summaryrefslogtreecommitdiff
path: root/thirdparty/etc2comp/EtcBlock4x4Encoding_ETC1.cpp
blob: a27f74c0d5bf31a5f7a915a6a505cde3b47b2e0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
/*
 * Copyright 2015 The Etc2Comp Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
EtcBlock4x4Encoding_ETC1.cpp

Block4x4Encoding_ETC1 is the encoder to use when targetting file format ETC1.  This encoder is also
used for the ETC1 subset of file format RGB8, RGBA8 and RGB8A1

*/

#include "EtcConfig.h"
#include "EtcBlock4x4Encoding_ETC1.h"

#include "EtcBlock4x4.h"
#include "EtcBlock4x4EncodingBits.h"
#include "EtcDifferentialTrys.h"

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <float.h>
#include <limits>

namespace Etc
{

	// pixel processing order if the flip bit = 0 (horizontal split)
	const unsigned int Block4x4Encoding_ETC1::s_auiPixelOrderFlip0[PIXELS] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };

	// pixel processing order if the flip bit = 1 (vertical split)
	const unsigned int Block4x4Encoding_ETC1::s_auiPixelOrderFlip1[PIXELS] = { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 };

	// pixel processing order for horizontal scan (ETC normally does a vertical scan)
	const unsigned int Block4x4Encoding_ETC1::s_auiPixelOrderHScan[PIXELS] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };

	// pixel indices for different block halves
	const unsigned int Block4x4Encoding_ETC1::s_auiLeftPixelMapping[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
	const unsigned int Block4x4Encoding_ETC1::s_auiRightPixelMapping[8] = { 8, 9, 10, 11, 12, 13, 14, 15 };
	const unsigned int Block4x4Encoding_ETC1::s_auiTopPixelMapping[8] = { 0, 1, 4, 5, 8, 9, 12, 13 };
	const unsigned int Block4x4Encoding_ETC1::s_auiBottomPixelMapping[8] = { 2, 3, 6, 7, 10, 11, 14, 15 };

	// CW ranges that the ETC1 decoders use
	// CW is basically a contrast for the different selector bits, since these values are offsets to the base color
	// the first axis in the array is indexed by the CW in the encoding bits
	// the second axis in the array is indexed by the selector bits
	float Block4x4Encoding_ETC1::s_aafCwTable[CW_RANGES][SELECTORS] =
	{
		{ 2.0f / 255.0f, 8.0f / 255.0f, -2.0f / 255.0f, -8.0f / 255.0f },
		{ 5.0f / 255.0f, 17.0f / 255.0f, -5.0f / 255.0f, -17.0f / 255.0f },
		{ 9.0f / 255.0f, 29.0f / 255.0f, -9.0f / 255.0f, -29.0f / 255.0f },
		{ 13.0f / 255.0f, 42.0f / 255.0f, -13.0f / 255.0f, -42.0f / 255.0f },
		{ 18.0f / 255.0f, 60.0f / 255.0f, -18.0f / 255.0f, -60.0f / 255.0f },
		{ 24.0f / 255.0f, 80.0f / 255.0f, -24.0f / 255.0f, -80.0f / 255.0f },
		{ 33.0f / 255.0f, 106.0f / 255.0f, -33.0f / 255.0f, -106.0f / 255.0f },
		{ 47.0f / 255.0f, 183.0f / 255.0f, -47.0f / 255.0f, -183.0f / 255.0f }
	};

	// ----------------------------------------------------------------------------------------------------
	//
	Block4x4Encoding_ETC1::Block4x4Encoding_ETC1(void)
	{
		m_mode = MODE_ETC1;
		m_boolDiff = false;
		m_boolFlip = false;
		m_frgbaColor1 = ColorFloatRGBA();
		m_frgbaColor2 = ColorFloatRGBA();
		m_uiCW1 = 0;
		m_uiCW2 = 0;
		for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
		{
			m_auiSelectors[uiPixel] = 0;
			m_afDecodedAlphas[uiPixel] = 1.0f;
		}

		m_boolMostLikelyFlip = false;

		m_fError = -1.0f;

		m_fError1 = -1.0f;
		m_fError2 = -1.0f;
		m_boolSeverelyBentDifferentialColors = false;

		for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
		{
			m_afDecodedAlphas[uiPixel] = 1.0f;
		}

	}

	 Block4x4Encoding_ETC1::~Block4x4Encoding_ETC1(void) {}

	// ----------------------------------------------------------------------------------------------------
	// initialization prior to encoding
	// a_pblockParent points to the block associated with this encoding
	// a_errormetric is used to choose the best encoding
	// a_pafrgbaSource points to a 4x4 block subset of the source image
	// a_paucEncodingBits points to the final encoding bits
	//
	void Block4x4Encoding_ETC1::InitFromSource(Block4x4 *a_pblockParent,
												ColorFloatRGBA *a_pafrgbaSource,
												unsigned char *a_paucEncodingBits, ErrorMetric a_errormetric)
	{

		Block4x4Encoding::Init(a_pblockParent, a_pafrgbaSource,a_errormetric);

		for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
		{
			m_afDecodedAlphas[uiPixel] = 1.0f;
		}

		m_fError = -1.0f;

		m_pencodingbitsRGB8 = (Block4x4EncodingBits_RGB8 *)(a_paucEncodingBits);

	}

	// ----------------------------------------------------------------------------------------------------
	// initialization from the encoding bits of a previous encoding
	// a_pblockParent points to the block associated with this encoding
	// a_errormetric is used to choose the best encoding
	// a_pafrgbaSource points to a 4x4 block subset of the source image
	// a_paucEncodingBits points to the final encoding bits of a previous encoding
	//
	void Block4x4Encoding_ETC1::InitFromEncodingBits(Block4x4 *a_pblockParent,
														unsigned char *a_paucEncodingBits,
														ColorFloatRGBA *a_pafrgbaSource, 
														ErrorMetric a_errormetric)
	{

		Block4x4Encoding::Init(a_pblockParent, a_pafrgbaSource,a_errormetric);
		m_fError = -1.0f;

		m_pencodingbitsRGB8 = (Block4x4EncodingBits_RGB8 *)a_paucEncodingBits;

		m_mode = MODE_ETC1;
		m_boolDiff = m_pencodingbitsRGB8->individual.diff;
		m_boolFlip = m_pencodingbitsRGB8->individual.flip;
		if (m_boolDiff)
		{
			int iR2 = (int)(m_pencodingbitsRGB8->differential.red1 + m_pencodingbitsRGB8->differential.dred2);
			if (iR2 < 0)
			{
				iR2 = 0;
			}
			else if (iR2 > 31)
			{
				iR2 = 31;
			}

			int iG2 = (int)(m_pencodingbitsRGB8->differential.green1 + m_pencodingbitsRGB8->differential.dgreen2);
			if (iG2 < 0)
			{
				iG2 = 0;
			}
			else if (iG2 > 31)
			{
				iG2 = 31;
			}

			int iB2 = (int)(m_pencodingbitsRGB8->differential.blue1 + m_pencodingbitsRGB8->differential.dblue2);
			if (iB2 < 0)
			{
				iB2 = 0;
			}
			else if (iB2 > 31)
			{
				iB2 = 31;
			}

			m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB5(m_pencodingbitsRGB8->differential.red1, m_pencodingbitsRGB8->differential.green1, m_pencodingbitsRGB8->differential.blue1);
			m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB5((unsigned char)iR2, (unsigned char)iG2, (unsigned char)iB2);

		}
		else
		{
			m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4(m_pencodingbitsRGB8->individual.red1, m_pencodingbitsRGB8->individual.green1, m_pencodingbitsRGB8->individual.blue1);
			m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4(m_pencodingbitsRGB8->individual.red2, m_pencodingbitsRGB8->individual.green2, m_pencodingbitsRGB8->individual.blue2);
		}

		m_uiCW1 = m_pencodingbitsRGB8->individual.cw1;
		m_uiCW2 = m_pencodingbitsRGB8->individual.cw2;

		InitFromEncodingBits_Selectors();

		Decode();

		CalcBlockError();
	}

	// ----------------------------------------------------------------------------------------------------
	// init the selectors from a prior encoding
	//
	void Block4x4Encoding_ETC1::InitFromEncodingBits_Selectors(void)
	{

		unsigned char *paucSelectors = (unsigned char *)&m_pencodingbitsRGB8->individual.selectors;

		for (unsigned int iPixel = 0; iPixel < PIXELS; iPixel++)
		{
			unsigned int uiByteMSB = (unsigned int)(1 - (iPixel / 8));
			unsigned int uiByteLSB = (unsigned int)(3 - (iPixel / 8));
			unsigned int uiShift = (unsigned int)(iPixel & 7);

			unsigned int uiSelectorMSB = (unsigned int)((paucSelectors[uiByteMSB] >> uiShift) & 1);
			unsigned int uiSelectorLSB = (unsigned int)((paucSelectors[uiByteLSB] >> uiShift) & 1);

			m_auiSelectors[iPixel] = (uiSelectorMSB << 1) + uiSelectorLSB;
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// perform a single encoding iteration
	// replace the encoding if a better encoding was found
	// subsequent iterations generally take longer for each iteration
	// set m_boolDone if encoding is perfect or encoding is finished based on a_fEffort
	//
	void Block4x4Encoding_ETC1::PerformIteration(float a_fEffort)
	{
		assert(!m_boolDone);

		switch (m_uiEncodingIterations)
		{
		case 0:
			PerformFirstIteration();
			break;

		case 1:
			TryDifferential(m_boolMostLikelyFlip, 1, 0, 0);
			break;

		case 2:
			TryIndividual(m_boolMostLikelyFlip, 1);
			if (a_fEffort <= 49.5f)
			{
				m_boolDone = true;
			}
			break;

		case 3:
			TryDifferential(!m_boolMostLikelyFlip, 1, 0, 0);
			if (a_fEffort <= 59.5f)
			{
				m_boolDone = true;
			}
			break;

		case 4:
			TryIndividual(!m_boolMostLikelyFlip, 1);
			if (a_fEffort <= 69.5f)
			{
				m_boolDone = true;
			}
			break;

		case 5:
			TryDegenerates1();
			if (a_fEffort <= 79.5f)
			{
				m_boolDone = true;
			}
			break;

		case 6:
			TryDegenerates2();
			if (a_fEffort <= 89.5f)
			{
				m_boolDone = true;
			}
			break;

		case 7:
			TryDegenerates3();
			if (a_fEffort <= 99.5f)
			{
				m_boolDone = true;
			}
			break;

		case 8:
			TryDegenerates4();
			m_boolDone = true;
			break;

		default:
			assert(0);
			break;
		}

		m_uiEncodingIterations++;
		SetDoneIfPerfect();
	}

	// ----------------------------------------------------------------------------------------------------
	// find best initial encoding to ensure block has a valid encoding
	//
	void Block4x4Encoding_ETC1::PerformFirstIteration(void)
	{
		CalculateMostLikelyFlip();

		m_fError = FLT_MAX;

		TryDifferential(m_boolMostLikelyFlip, 0, 0, 0);
		SetDoneIfPerfect();
		if (m_boolDone)
		{
			return;
		}

		TryIndividual(m_boolMostLikelyFlip, 0);
		SetDoneIfPerfect();
		if (m_boolDone)
		{
			return;
		}
		TryDifferential(!m_boolMostLikelyFlip, 0, 0, 0);
		SetDoneIfPerfect();
		if (m_boolDone)
		{
			return;
		}
		TryIndividual(!m_boolMostLikelyFlip, 0);

	}

	// ----------------------------------------------------------------------------------------------------
	// algorithm:
	// create a source average color for the Left, Right, Top and Bottom halves using the 8 pixels in each half
	// note: the "gray line" is the line of equal delta RGB that goes thru the average color
	// for each half:
	//		see how close each of the 8 pixels are to the "gray line" that goes thru the source average color
	//		create an error value that is the sum of the distances from the gray line
	// h_error is the sum of Left and Right errors
	// v_error is the sum of Top and Bottom errors
	//
	void Block4x4Encoding_ETC1::CalculateMostLikelyFlip(void)
	{
		static const bool DEBUG_PRINT = false;

		CalculateSourceAverages();

		float fLeftGrayErrorSum = 0.0f;
		float fRightGrayErrorSum = 0.0f;
		float fTopGrayErrorSum = 0.0f;
		float fBottomGrayErrorSum = 0.0f;

		for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
		{
			ColorFloatRGBA *pfrgbaLeft = &m_pafrgbaSource[uiPixel];
			ColorFloatRGBA *pfrgbaRight = &m_pafrgbaSource[uiPixel + 8];
			ColorFloatRGBA *pfrgbaTop = &m_pafrgbaSource[s_auiTopPixelMapping[uiPixel]];
			ColorFloatRGBA *pfrgbaBottom = &m_pafrgbaSource[s_auiBottomPixelMapping[uiPixel]];

			float fLeftGrayError = CalcGrayDistance2(*pfrgbaLeft, m_frgbaSourceAverageLeft);
			float fRightGrayError = CalcGrayDistance2(*pfrgbaRight, m_frgbaSourceAverageRight);
			float fTopGrayError = CalcGrayDistance2(*pfrgbaTop, m_frgbaSourceAverageTop);
			float fBottomGrayError = CalcGrayDistance2(*pfrgbaBottom, m_frgbaSourceAverageBottom);

			fLeftGrayErrorSum += fLeftGrayError;
			fRightGrayErrorSum += fRightGrayError;
			fTopGrayErrorSum += fTopGrayError;
			fBottomGrayErrorSum += fBottomGrayError;
		}

		if (DEBUG_PRINT)
		{
			printf("\n%.2f %.2f\n", fLeftGrayErrorSum + fRightGrayErrorSum, fTopGrayErrorSum + fBottomGrayErrorSum);
		}

		m_boolMostLikelyFlip = (fTopGrayErrorSum + fBottomGrayErrorSum) < (fLeftGrayErrorSum + fRightGrayErrorSum);

	}

	// ----------------------------------------------------------------------------------------------------
	// calculate source pixel averages for each 2x2 quadrant in a 4x4 block
	// these are used to determine the averages for each of the 4 different halves (left, right, top, bottom)
	// ignore pixels that have alpha == NAN (these are border pixels outside of the source image)
	// weight the averages based on a pixel's alpha
	//
	void Block4x4Encoding_ETC1::CalculateSourceAverages(void)
	{
		static const bool DEBUG_PRINT = false;

		bool boolRGBX = m_pblockParent->GetImageSource()->GetErrorMetric() == ErrorMetric::RGBX;

		if (m_pblockParent->GetSourceAlphaMix() == Block4x4::SourceAlphaMix::OPAQUE || boolRGBX)
		{
			ColorFloatRGBA frgbaSumUL = m_pafrgbaSource[0] + m_pafrgbaSource[1] + m_pafrgbaSource[4] + m_pafrgbaSource[5];
			ColorFloatRGBA frgbaSumLL = m_pafrgbaSource[2] + m_pafrgbaSource[3] + m_pafrgbaSource[6] + m_pafrgbaSource[7];
			ColorFloatRGBA frgbaSumUR = m_pafrgbaSource[8] + m_pafrgbaSource[9] + m_pafrgbaSource[12] + m_pafrgbaSource[13];
			ColorFloatRGBA frgbaSumLR = m_pafrgbaSource[10] + m_pafrgbaSource[11] + m_pafrgbaSource[14] + m_pafrgbaSource[15];

			m_frgbaSourceAverageLeft = (frgbaSumUL + frgbaSumLL) * 0.125f;
			m_frgbaSourceAverageRight = (frgbaSumUR + frgbaSumLR) * 0.125f;
			m_frgbaSourceAverageTop = (frgbaSumUL + frgbaSumUR) * 0.125f;
			m_frgbaSourceAverageBottom = (frgbaSumLL + frgbaSumLR) * 0.125f;
		}
		else
		{
			float afSourceAlpha[PIXELS];

			// treat alpha NAN as 0.0f
			for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
			{
				afSourceAlpha[uiPixel] = isnan(m_pafrgbaSource[uiPixel].fA) ? 
																		0.0f : 
																		m_pafrgbaSource[uiPixel].fA;
			}

			ColorFloatRGBA afrgbaAlphaWeightedSource[PIXELS];
			for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
			{
				afrgbaAlphaWeightedSource[uiPixel] = m_pafrgbaSource[uiPixel] * afSourceAlpha[uiPixel];
			}

			ColorFloatRGBA frgbaSumUL = afrgbaAlphaWeightedSource[0] +
										afrgbaAlphaWeightedSource[1] +
										afrgbaAlphaWeightedSource[4] +
										afrgbaAlphaWeightedSource[5];

			ColorFloatRGBA frgbaSumLL = afrgbaAlphaWeightedSource[2] +
										afrgbaAlphaWeightedSource[3] +
										afrgbaAlphaWeightedSource[6] +
										afrgbaAlphaWeightedSource[7];

			ColorFloatRGBA frgbaSumUR = afrgbaAlphaWeightedSource[8] +
										afrgbaAlphaWeightedSource[9] +
										afrgbaAlphaWeightedSource[12] +
										afrgbaAlphaWeightedSource[13];

			ColorFloatRGBA frgbaSumLR = afrgbaAlphaWeightedSource[10] +
										afrgbaAlphaWeightedSource[11] +
										afrgbaAlphaWeightedSource[14] +
										afrgbaAlphaWeightedSource[15];

			float fWeightSumUL = afSourceAlpha[0] +
									afSourceAlpha[1] +
									afSourceAlpha[4] +
									afSourceAlpha[5];

			float fWeightSumLL = afSourceAlpha[2] +
									afSourceAlpha[3] +
									afSourceAlpha[6] +
									afSourceAlpha[7];

			float fWeightSumUR = afSourceAlpha[8] +
									afSourceAlpha[9] +
									afSourceAlpha[12] +
									afSourceAlpha[13];

			float fWeightSumLR = afSourceAlpha[10] +
									afSourceAlpha[11] +
									afSourceAlpha[14] +
									afSourceAlpha[15];

			ColorFloatRGBA frgbaSumLeft = frgbaSumUL + frgbaSumLL;
			ColorFloatRGBA frgbaSumRight = frgbaSumUR + frgbaSumLR;
			ColorFloatRGBA frgbaSumTop = frgbaSumUL + frgbaSumUR;
			ColorFloatRGBA frgbaSumBottom = frgbaSumLL + frgbaSumLR;

			float fWeightSumLeft = fWeightSumUL + fWeightSumLL;
			float fWeightSumRight = fWeightSumUR + fWeightSumLR;
			float fWeightSumTop = fWeightSumUL + fWeightSumUR;
			float fWeightSumBottom = fWeightSumLL + fWeightSumLR;

			// check to see if there is at least 1 pixel with  non-zero alpha
			// completely transparent block should not make it to this code
			assert((fWeightSumLeft + fWeightSumRight) > 0.0f);
			assert((fWeightSumTop + fWeightSumBottom) > 0.0f);

			if (fWeightSumLeft > 0.0f)
			{
				m_frgbaSourceAverageLeft = frgbaSumLeft * (1.0f/fWeightSumLeft);
			}
			if (fWeightSumRight > 0.0f)
			{
				m_frgbaSourceAverageRight = frgbaSumRight * (1.0f/fWeightSumRight);
			}
			if (fWeightSumTop > 0.0f)
			{
				m_frgbaSourceAverageTop = frgbaSumTop * (1.0f/fWeightSumTop);
			}
			if (fWeightSumBottom > 0.0f)
			{
				m_frgbaSourceAverageBottom = frgbaSumBottom * (1.0f/fWeightSumBottom);
			}

			if (fWeightSumLeft == 0.0f)
			{
				assert(fWeightSumRight > 0.0f);
				m_frgbaSourceAverageLeft = m_frgbaSourceAverageRight;
			}
			if (fWeightSumRight == 0.0f)
			{
				assert(fWeightSumLeft > 0.0f);
				m_frgbaSourceAverageRight = m_frgbaSourceAverageLeft;
			}
			if (fWeightSumTop == 0.0f)
			{
				assert(fWeightSumBottom > 0.0f);
				m_frgbaSourceAverageTop = m_frgbaSourceAverageBottom;
			}
			if (fWeightSumBottom == 0.0f)
			{
				assert(fWeightSumTop > 0.0f);
				m_frgbaSourceAverageBottom = m_frgbaSourceAverageTop;
			}
		}

		

		if (DEBUG_PRINT)
		{
			printf("\ntarget: [%.2f,%.2f,%.2f] [%.2f,%.2f,%.2f] [%.2f,%.2f,%.2f] [%.2f,%.2f,%.2f]\n",
				m_frgbaSourceAverageLeft.fR, m_frgbaSourceAverageLeft.fG, m_frgbaSourceAverageLeft.fB,
				m_frgbaSourceAverageRight.fR, m_frgbaSourceAverageRight.fG, m_frgbaSourceAverageRight.fB,
				m_frgbaSourceAverageTop.fR, m_frgbaSourceAverageTop.fG, m_frgbaSourceAverageTop.fB,
				m_frgbaSourceAverageBottom.fR, m_frgbaSourceAverageBottom.fG, m_frgbaSourceAverageBottom.fB);
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// try an ETC1 differential mode encoding
	// use a_boolFlip to set the encoding F bit
	// use a_uiRadius to alter basecolor components in the range[-a_uiRadius:a_uiRadius]
	// use a_iGrayOffset1 and a_iGrayOffset2 to offset the basecolor to search for degenerate encodings
	// replace the encoding if the encoding error is less than previous encoding
	//
	void Block4x4Encoding_ETC1::TryDifferential(bool a_boolFlip, unsigned int a_uiRadius,
												int a_iGrayOffset1, int a_iGrayOffset2)
	{

		ColorFloatRGBA frgbaColor1;
		ColorFloatRGBA frgbaColor2;

		const unsigned int *pauiPixelMapping1;
		const unsigned int *pauiPixelMapping2;

		if (a_boolFlip)
		{
			frgbaColor1 = m_frgbaSourceAverageTop;
			frgbaColor2 = m_frgbaSourceAverageBottom;

			pauiPixelMapping1 = s_auiTopPixelMapping;
			pauiPixelMapping2 = s_auiBottomPixelMapping;
		}
		else
		{
			frgbaColor1 = m_frgbaSourceAverageLeft;
			frgbaColor2 = m_frgbaSourceAverageRight;

			pauiPixelMapping1 = s_auiLeftPixelMapping;
			pauiPixelMapping2 = s_auiRightPixelMapping;
		}

		DifferentialTrys trys(frgbaColor1, frgbaColor2, pauiPixelMapping1, pauiPixelMapping2, 
								a_uiRadius, a_iGrayOffset1, a_iGrayOffset2);

		Block4x4Encoding_ETC1 encodingTry = *this;
		encodingTry.m_boolFlip = a_boolFlip;

		encodingTry.TryDifferentialHalf(&trys.m_half1);
		encodingTry.TryDifferentialHalf(&trys.m_half2);

		// find best halves that are within differential range
		DifferentialTrys::Try *ptryBest1 = nullptr;
		DifferentialTrys::Try *ptryBest2 = nullptr;
		encodingTry.m_fError = FLT_MAX;

		// see if the best of each half are in differential range
		int iDRed = trys.m_half2.m_ptryBest->m_iRed - trys.m_half1.m_ptryBest->m_iRed;
		int iDGreen = trys.m_half2.m_ptryBest->m_iGreen - trys.m_half1.m_ptryBest->m_iGreen;
		int iDBlue = trys.m_half2.m_ptryBest->m_iBlue - trys.m_half1.m_ptryBest->m_iBlue;
		if (iDRed >= -4 && iDRed <= 3 && iDGreen >= -4 && iDGreen <= 3 && iDBlue >= -4 && iDBlue <= 3)
		{
			ptryBest1 = trys.m_half1.m_ptryBest;
			ptryBest2 = trys.m_half2.m_ptryBest;
			encodingTry.m_fError = trys.m_half1.m_ptryBest->m_fError + trys.m_half2.m_ptryBest->m_fError;
		}
		else
		{
			// else, find the next best halves that are in differential range
			for (DifferentialTrys::Try *ptry1 = &trys.m_half1.m_atry[0];
			ptry1 < &trys.m_half1.m_atry[trys.m_half1.m_uiTrys];
				ptry1++)
			{
				for (DifferentialTrys::Try *ptry2 = &trys.m_half2.m_atry[0];
				ptry2 < &trys.m_half2.m_atry[trys.m_half2.m_uiTrys];
					ptry2++)
				{
					iDRed = ptry2->m_iRed - ptry1->m_iRed;
					bool boolValidRedDelta = iDRed <= 3 && iDRed >= -4;
					iDGreen = ptry2->m_iGreen - ptry1->m_iGreen;
					bool boolValidGreenDelta = iDGreen <= 3 && iDGreen >= -4;
					iDBlue = ptry2->m_iBlue - ptry1->m_iBlue;
					bool boolValidBlueDelta = iDBlue <= 3 && iDBlue >= -4;

					if (boolValidRedDelta && boolValidGreenDelta && boolValidBlueDelta)
					{
						float fError = ptry1->m_fError + ptry2->m_fError;

						if (fError < encodingTry.m_fError)
						{
							encodingTry.m_fError = fError;

							ptryBest1 = ptry1;
							ptryBest2 = ptry2;
						}
					}

				}
			}
			assert(encodingTry.m_fError < FLT_MAX);
			assert(ptryBest1 != nullptr);
			assert(ptryBest2 != nullptr);
		}

		if (encodingTry.m_fError < m_fError)
		{
			m_mode = MODE_ETC1;
			m_boolDiff = true;
			m_boolFlip = encodingTry.m_boolFlip;
			m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB5((unsigned char)ptryBest1->m_iRed, (unsigned char)ptryBest1->m_iGreen, (unsigned char)ptryBest1->m_iBlue);
			m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB5((unsigned char)ptryBest2->m_iRed, (unsigned char)ptryBest2->m_iGreen, (unsigned char)ptryBest2->m_iBlue);
			m_uiCW1 = ptryBest1->m_uiCW;
			m_uiCW2 = ptryBest2->m_uiCW;

			for (unsigned int uiPixelOrder = 0; uiPixelOrder < PIXELS / 2; uiPixelOrder++)
			{
				unsigned int uiPixel1 = pauiPixelMapping1[uiPixelOrder];
				unsigned int uiPixel2 = pauiPixelMapping2[uiPixelOrder];

				unsigned int uiSelector1 = ptryBest1->m_auiSelectors[uiPixelOrder];
				unsigned int uiSelector2 = ptryBest2->m_auiSelectors[uiPixelOrder];

				m_auiSelectors[uiPixel1] = uiSelector1;
				m_auiSelectors[uiPixel2] = ptryBest2->m_auiSelectors[uiPixelOrder];

				float fDeltaRGB1 = s_aafCwTable[m_uiCW1][uiSelector1];
				float fDeltaRGB2 = s_aafCwTable[m_uiCW2][uiSelector2];

				m_afrgbaDecodedColors[uiPixel1] = (m_frgbaColor1 + fDeltaRGB1).ClampRGB();
				m_afrgbaDecodedColors[uiPixel2] = (m_frgbaColor2 + fDeltaRGB2).ClampRGB();
			}

			m_fError1 = ptryBest1->m_fError;
			m_fError2 = ptryBest2->m_fError;
			m_boolSeverelyBentDifferentialColors = trys.m_boolSeverelyBentColors;
			m_fError = m_fError1 + m_fError2;

			// sanity check
			{
				int iRed1 = m_frgbaColor1.IntRed(31.0f);
				int iGreen1 = m_frgbaColor1.IntGreen(31.0f);
				int iBlue1 = m_frgbaColor1.IntBlue(31.0f);

				int iRed2 = m_frgbaColor2.IntRed(31.0f);
				int iGreen2 = m_frgbaColor2.IntGreen(31.0f);
				int iBlue2 = m_frgbaColor2.IntBlue(31.0f);

				iDRed = iRed2 - iRed1;
				iDGreen = iGreen2 - iGreen1;
				iDBlue = iBlue2 - iBlue1;

				assert(iDRed >= -4 && iDRed < 4);
				assert(iDGreen >= -4 && iDGreen < 4);
				assert(iDBlue >= -4 && iDBlue < 4);
			}
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// try an ETC1 differential mode encoding for a half of a 4x4 block
	// vary the basecolor components using a radius
	//
	void Block4x4Encoding_ETC1::TryDifferentialHalf(DifferentialTrys::Half *a_phalf)
	{

		a_phalf->m_ptryBest = nullptr;
		float fBestTryError = FLT_MAX;

		a_phalf->m_uiTrys = 0;
		for (int iRed = a_phalf->m_iRed - (int)a_phalf->m_uiRadius; 
				iRed <= a_phalf->m_iRed + (int)a_phalf->m_uiRadius;
				iRed++)
		{
			assert(iRed >= 0 && iRed <= 31);

			for (int iGreen = a_phalf->m_iGreen - (int)a_phalf->m_uiRadius;
					iGreen <= a_phalf->m_iGreen + (int)a_phalf->m_uiRadius;
					iGreen++)
			{
				assert(iGreen >= 0 && iGreen <= 31);

				for (int iBlue = a_phalf->m_iBlue - (int)a_phalf->m_uiRadius;
						iBlue <= a_phalf->m_iBlue + (int)a_phalf->m_uiRadius;
						iBlue++)
				{
					assert(iBlue >= 0 && iBlue <= 31);

					DifferentialTrys::Try *ptry = &a_phalf->m_atry[a_phalf->m_uiTrys];
					assert(ptry < &a_phalf->m_atry[DifferentialTrys::Half::MAX_TRYS]);

					ptry->m_iRed = iRed;
					ptry->m_iGreen = iGreen;
					ptry->m_iBlue = iBlue;
					ptry->m_fError = FLT_MAX;
					ColorFloatRGBA frgbaColor = ColorFloatRGBA::ConvertFromRGB5((unsigned char)iRed, (unsigned char)iGreen, (unsigned char)iBlue);

					// try each CW
					for (unsigned int uiCW = 0; uiCW < CW_RANGES; uiCW++)
					{
						unsigned int auiPixelSelectors[PIXELS / 2];
						ColorFloatRGBA	afrgbaDecodedPixels[PIXELS / 2];
						float afPixelErrors[PIXELS / 2] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, 
															FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };

						// pre-compute decoded pixels for each selector
						ColorFloatRGBA afrgbaSelectors[SELECTORS];
						assert(SELECTORS == 4);
						afrgbaSelectors[0] = (frgbaColor + s_aafCwTable[uiCW][0]).ClampRGB();
						afrgbaSelectors[1] = (frgbaColor + s_aafCwTable[uiCW][1]).ClampRGB();
						afrgbaSelectors[2] = (frgbaColor + s_aafCwTable[uiCW][2]).ClampRGB();
						afrgbaSelectors[3] = (frgbaColor + s_aafCwTable[uiCW][3]).ClampRGB();

						for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
						{
							ColorFloatRGBA *pfrgbaSourcePixel = &m_pafrgbaSource[a_phalf->m_pauiPixelMapping[uiPixel]];
							ColorFloatRGBA frgbaDecodedPixel;

							for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++)
							{
								frgbaDecodedPixel = afrgbaSelectors[uiSelector];

								float fPixelError;

								fPixelError = CalcPixelError(frgbaDecodedPixel, m_afDecodedAlphas[a_phalf->m_pauiPixelMapping[uiPixel]],
																	*pfrgbaSourcePixel);

								if (fPixelError < afPixelErrors[uiPixel])
								{
									auiPixelSelectors[uiPixel] = uiSelector;
									afrgbaDecodedPixels[uiPixel] = frgbaDecodedPixel;
									afPixelErrors[uiPixel] = fPixelError;
								}

							}
						}

						// add up all pixel errors
						float fCWError = 0.0f;
						for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
						{	
							fCWError += afPixelErrors[uiPixel];
						}

						// if best CW so far
						if (fCWError < ptry->m_fError)
						{
							ptry->m_uiCW = uiCW;
							for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
							{
								ptry->m_auiSelectors[uiPixel] = auiPixelSelectors[uiPixel];
							}
							ptry->m_fError = fCWError;
						}

					}

					if (ptry->m_fError < fBestTryError)
					{
						a_phalf->m_ptryBest = ptry;
						fBestTryError = ptry->m_fError;
					}

					assert(ptry->m_fError < FLT_MAX);

					a_phalf->m_uiTrys++;
				}
			}
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// try an ETC1 individual mode encoding
	// use a_boolFlip to set the encoding F bit
	// use a_uiRadius to alter basecolor components in the range[-a_uiRadius:a_uiRadius]
	// replace the encoding if the encoding error is less than previous encoding
	//
	void Block4x4Encoding_ETC1::TryIndividual(bool a_boolFlip, unsigned int a_uiRadius)
	{

		ColorFloatRGBA frgbaColor1;
		ColorFloatRGBA frgbaColor2;

		const unsigned int *pauiPixelMapping1;
		const unsigned int *pauiPixelMapping2;

		if (a_boolFlip)
		{
			frgbaColor1 = m_frgbaSourceAverageTop;
			frgbaColor2 = m_frgbaSourceAverageBottom;

			pauiPixelMapping1 = s_auiTopPixelMapping;
			pauiPixelMapping2 = s_auiBottomPixelMapping;
		}
		else
		{
			frgbaColor1 = m_frgbaSourceAverageLeft;
			frgbaColor2 = m_frgbaSourceAverageRight;

			pauiPixelMapping1 = s_auiLeftPixelMapping;
			pauiPixelMapping2 = s_auiRightPixelMapping;
		}

		IndividualTrys trys(frgbaColor1, frgbaColor2, pauiPixelMapping1, pauiPixelMapping2, a_uiRadius);

		Block4x4Encoding_ETC1 encodingTry = *this;
		encodingTry.m_boolFlip = a_boolFlip;

		encodingTry.TryIndividualHalf(&trys.m_half1);
		encodingTry.TryIndividualHalf(&trys.m_half2);

		// use the best of each half
		IndividualTrys::Try *ptryBest1 = trys.m_half1.m_ptryBest;
		IndividualTrys::Try *ptryBest2 = trys.m_half2.m_ptryBest;
		encodingTry.m_fError = trys.m_half1.m_ptryBest->m_fError + trys.m_half2.m_ptryBest->m_fError;

		if (encodingTry.m_fError < m_fError)
		{
			m_mode = MODE_ETC1;
			m_boolDiff = false;
			m_boolFlip = encodingTry.m_boolFlip;
			m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)ptryBest1->m_iRed, (unsigned char)ptryBest1->m_iGreen, (unsigned char)ptryBest1->m_iBlue);
			m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)ptryBest2->m_iRed, (unsigned char)ptryBest2->m_iGreen, (unsigned char)ptryBest2->m_iBlue);
			m_uiCW1 = ptryBest1->m_uiCW;
			m_uiCW2 = ptryBest2->m_uiCW;

			for (unsigned int uiPixelOrder = 0; uiPixelOrder < PIXELS / 2; uiPixelOrder++)
			{
				unsigned int uiPixel1 = pauiPixelMapping1[uiPixelOrder];
				unsigned int uiPixel2 = pauiPixelMapping2[uiPixelOrder];

				unsigned int uiSelector1 = ptryBest1->m_auiSelectors[uiPixelOrder];
				unsigned int uiSelector2 = ptryBest2->m_auiSelectors[uiPixelOrder];

				m_auiSelectors[uiPixel1] = uiSelector1;
				m_auiSelectors[uiPixel2] = ptryBest2->m_auiSelectors[uiPixelOrder];

				float fDeltaRGB1 = s_aafCwTable[m_uiCW1][uiSelector1];
				float fDeltaRGB2 = s_aafCwTable[m_uiCW2][uiSelector2];

				m_afrgbaDecodedColors[uiPixel1] = (m_frgbaColor1 + fDeltaRGB1).ClampRGB();
				m_afrgbaDecodedColors[uiPixel2] = (m_frgbaColor2 + fDeltaRGB2).ClampRGB();
			}

			m_fError1 = ptryBest1->m_fError;
			m_fError2 = ptryBest2->m_fError;
			m_fError = m_fError1 + m_fError2;
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// try an ETC1 differential mode encoding for a half of a 4x4 block
	// vary the basecolor components using a radius
	//
	void Block4x4Encoding_ETC1::TryIndividualHalf(IndividualTrys::Half *a_phalf)
	{

		a_phalf->m_ptryBest = nullptr;
		float fBestTryError = FLT_MAX;

		a_phalf->m_uiTrys = 0;
		for (int iRed = a_phalf->m_iRed - (int)a_phalf->m_uiRadius;
			iRed <= a_phalf->m_iRed + (int)a_phalf->m_uiRadius;
			iRed++)
		{
			assert(iRed >= 0 && iRed <= 15);

			for (int iGreen = a_phalf->m_iGreen - (int)a_phalf->m_uiRadius;
				iGreen <= a_phalf->m_iGreen + (int)a_phalf->m_uiRadius;
				iGreen++)
			{
				assert(iGreen >= 0 && iGreen <= 15);

				for (int iBlue = a_phalf->m_iBlue - (int)a_phalf->m_uiRadius;
					iBlue <= a_phalf->m_iBlue + (int)a_phalf->m_uiRadius;
					iBlue++)
				{
					assert(iBlue >= 0 && iBlue <= 15);

					IndividualTrys::Try *ptry = &a_phalf->m_atry[a_phalf->m_uiTrys];
					assert(ptry < &a_phalf->m_atry[IndividualTrys::Half::MAX_TRYS]);

					ptry->m_iRed = iRed;
					ptry->m_iGreen = iGreen;
					ptry->m_iBlue = iBlue;
					ptry->m_fError = FLT_MAX;
					ColorFloatRGBA frgbaColor = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed, (unsigned char)iGreen, (unsigned char)iBlue);

					// try each CW
					for (unsigned int uiCW = 0; uiCW < CW_RANGES; uiCW++)
					{
						unsigned int auiPixelSelectors[PIXELS / 2];
						ColorFloatRGBA	afrgbaDecodedPixels[PIXELS / 2];
						float afPixelErrors[PIXELS / 2] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX,
															FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };

						// pre-compute decoded pixels for each selector
						ColorFloatRGBA afrgbaSelectors[SELECTORS];
						assert(SELECTORS == 4);
						afrgbaSelectors[0] = (frgbaColor + s_aafCwTable[uiCW][0]).ClampRGB();
						afrgbaSelectors[1] = (frgbaColor + s_aafCwTable[uiCW][1]).ClampRGB();
						afrgbaSelectors[2] = (frgbaColor + s_aafCwTable[uiCW][2]).ClampRGB();
						afrgbaSelectors[3] = (frgbaColor + s_aafCwTable[uiCW][3]).ClampRGB();

						for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
						{
							ColorFloatRGBA *pfrgbaSourcePixel = &m_pafrgbaSource[a_phalf->m_pauiPixelMapping[uiPixel]];
							ColorFloatRGBA frgbaDecodedPixel;

							for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++)
							{
								frgbaDecodedPixel = afrgbaSelectors[uiSelector];

								float fPixelError;

								fPixelError = CalcPixelError(frgbaDecodedPixel, m_afDecodedAlphas[a_phalf->m_pauiPixelMapping[uiPixel]],
										*pfrgbaSourcePixel);

								if (fPixelError < afPixelErrors[uiPixel])
								{
									auiPixelSelectors[uiPixel] = uiSelector;
									afrgbaDecodedPixels[uiPixel] = frgbaDecodedPixel;
									afPixelErrors[uiPixel] = fPixelError;
								}

							}
						}

						// add up all pixel errors
						float fCWError = 0.0f;
						for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
						{
							fCWError += afPixelErrors[uiPixel];
						}

						// if best CW so far
						if (fCWError < ptry->m_fError)
						{
							ptry->m_uiCW = uiCW;
							for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
							{
								ptry->m_auiSelectors[uiPixel] = auiPixelSelectors[uiPixel];
							}
							ptry->m_fError = fCWError;
						}

					}

					if (ptry->m_fError < fBestTryError)
					{
						a_phalf->m_ptryBest = ptry;
						fBestTryError = ptry->m_fError;
					}

					assert(ptry->m_fError < FLT_MAX);

					a_phalf->m_uiTrys++;
				}
			}
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// try version 1 of the degenerate search
	// degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings
	// each subsequent version of the degenerate search uses more basecolor movement and is less likely to
	//		be successfull
	//
	void Block4x4Encoding_ETC1::TryDegenerates1(void)
	{

		TryDifferential(m_boolMostLikelyFlip, 1, -2, 0);
		TryDifferential(m_boolMostLikelyFlip, 1, 2, 0);
		TryDifferential(m_boolMostLikelyFlip, 1, 0, 2);
		TryDifferential(m_boolMostLikelyFlip, 1, 0, -2);

	}

	// ----------------------------------------------------------------------------------------------------
	// try version 2 of the degenerate search
	// degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings
	// each subsequent version of the degenerate search uses more basecolor movement and is less likely to
	//		be successfull
	//
	void Block4x4Encoding_ETC1::TryDegenerates2(void)
	{

		TryDifferential(!m_boolMostLikelyFlip, 1, -2, 0);
		TryDifferential(!m_boolMostLikelyFlip, 1, 2, 0);
		TryDifferential(!m_boolMostLikelyFlip, 1, 0, 2);
		TryDifferential(!m_boolMostLikelyFlip, 1, 0, -2);

	}

	// ----------------------------------------------------------------------------------------------------
	// try version 3 of the degenerate search
	// degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings
	// each subsequent version of the degenerate search uses more basecolor movement and is less likely to
	//		be successfull
	//
	void Block4x4Encoding_ETC1::TryDegenerates3(void)
	{

		TryDifferential(m_boolMostLikelyFlip, 1, -2, -2);
		TryDifferential(m_boolMostLikelyFlip, 1, -2, 2);
		TryDifferential(m_boolMostLikelyFlip, 1, 2, -2);
		TryDifferential(m_boolMostLikelyFlip, 1, 2, 2);

	}

	// ----------------------------------------------------------------------------------------------------
	// try version 4 of the degenerate search
	// degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings
	// each subsequent version of the degenerate search uses more basecolor movement and is less likely to
	//		be successfull
	//
	void Block4x4Encoding_ETC1::TryDegenerates4(void)
	{

		TryDifferential(m_boolMostLikelyFlip, 1, -4, 0);
		TryDifferential(m_boolMostLikelyFlip, 1, 4, 0);
		TryDifferential(m_boolMostLikelyFlip, 1, 0, 4);
		TryDifferential(m_boolMostLikelyFlip, 1, 0, -4);

	}

	// ----------------------------------------------------------------------------------------------------
	// find the best selector for each pixel based on a particular basecolor and CW that have been previously set
	// calculate the selectors for each half of the block separately
	// set the block error as the sum of each half's error
	//
	void Block4x4Encoding_ETC1::CalculateSelectors()
	{
		if (m_boolFlip)
		{
			CalculateHalfOfTheSelectors(0, s_auiTopPixelMapping);
			CalculateHalfOfTheSelectors(1, s_auiBottomPixelMapping);
		}
		else
		{
			CalculateHalfOfTheSelectors(0, s_auiLeftPixelMapping);
			CalculateHalfOfTheSelectors(1, s_auiRightPixelMapping);
		}

		m_fError = m_fError1 + m_fError2;
	}

	// ----------------------------------------------------------------------------------------------------
	// choose best selectors for half of the block
	// calculate the error for half of the block
	//
	void Block4x4Encoding_ETC1::CalculateHalfOfTheSelectors(unsigned int a_uiHalf,
		const unsigned int *pauiPixelMapping)
	{
		static const bool DEBUG_PRINT = false;

		ColorFloatRGBA *pfrgbaColor = a_uiHalf ? &m_frgbaColor2 : &m_frgbaColor1;
		unsigned int *puiCW = a_uiHalf ? &m_uiCW2 : &m_uiCW1;

		float *pfHalfError = a_uiHalf ? &m_fError2 : &m_fError1;
		*pfHalfError = FLT_MAX;

		// try each CW
		for (unsigned int uiCW = 0; uiCW < CW_RANGES; uiCW++)
		{
			if (DEBUG_PRINT)
			{
				printf("\ncw=%u\n", uiCW);
			}

			unsigned int auiPixelSelectors[PIXELS / 2];
			ColorFloatRGBA	afrgbaDecodedPixels[PIXELS / 2];
			float afPixelErrors[PIXELS / 2] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };

			for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
			{
				if (DEBUG_PRINT)
				{
					printf("\tsource [%.2f,%.2f,%.2f]\n", m_pafrgbaSource[pauiPixelMapping[uiPixel]].fR,
						m_pafrgbaSource[pauiPixelMapping[uiPixel]].fG, m_pafrgbaSource[pauiPixelMapping[uiPixel]].fB);
				}

				ColorFloatRGBA *pfrgbaSourcePixel = &m_pafrgbaSource[pauiPixelMapping[uiPixel]];
				ColorFloatRGBA frgbaDecodedPixel;

				for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++)
				{
					float fDeltaRGB = s_aafCwTable[uiCW][uiSelector];

					frgbaDecodedPixel = (*pfrgbaColor + fDeltaRGB).ClampRGB();

					float fPixelError;
					
					fPixelError = CalcPixelError(frgbaDecodedPixel, m_afDecodedAlphas[pauiPixelMapping[uiPixel]],
														*pfrgbaSourcePixel);
					
					if (DEBUG_PRINT)
					{
						printf("\tpixel %u, index %u [%.2f,%.2f,%.2f], error %.2f", uiPixel, uiSelector,
							frgbaDecodedPixel.fR,
							frgbaDecodedPixel.fG,
							frgbaDecodedPixel.fB,
							fPixelError);
					}

					if (fPixelError < afPixelErrors[uiPixel])
					{
						if (DEBUG_PRINT)
						{
							printf(" *");
						}

						auiPixelSelectors[uiPixel] = uiSelector;
						afrgbaDecodedPixels[uiPixel] = frgbaDecodedPixel;
						afPixelErrors[uiPixel] = fPixelError;
					}

					if (DEBUG_PRINT)
					{
						printf("\n");
					}
				}
			}

			// add up all pixel errors
			float fCWError = 0.0f;
			for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
			{
				fCWError += afPixelErrors[uiPixel];
			}
			if (DEBUG_PRINT)
			{
				printf("\terror %.2f\n", fCWError);
			}

			// if best CW so far
			if (fCWError < *pfHalfError)
			{
				*pfHalfError = fCWError;
				*puiCW = uiCW;
				for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++)
				{
					m_auiSelectors[pauiPixelMapping[uiPixel]] = auiPixelSelectors[uiPixel];
					m_afrgbaDecodedColors[pauiPixelMapping[uiPixel]] = afrgbaDecodedPixels[uiPixel];
				}
			}
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// set the encoding bits based on encoding state
	//
	void Block4x4Encoding_ETC1::SetEncodingBits(void)
	{
		assert(m_mode == MODE_ETC1);

		if (m_boolDiff)
		{
			int iRed1 = m_frgbaColor1.IntRed(31.0f);
			int iGreen1 = m_frgbaColor1.IntGreen(31.0f);
			int iBlue1 = m_frgbaColor1.IntBlue(31.0f);

			int iRed2 = m_frgbaColor2.IntRed(31.0f);
			int iGreen2 = m_frgbaColor2.IntGreen(31.0f);
			int iBlue2 = m_frgbaColor2.IntBlue(31.0f);

			int iDRed2 = iRed2 - iRed1;
			int iDGreen2 = iGreen2 - iGreen1;
			int iDBlue2 = iBlue2 - iBlue1;

			assert(iDRed2 >= -4 && iDRed2 < 4);
			assert(iDGreen2 >= -4 && iDGreen2 < 4);
			assert(iDBlue2 >= -4 && iDBlue2 < 4);

			m_pencodingbitsRGB8->differential.red1 = (unsigned int)iRed1;
			m_pencodingbitsRGB8->differential.green1 = (unsigned int)iGreen1;
			m_pencodingbitsRGB8->differential.blue1 = (unsigned int)iBlue1;

			m_pencodingbitsRGB8->differential.dred2 = iDRed2;
			m_pencodingbitsRGB8->differential.dgreen2 = iDGreen2;
			m_pencodingbitsRGB8->differential.dblue2 = iDBlue2;
		}
		else
		{
			m_pencodingbitsRGB8->individual.red1 = (unsigned int)m_frgbaColor1.IntRed(15.0f);
			m_pencodingbitsRGB8->individual.green1 = (unsigned int)m_frgbaColor1.IntGreen(15.0f);
			m_pencodingbitsRGB8->individual.blue1 = (unsigned int)m_frgbaColor1.IntBlue(15.0f);

			m_pencodingbitsRGB8->individual.red2 = (unsigned int)m_frgbaColor2.IntRed(15.0f);
			m_pencodingbitsRGB8->individual.green2 = (unsigned int)m_frgbaColor2.IntGreen(15.0f);
			m_pencodingbitsRGB8->individual.blue2 = (unsigned int)m_frgbaColor2.IntBlue(15.0f);
		}

		m_pencodingbitsRGB8->individual.cw1 = m_uiCW1;
		m_pencodingbitsRGB8->individual.cw2 = m_uiCW2;

		SetEncodingBits_Selectors();

		m_pencodingbitsRGB8->individual.diff = (unsigned int)m_boolDiff;
		m_pencodingbitsRGB8->individual.flip = (unsigned int)m_boolFlip;

	}

	// ----------------------------------------------------------------------------------------------------
	// set the selectors in the encoding bits
	//
	void Block4x4Encoding_ETC1::SetEncodingBits_Selectors(void)
	{

		m_pencodingbitsRGB8->individual.selectors = 0;
		for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
		{
			unsigned int uiSelector = m_auiSelectors[uiPixel];

			// set index msb
			m_pencodingbitsRGB8->individual.selectors |= (uiSelector >> 1) << (uiPixel ^ 8);

			// set index lsb
			m_pencodingbitsRGB8->individual.selectors |= (uiSelector & 1) << ((16 + uiPixel) ^ 8);
		}

	}

	// ----------------------------------------------------------------------------------------------------
	// set the decoded colors and decoded alpha based on the encoding state
	//
	void Block4x4Encoding_ETC1::Decode(void)
	{

		const unsigned int *pauiPixelOrder = m_boolFlip ? s_auiPixelOrderFlip1 : s_auiPixelOrderFlip0;

		for (unsigned int uiPixelOrder = 0; uiPixelOrder < PIXELS; uiPixelOrder++)
		{
			ColorFloatRGBA *pfrgbaCenter = uiPixelOrder < 8 ? &m_frgbaColor1 : &m_frgbaColor2;
			unsigned int uiCW = uiPixelOrder < 8 ? m_uiCW1 : m_uiCW2;

			unsigned int uiPixel = pauiPixelOrder[uiPixelOrder];

			float fDelta = s_aafCwTable[uiCW][m_auiSelectors[uiPixel]];
			m_afrgbaDecodedColors[uiPixel] = (*pfrgbaCenter + fDelta).ClampRGB();
			m_afDecodedAlphas[uiPixel] = 1.0f;
		}

	}

	// ----------------------------------------------------------------------------------------------------
	//

} // namespace Etc