1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
//
// Copyright (C) 2014 LunarG, Inc.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// SPIRV-IR
//
// Simple in-memory representation (IR) of SPIRV. Just for holding
// Each function's CFG of blocks. Has this hierarchy:
// - Module, which is a list of
// - Function, which is a list of
// - Block, which is a list of
// - Instruction
//
#pragma once
#ifndef spvIR_H
#define spvIR_H
#include "spirv.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <memory>
#include <vector>
#include <set>
namespace spv {
class Block;
class Function;
class Module;
const Id NoResult = 0;
const Id NoType = 0;
const Decoration NoPrecision = DecorationMax;
#ifdef __GNUC__
# define POTENTIALLY_UNUSED __attribute__((unused))
#else
# define POTENTIALLY_UNUSED
#endif
POTENTIALLY_UNUSED
const MemorySemanticsMask MemorySemanticsAllMemory =
(MemorySemanticsMask)(MemorySemanticsUniformMemoryMask |
MemorySemanticsWorkgroupMemoryMask |
MemorySemanticsAtomicCounterMemoryMask |
MemorySemanticsImageMemoryMask);
struct IdImmediate {
bool isId; // true if word is an Id, false if word is an immediate
unsigned word;
IdImmediate(bool i, unsigned w) : isId(i), word(w) {}
};
//
// SPIR-V IR instruction.
//
class Instruction {
public:
Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode), block(nullptr) { }
explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode), block(nullptr) { }
virtual ~Instruction() {}
void addIdOperand(Id id) {
operands.push_back(id);
idOperand.push_back(true);
}
void addImmediateOperand(unsigned int immediate) {
operands.push_back(immediate);
idOperand.push_back(false);
}
void setImmediateOperand(unsigned idx, unsigned int immediate) {
assert(!idOperand[idx]);
operands[idx] = immediate;
}
void addStringOperand(const char* str)
{
unsigned int word;
char* wordString = (char*)&word;
char* wordPtr = wordString;
int charCount = 0;
char c;
do {
c = *(str++);
*(wordPtr++) = c;
++charCount;
if (charCount == 4) {
addImmediateOperand(word);
wordPtr = wordString;
charCount = 0;
}
} while (c != 0);
// deal with partial last word
if (charCount > 0) {
// pad with 0s
for (; charCount < 4; ++charCount)
*(wordPtr++) = 0;
addImmediateOperand(word);
}
}
bool isIdOperand(int op) const { return idOperand[op]; }
void setBlock(Block* b) { block = b; }
Block* getBlock() const { return block; }
Op getOpCode() const { return opCode; }
int getNumOperands() const
{
assert(operands.size() == idOperand.size());
return (int)operands.size();
}
Id getResultId() const { return resultId; }
Id getTypeId() const { return typeId; }
Id getIdOperand(int op) const {
assert(idOperand[op]);
return operands[op];
}
unsigned int getImmediateOperand(int op) const {
assert(!idOperand[op]);
return operands[op];
}
// Write out the binary form.
void dump(std::vector<unsigned int>& out) const
{
// Compute the wordCount
unsigned int wordCount = 1;
if (typeId)
++wordCount;
if (resultId)
++wordCount;
wordCount += (unsigned int)operands.size();
// Write out the beginning of the instruction
out.push_back(((wordCount) << WordCountShift) | opCode);
if (typeId)
out.push_back(typeId);
if (resultId)
out.push_back(resultId);
// Write out the operands
for (int op = 0; op < (int)operands.size(); ++op)
out.push_back(operands[op]);
}
protected:
Instruction(const Instruction&);
Id resultId;
Id typeId;
Op opCode;
std::vector<Id> operands; // operands, both <id> and immediates (both are unsigned int)
std::vector<bool> idOperand; // true for operands that are <id>, false for immediates
Block* block;
};
//
// SPIR-V IR block.
//
class Block {
public:
Block(Id id, Function& parent);
virtual ~Block()
{
}
Id getId() { return instructions.front()->getResultId(); }
Function& getParent() const { return parent; }
void addInstruction(std::unique_ptr<Instruction> inst);
void addPredecessor(Block* pred) { predecessors.push_back(pred); pred->successors.push_back(this);}
void addLocalVariable(std::unique_ptr<Instruction> inst) { localVariables.push_back(std::move(inst)); }
const std::vector<Block*>& getPredecessors() const { return predecessors; }
const std::vector<Block*>& getSuccessors() const { return successors; }
const std::vector<std::unique_ptr<Instruction> >& getInstructions() const {
return instructions;
}
const std::vector<std::unique_ptr<Instruction> >& getLocalVariables() const { return localVariables; }
void setUnreachable() { unreachable = true; }
bool isUnreachable() const { return unreachable; }
// Returns the block's merge instruction, if one exists (otherwise null).
const Instruction* getMergeInstruction() const {
if (instructions.size() < 2) return nullptr;
const Instruction* nextToLast = (instructions.cend() - 2)->get();
switch (nextToLast->getOpCode()) {
case OpSelectionMerge:
case OpLoopMerge:
return nextToLast;
default:
return nullptr;
}
return nullptr;
}
// Change this block into a canonical dead merge block. Delete instructions
// as necessary. A canonical dead merge block has only an OpLabel and an
// OpUnreachable.
void rewriteAsCanonicalUnreachableMerge() {
assert(localVariables.empty());
// Delete all instructions except for the label.
assert(instructions.size() > 0);
instructions.resize(1);
successors.clear();
addInstruction(std::unique_ptr<Instruction>(new Instruction(OpUnreachable)));
}
// Change this block into a canonical dead continue target branching to the
// given header ID. Delete instructions as necessary. A canonical dead continue
// target has only an OpLabel and an unconditional branch back to the corresponding
// header.
void rewriteAsCanonicalUnreachableContinue(Block* header) {
assert(localVariables.empty());
// Delete all instructions except for the label.
assert(instructions.size() > 0);
instructions.resize(1);
successors.clear();
// Add OpBranch back to the header.
assert(header != nullptr);
Instruction* branch = new Instruction(OpBranch);
branch->addIdOperand(header->getId());
addInstruction(std::unique_ptr<Instruction>(branch));
successors.push_back(header);
}
bool isTerminated() const
{
switch (instructions.back()->getOpCode()) {
case OpBranch:
case OpBranchConditional:
case OpSwitch:
case OpKill:
case OpReturn:
case OpReturnValue:
case OpUnreachable:
return true;
default:
return false;
}
}
void dump(std::vector<unsigned int>& out) const
{
instructions[0]->dump(out);
for (int i = 0; i < (int)localVariables.size(); ++i)
localVariables[i]->dump(out);
for (int i = 1; i < (int)instructions.size(); ++i)
instructions[i]->dump(out);
}
protected:
Block(const Block&);
Block& operator=(Block&);
// To enforce keeping parent and ownership in sync:
friend Function;
std::vector<std::unique_ptr<Instruction> > instructions;
std::vector<Block*> predecessors, successors;
std::vector<std::unique_ptr<Instruction> > localVariables;
Function& parent;
// track whether this block is known to be uncreachable (not necessarily
// true for all unreachable blocks, but should be set at least
// for the extraneous ones introduced by the builder).
bool unreachable;
};
// The different reasons for reaching a block in the inReadableOrder traversal.
enum ReachReason {
// Reachable from the entry block via transfers of control, i.e. branches.
ReachViaControlFlow = 0,
// A continue target that is not reachable via control flow.
ReachDeadContinue,
// A merge block that is not reachable via control flow.
ReachDeadMerge
};
// Traverses the control-flow graph rooted at root in an order suited for
// readable code generation. Invokes callback at every node in the traversal
// order. The callback arguments are:
// - the block,
// - the reason we reached the block,
// - if the reason was that block is an unreachable continue or unreachable merge block
// then the last parameter is the corresponding header block.
void inReadableOrder(Block* root, std::function<void(Block*, ReachReason, Block* header)> callback);
//
// SPIR-V IR Function.
//
class Function {
public:
Function(Id id, Id resultType, Id functionType, Id firstParam, Module& parent);
virtual ~Function()
{
for (int i = 0; i < (int)parameterInstructions.size(); ++i)
delete parameterInstructions[i];
for (int i = 0; i < (int)blocks.size(); ++i)
delete blocks[i];
}
Id getId() const { return functionInstruction.getResultId(); }
Id getParamId(int p) const { return parameterInstructions[p]->getResultId(); }
Id getParamType(int p) const { return parameterInstructions[p]->getTypeId(); }
void addBlock(Block* block) { blocks.push_back(block); }
void removeBlock(Block* block)
{
auto found = find(blocks.begin(), blocks.end(), block);
assert(found != blocks.end());
blocks.erase(found);
delete block;
}
Module& getParent() const { return parent; }
Block* getEntryBlock() const { return blocks.front(); }
Block* getLastBlock() const { return blocks.back(); }
const std::vector<Block*>& getBlocks() const { return blocks; }
void addLocalVariable(std::unique_ptr<Instruction> inst);
Id getReturnType() const { return functionInstruction.getTypeId(); }
void setReturnPrecision(Decoration precision)
{
if (precision == DecorationRelaxedPrecision)
reducedPrecisionReturn = true;
}
Decoration getReturnPrecision() const
{ return reducedPrecisionReturn ? DecorationRelaxedPrecision : NoPrecision; }
void setImplicitThis() { implicitThis = true; }
bool hasImplicitThis() const { return implicitThis; }
void addParamPrecision(unsigned param, Decoration precision)
{
if (precision == DecorationRelaxedPrecision)
reducedPrecisionParams.insert(param);
}
Decoration getParamPrecision(unsigned param) const
{
return reducedPrecisionParams.find(param) != reducedPrecisionParams.end() ?
DecorationRelaxedPrecision : NoPrecision;
}
void dump(std::vector<unsigned int>& out) const
{
// OpFunction
functionInstruction.dump(out);
// OpFunctionParameter
for (int p = 0; p < (int)parameterInstructions.size(); ++p)
parameterInstructions[p]->dump(out);
// Blocks
inReadableOrder(blocks[0], [&out](const Block* b, ReachReason, Block*) { b->dump(out); });
Instruction end(0, 0, OpFunctionEnd);
end.dump(out);
}
protected:
Function(const Function&);
Function& operator=(Function&);
Module& parent;
Instruction functionInstruction;
std::vector<Instruction*> parameterInstructions;
std::vector<Block*> blocks;
bool implicitThis; // true if this is a member function expecting to be passed a 'this' as the first argument
bool reducedPrecisionReturn;
std::set<int> reducedPrecisionParams; // list of parameter indexes that need a relaxed precision arg
};
//
// SPIR-V IR Module.
//
class Module {
public:
Module() {}
virtual ~Module()
{
// TODO delete things
}
void addFunction(Function *fun) { functions.push_back(fun); }
void mapInstruction(Instruction *instruction)
{
spv::Id resultId = instruction->getResultId();
// map the instruction's result id
if (resultId >= idToInstruction.size())
idToInstruction.resize(resultId + 16);
idToInstruction[resultId] = instruction;
}
Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
const std::vector<Function*>& getFunctions() const { return functions; }
spv::Id getTypeId(Id resultId) const {
return idToInstruction[resultId] == nullptr ? NoType : idToInstruction[resultId]->getTypeId();
}
StorageClass getStorageClass(Id typeId) const
{
assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer);
return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0);
}
void dump(std::vector<unsigned int>& out) const
{
for (int f = 0; f < (int)functions.size(); ++f)
functions[f]->dump(out);
}
protected:
Module(const Module&);
std::vector<Function*> functions;
// map from result id to instruction having that result id
std::vector<Instruction*> idToInstruction;
// map from a result id to its type id
};
//
// Implementation (it's here due to circular type definitions).
//
// Add both
// - the OpFunction instruction
// - all the OpFunctionParameter instructions
__inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, Module& parent)
: parent(parent), functionInstruction(id, resultType, OpFunction), implicitThis(false),
reducedPrecisionReturn(false)
{
// OpFunction
functionInstruction.addImmediateOperand(FunctionControlMaskNone);
functionInstruction.addIdOperand(functionType);
parent.mapInstruction(&functionInstruction);
parent.addFunction(this);
// OpFunctionParameter
Instruction* typeInst = parent.getInstruction(functionType);
int numParams = typeInst->getNumOperands() - 1;
for (int p = 0; p < numParams; ++p) {
Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
parent.mapInstruction(param);
parameterInstructions.push_back(param);
}
}
__inline void Function::addLocalVariable(std::unique_ptr<Instruction> inst)
{
Instruction* raw_instruction = inst.get();
blocks[0]->addLocalVariable(std::move(inst));
parent.mapInstruction(raw_instruction);
}
__inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
{
instructions.push_back(std::unique_ptr<Instruction>(new Instruction(id, NoType, OpLabel)));
instructions.back()->setBlock(this);
parent.getParent().mapInstruction(instructions.back().get());
}
__inline void Block::addInstruction(std::unique_ptr<Instruction> inst)
{
Instruction* raw_instruction = inst.get();
instructions.push_back(std::move(inst));
raw_instruction->setBlock(this);
if (raw_instruction->getResultId())
parent.getParent().mapInstruction(raw_instruction);
}
} // end spv namespace
#endif // spvIR_H
|