int getNumMemberExtensions(int member) const 
    {
        return memberExtensions == nullptr ? 0 : (int)(*memberExtensions)[member].size();
    }
    virtual const char** getMemberExtensions(int member) const { return (*memberExtensions)[member].data(); }

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const;
#endif

protected:
    explicit TVariable(const TVariable&);
    TVariable& operator=(const TVariable&);

    TType type;
    bool userType;

    // we are assuming that Pool Allocator will free the memory allocated to unionArray
    // when this object is destroyed

    TConstUnionArray constArray;               // for compile-time constant value
    TIntermTyped* constSubtree;                // for specialization constant computation
    TVector<TExtensionList>* memberExtensions; // per-member extension list, allocated only when needed
    int anonId; // the ID used for anonymous blocks: TODO: see if uniqueId could serve a dual purpose
};

//
// The function sub-class of symbols and the parser will need to
// share this definition of a function parameter.
//
struct TParameter {
    TString *name;
    TType* type;
    TIntermTyped* defaultValue;
    void copyParam(const TParameter& param)
    {
        if (param.name)
            name = NewPoolTString(param.name->c_str());
        else
            name = 0;
        type = param.type->clone();
        defaultValue = param.defaultValue;
    }
    TBuiltInVariable getDeclaredBuiltIn() const { return type->getQualifier().declaredBuiltIn; }
};

//
// The function sub-class of a symbol.
//
class TFunction : public TSymbol {
public:
    explicit TFunction(TOperator o) :
        TSymbol(0),
        op(o),
        defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0) { }
    TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull) :
        TSymbol(name),
        mangledName(*name + '('),
        op(tOp),
        defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0)
    {
        returnType.shallowCopy(retType);
        declaredBuiltIn = retType.getQualifier().builtIn;
    }
    virtual TFunction* clone() const override;
    virtual ~TFunction();

    virtual TFunction* getAsFunction() override { return this; }
    virtual const TFunction* getAsFunction() const override { return this; }

    // Install 'p' as the (non-'this') last parameter.
    // Non-'this' parameters are reflected in both the list of parameters and the
    // mangled name.
    virtual void addParameter(TParameter& p)
    {
        assert(writable);
        parameters.push_back(p);
        p.type->appendMangledName(mangledName);

        if (p.defaultValue != nullptr)
            defaultParamCount++;
    }

    // Install 'this' as the first parameter.
    // 'this' is reflected in the list of parameters, but not the mangled name.
    virtual void addThisParameter(TType& type, const char* name)
    {
        TParameter p = { NewPoolTString(name), new TType, nullptr };
        p.type->shallowCopy(type);
        parameters.insert(parameters.begin(), p);
    }

    virtual void addPrefix(const char* prefix) override
    {
        TSymbol::addPrefix(prefix);
        mangledName.insert(0, prefix);
    }

    virtual void removePrefix(const TString& prefix)
    {
        assert(mangledName.compare(0, prefix.size(), prefix) == 0);
        mangledName.erase(0, prefix.size());
    }

    virtual const TString& getMangledName() const override { return mangledName; }
    virtual const TType& getType() const override { return returnType; }
    virtual TBuiltInVariable getDeclaredBuiltInType() const { return declaredBuiltIn; }
    virtual TType& getWritableType() override { return returnType; }
    virtual void relateToOperator(TOperator o) { assert(writable); op = o; }
    virtual TOperator getBuiltInOp() const { return op; }
    virtual void setDefined() { assert(writable); defined = true; }
    virtual bool isDefined() const { return defined; }
    virtual void setPrototyped() { assert(writable); prototyped = true; }
    virtual bool isPrototyped() const { return prototyped; }
    virtual void setImplicitThis() { assert(writable); implicitThis = true; }
    virtual bool hasImplicitThis() const { return implicitThis; }
    virtual void setIllegalImplicitThis() { assert(writable); illegalImplicitThis = true; }
    virtual bool hasIllegalImplicitThis() const { return illegalImplicitThis; }

    // Return total number of parameters
    virtual int getParamCount() const { return static_cast<int>(parameters.size()); }
    // Return number of parameters with default values.
    virtual int getDefaultParamCount() const { return defaultParamCount; }
    // Return number of fixed parameters (without default values)
    virtual int getFixedParamCount() const { return getParamCount() - getDefaultParamCount(); }

    virtual TParameter& operator[](int i) { assert(writable); return parameters[i]; }
    virtual const TParameter& operator[](int i) const { return parameters[i]; }

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const override;
#endif

protected:
    explicit TFunction(const TFunction&);
    TFunction& operator=(const TFunction&);

    typedef TVector<TParameter> TParamList;
    TParamList parameters;
    TType returnType;
    TBuiltInVariable declaredBuiltIn;

    TString mangledName;
    TOperator op;
    bool defined;
    bool prototyped;
    bool implicitThis;         // True if this function is allowed to see all members of 'this'
    bool illegalImplicitThis;  // True if this function is not supposed to have access to dynamic members of 'this',
                               // even if it finds member variables in the symbol table.
                               // This is important for a static member function that has member variables in scope,
                               // but is not allowed to use them, or see hidden symbols instead.
    int  defaultParamCount;
};

//
// Members of anonymous blocks are a kind of TSymbol.  They are not hidden in
// the symbol table behind a container; rather they are visible and point to
// their anonymous container.  (The anonymous container is found through the
// member, not the other way around.)
//
class TAnonMember : public TSymbol {
public:
    TAnonMember(const TString* n, unsigned int m, TVariable& a, int an) : TSymbol(n), anonContainer(a), memberNumber(m), anonId(an) { }
    virtual TAnonMember* clone() const override;
    virtual ~TAnonMember() { }

    virtual const TAnonMember* getAsAnonMember() const override { return this; }
    virtual const TVariable& getAnonContainer() const { return anonContainer; }
    virtual unsigned int getMemberNumber() const { return memberNumber; }

    virtual const TType& getType() const override
    {
        const TTypeList& types = *anonContainer.getType().getStruct();
        return *types[memberNumber].type;
    }

    virtual TType& getWritableType() override
    {
        assert(writable);
        const TTypeList& types = *anonContainer.getType().getStruct();
        return *types[memberNumber].type;
    }

    virtual void setExtensions(int numExts, const char* const exts[]) override
    {
        anonContainer.setMemberExtensions(memberNumber, numExts, exts);
    }
    virtual int getNumExtensions() const override { return anonContainer.getNumMemberExtensions(memberNumber); }
    virtual const char** getExtensions() const override { return anonContainer.getMemberExtensions(memberNumber); }

    virtual int getAnonId() const { return anonId; }
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const override;
#endif

protected:
    explicit TAnonMember(const TAnonMember&);
    TAnonMember& operator=(const TAnonMember&);

    TVariable& anonContainer;
    unsigned int memberNumber;
    int anonId;
};

class TSymbolTableLevel {
public:
    POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
    TSymbolTableLevel() : defaultPrecision(0), anonId(0), thisLevel(false) { }
    ~TSymbolTableLevel();

    bool insert(TSymbol& symbol, bool separateNameSpaces)
    {
        //
        // returning true means symbol was added to the table with no semantic errors
        //
        const TString& name = symbol.getName();
        if (name == "") {
            symbol.getAsVariable()->setAnonId(anonId++);
            // An empty name means an anonymous container, exposing its members to the external scope.
            // Give it a name and insert its members in the symbol table, pointing to the container.
            char buf[20];
            snprintf(buf, 20, "%s%d", AnonymousPrefix, symbol.getAsVariable()->getAnonId());
            symbol.changeName(NewPoolTString(buf));

            return insertAnonymousMembers(symbol, 0);
        } else {
            // Check for redefinition errors:
            // - STL itself will tell us if there is a direct name collision, with name mangling, at this level
            // - additionally, check for function-redefining-variable name collisions
            const TString& insertName = symbol.getMangledName();
            if (symbol.getAsFunction()) {
                // make sure there isn't a variable of this name
                if (! separateNameSpaces && level.find(name) != level.end())
                    return false;

                // insert, and whatever happens is okay
                level.insert(tLevelPair(insertName, &symbol));

                return true;
            } else
                return level.insert(tLevelPair(insertName, &symbol)).second;
        }
    }

    // Add more members to an already inserted aggregate object
    bool amend(TSymbol& symbol, int firstNewMember)
    {
        // See insert() for comments on basic explanation of insert.
        // This operates similarly, but more simply.
        // Only supporting amend of anonymous blocks so far.
        if (IsAnonymous(symbol.getName()))
            return insertAnonymousMembers(symbol, firstNewMember);
        else
            return false;
    }

    bool insertAnonymousMembers(TSymbol& symbol, int firstMember)
    {
        const TTypeList& types = *symbol.getAsVariable()->getType().getStruct();
        for (unsigned int m = firstMember; m < types.size(); ++m) {
            TAnonMember* member = new TAnonMember(&types[m].type->getFieldName(), m, *symbol.getAsVariable(), symbol.getAsVariable()->getAnonId());
            if (! level.insert(tLevelPair(member->getMangledName(), member)).second)
                return false;
        }

        return true;
    }

    TSymbol* find(const TString& name) const
    {
        tLevel::const_iterator it = level.find(name);
        if (it == level.end())
            return 0;
        else
            return (*it).second;
    }

    void findFunctionNameList(const TString& name, TVector<const TFunction*>& list)
    {
        size_t parenAt = name.find_first_of('(');
        TString base(name, 0, parenAt + 1);

        tLevel::const_iterator begin = level.lower_bound(base);
        base[parenAt] = ')';  // assume ')' is lexically after '('
        tLevel::const_iterator end = level.upper_bound(base);
        for (tLevel::const_iterator it = begin; it != end; ++it)
            list.push_back(it->second->getAsFunction());
    }

    // See if there is already a function in the table having the given non-function-style name.
    bool hasFunctionName(const TString& name) const
    {
        tLevel::const_iterator candidate = level.lower_bound(name);
        if (candidate != level.end()) {
            const TString& candidateName = (*candidate).first;
            TString::size_type parenAt = candidateName.find_first_of('(');
            if (parenAt != candidateName.npos && candidateName.compare(0, parenAt, name) == 0)

                return true;
        }

        return false;
    }

    // See if there is a variable at this level having the given non-function-style name.
    // Return true if name is found, and set variable to true if the name was a variable.
    bool findFunctionVariableName(const TString& name, bool& variable) const
    {
        tLevel::const_iterator candidate = level.lower_bound(name);
        if (candidate != level.end()) {
            const TString& candidateName = (*candidate).first;
            TString::size_type parenAt = candidateName.find_first_of('(');
            if (parenAt == candidateName.npos) {
                // not a mangled name
                if (candidateName == name) {
                    // found a variable name match
                    variable = true;
                    return true;
                }
            } else {
                // a mangled name
                if (candidateName.compare(0, parenAt, name) == 0) {
                    // found a function name match
                    variable = false;
                    return true;
                }
            }
        }

        return false;
    }

    // Use this to do a lazy 'push' of precision defaults the first time
    // a precision statement is seen in a new scope.  Leave it at 0 for
    // when no push was needed.  Thus, it is not the current defaults,
    // it is what to restore the defaults to when popping a level.
    void setPreviousDefaultPrecisions(const TPrecisionQualifier *p)
    {
        // can call multiple times at one scope, will only latch on first call,
        // as we're tracking the previous scope's values, not the current values
        if (defaultPrecision != 0)
            return;

        defaultPrecision = new TPrecisionQualifier[EbtNumTypes];
        for (int t = 0; t < EbtNumTypes; ++t)
            defaultPrecision[t] = p[t];
    }

    void getPreviousDefaultPrecisions(TPrecisionQualifier *p)
    {
        // can be called for table level pops that didn't set the
        // defaults
        if (defaultPrecision == 0 || p == 0)
            return;

        for (int t = 0; t < EbtNumTypes; ++t)
            p[t] = defaultPrecision[t];
    }

    void relateToOperator(const char* name, TOperator op);
    void setFunctionExtensions(const char* name, int num, const char* const extensions[]);
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    void dump(TInfoSink& infoSink, bool complete = false) const;
#endif
    TSymbolTableLevel* clone() const;
    void readOnly();

    void setThisLevel() { thisLevel = true; }
    bool isThisLevel() const { return thisLevel; }

protected:
    explicit TSymbolTableLevel(TSymbolTableLevel&);
    TSymbolTableLevel& operator=(TSymbolTableLevel&);

    typedef std::map<TString, TSymbol*, std::less<TString>, pool_allocator<std::pair<const TString, TSymbol*> > > tLevel;
    typedef const tLevel::value_type tLevelPair;
    typedef std::pair<tLevel::iterator, bool> tInsertResult;

    tLevel level;  // named mappings
    TPrecisionQualifier *defaultPrecision;
    int anonId;
    bool thisLevel;  // True if this level of the symbol table is a structure scope containing member function
                     // that are supposed to see anonymous access to member variables.
};

class TSymbolTable {
public:
    TSymbolTable() : uniqueId(0), noBuiltInRedeclarations(false), separateNameSpaces(false), adoptedLevels(0)
    {
        //
        // This symbol table cannot be used until push() is called.
        //
    }
    ~TSymbolTable()
    {
        // this can be called explicitly; safest to code it so it can be called multiple times

        // don't deallocate levels passed in from elsewhere
        while (table.size() > adoptedLevels)
            pop(0);
    }

    void adoptLevels(TSymbolTable& symTable)
    {
        for (unsigned int level = 0; level < symTable.table.size(); ++level) {
            table.push_back(symTable.table[level]);
            ++adoptedLevels;
        }
        uniqueId = symTable.uniqueId;
        noBuiltInRedeclarations = symTable.noBuiltInRedeclarations;
        separateNameSpaces = symTable.separateNameSpaces;
    }

    //
    // While level adopting is generic, the methods below enact a the following
    // convention for levels:
    //   0: common built-ins shared across all stages, all compiles, only one copy for all symbol tables
    //   1: per-stage built-ins, shared across all compiles, but a different copy per stage
    //   2: built-ins specific to a compile, like resources that are context-dependent, or redeclared built-ins
    //   3: user-shader globals
    //
protected:
    static const int globalLevel = 3;
    static bool isSharedLevel(int level)  { return level <= 1; }            // exclude all per-compile levels
    static bool isBuiltInLevel(int level) { return level <= 2; }            // exclude user globals
    static bool isGlobalLevel(int level)  { return level <= globalLevel; }  // include user globals
public:
    bool isEmpty() { return table.size() == 0; }
    bool atBuiltInLevel() { return isBuiltInLevel(currentLevel()); }
    bool atGlobalLevel()  { return isGlobalLevel(currentLevel()); }
    static bool isBuiltInSymbol(int uniqueId) {
        int level = uniqueId >> LevelFlagBitOffset;
        return isBuiltInLevel(level);
    }
    void setNoBuiltInRedeclarations() { noBuiltInRedeclarations = true; }
    void setSeparateNameSpaces() { separateNameSpaces = true; }

    void push()
    {
        table.push_back(new TSymbolTableLevel);
        updateUniqueIdLevelFlag();
    }

    // Make a new symbol-table level to represent the scope introduced by a structure
    // containing member functions, such that the member functions can find anonymous
    // references to member variables.
    //
    // 'thisSymbol' should have a name of "" to trigger anonymous structure-member
    // symbol finds.
    void pushThis(TSymbol& thisSymbol)
    {
        assert(thisSymbol.getName().size() == 0);
        table.push_back(new TSymbolTableLevel);
        updateUniqueIdLevelFlag();
        table.back()->setThisLevel();
        insert(thisSymbol);
    }

    void pop(TPrecisionQualifier *p)
    {
        table[currentLevel()]->getPreviousDefaultPrecisions(p);
        delete table.back();
        table.pop_back();
        updateUniqueIdLevelFlag();
    }

    //
    // Insert a visible symbol into the symbol table so it can
    // be found later by name.
    //
    // Returns false if the was a name collision.
    //
    bool insert(TSymbol& symbol)
    {
        symbol.setUniqueId(++uniqueId);

        // make sure there isn't a function of this variable name
        if (! separateNameSpaces && ! symbol.getAsFunction() && table[currentLevel()]->hasFunctionName(symbol.getName()))
            return false;

        // check for not overloading or redefining a built-in function
        if (noBuiltInRedeclarations) {
            if (atGlobalLevel() && currentLevel() > 0) {
                if (table[0]->hasFunctionName(symbol.getName()))
                    return false;
                if (currentLevel() > 1 && table[1]->hasFunctionName(symbol.getName()))
                    return false;
            }
        }

        return table[currentLevel()]->insert(symbol, separateNameSpaces);
    }

    // Add more members to an already inserted aggregate object
    bool amend(TSymbol& symbol, int firstNewMember)
    {
        // See insert() for comments on basic explanation of insert.
        // This operates similarly, but more simply.
        return table[currentLevel()]->amend(symbol, firstNewMember);
    }

    //
    // To allocate an internal temporary, which will need to be uniquely
    // identified by the consumer of the AST, but never need to
    // found by doing a symbol table search by name, hence allowed an
    // arbitrary name in the symbol with no worry of collision.
    //
    void makeInternalVariable(TSymbol& symbol)
    {
        symbol.setUniqueId(++uniqueId);
    }

    //
    // Copy a variable or anonymous member's structure from a shared level so that
    // it can be added (soon after return) to the symbol table where it can be
    // modified without impacting other users of the shared table.
    //
    TSymbol* copyUpDeferredInsert(TSymbol* shared)
    {
        if (shared->getAsVariable()) {
            TSymbol* copy = shared->clone();
            copy->setUniqueId(shared->getUniqueId());
            return copy;
        } else {
            const TAnonMember* anon = shared->getAsAnonMember();
            assert(anon);
            TVariable* container = anon->getAnonContainer().clone();
            container->changeName(NewPoolTString(""));
            container->setUniqueId(anon->getAnonContainer().getUniqueId());
            return container;
        }
    }

    TSymbol* copyUp(TSymbol* shared)
    {
        TSymbol* copy = copyUpDeferredInsert(shared);
        table[globalLevel]->insert(*copy, separateNameSpaces);
        if (shared->getAsVariable())
            return copy;
        else {
            // return the copy of the anonymous member
            return table[globalLevel]->find(shared->getName());
        }
    }

    // Normal find of a symbol, that can optionally say whether the symbol was found
    // at a built-in level or the current top-scope level.
    TSymbol* find(const TString& name, bool* builtIn = 0, bool* currentScope = 0, int* thisDepthP = 0)
    {
        int level = currentLevel();
        TSymbol* symbol;
        int thisDepth = 0;
        do {
            if (table[level]->isThisLevel())
                ++thisDepth;
            symbol = table[level]->find(name);
            --level;
        } while (symbol == nullptr && level >= 0);
        level++;
        if (builtIn)
            *builtIn = isBuiltInLevel(level);
        if (currentScope)
            *currentScope = isGlobalLevel(currentLevel()) || level == currentLevel();  // consider shared levels as "current scope" WRT user globals
        if (thisDepthP != nullptr) {
            if (! table[level]->isThisLevel())
                thisDepth = 0;
            *thisDepthP = thisDepth;
        }

        return symbol;
    }

    // Find of a symbol that returns how many layers deep of nested
    // structures-with-member-functions ('this' scopes) deep the symbol was
    // found in.
    TSymbol* find(const TString& name, int& thisDepth)
    {
        int level = currentLevel();
        TSymbol* symbol;
        thisDepth = 0;
        do {
            if (table[level]->isThisLevel())
                ++thisDepth;
            symbol = table[level]->find(name);
            --level;
        } while (symbol == 0 && level >= 0);

        if (! table[level + 1]->isThisLevel())
            thisDepth = 0;

        return symbol;
    }

    bool isFunctionNameVariable(const TString& name) const
    {
        if (separateNameSpaces)
            return false;

        int level = currentLevel();
        do {
            bool variable;
            bool found = table[level]->findFunctionVariableName(name, variable);
            if (found)
                return variable;
            --level;
        } while (level >= 0);

        return false;
    }

    void findFunctionNameList(const TString& name, TVector<const TFunction*>& list, bool& builtIn)
    {
        // For user levels, return the set found in the first scope with a match
        builtIn = false;
        int level = currentLevel();
        do {
            table[level]->findFunctionNameList(name, list);
            --level;
        } while (list.empty() && level >= globalLevel);

        if (! list.empty())
            return;

        // Gather across all built-in levels; they don't hide each other
        builtIn = true;
        do {
            table[level]->findFunctionNameList(name, list);
            --level;
        } while (level >= 0);
    }

    void relateToOperator(const char* name, TOperator op)
    {
        for (unsigned int level = 0; level < table.size(); ++level)
            table[level]->relateToOperator(name, op);
    }

    void setFunctionExtensions(const char* name, int num, const char* const extensions[])
    {
        for (unsigned int level = 0; level < table.size(); ++level)
            table[level]->setFunctionExtensions(name, num, extensions);
    }

    void setVariableExtensions(const char* name, int numExts, const char* const extensions[])
    {
        TSymbol* symbol = find(TString(name));
        if (symbol == nullptr)
            return;

        symbol->setExtensions(numExts, extensions);
    }

    void setVariableExtensions(const char* blockName, const char* name, int numExts, const char* const extensions[])
    {
        TSymbol* symbol = find(TString(blockName));
        if (symbol == nullptr)
            return;
        TVariable* variable = symbol->getAsVariable();
        assert(variable != nullptr);

        const TTypeList& structure = *variable->getAsVariable()->getType().getStruct();
        for (int member = 0; member < (int)structure.size(); ++member) {
            if (structure[member].type->getFieldName().compare(name) == 0) {
                variable->setMemberExtensions(member, numExts, extensions);
                return;
            }
        }
    }

    int getMaxSymbolId() { return uniqueId; }
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    void dump(TInfoSink& infoSink, bool complete = false) const;
#endif
    void copyTable(const TSymbolTable& copyOf);

    void setPreviousDefaultPrecisions(TPrecisionQualifier *p) { table[currentLevel()]->setPreviousDefaultPrecisions(p); }

    void readOnly()
    {
        for (unsigned int level = 0; level < table.size(); ++level)
            table[level]->readOnly();
    }

    // Add current level in the high-bits of unique id
    void updateUniqueIdLevelFlag() {
        // clamp level to avoid overflow
        uint32_t level = currentLevel() > 7 ? 7 : currentLevel();
        uniqueId &= ((1 << LevelFlagBitOffset) - 1);
        uniqueId |= (level << LevelFlagBitOffset);
    }

protected:
    TSymbolTable(TSymbolTable&);
    TSymbolTable& operator=(TSymbolTableLevel&);

    int currentLevel() const { return static_cast<int>(table.size()) - 1; }
    static const uint32_t LevelFlagBitOffset = 28;
    std::vector<TSymbolTableLevel*> table;
    int uniqueId;     // for unique identification in code generation
    bool noBuiltInRedeclarations;
    bool separateNameSpaces;
    unsigned int adoptedLevels;
};

} // end namespace glslang

#endif // _SYMBOL_TABLE_INCLUDED_