1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/default.h"
#include "bezier_curve.h"
namespace embree
{
class BSplineBasis
{
public:
template<typename T>
static __forceinline Vec4<T> eval(const T& u)
{
const T t = u;
const T s = T(1.0f) - u;
const T n0 = s*s*s;
const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t));
const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s));
const T n3 = t*t*t;
return T(1.0f/6.0f)*Vec4<T>(n0,n1,n2,n3);
}
template<typename T>
static __forceinline Vec4<T> derivative(const T& u)
{
const T t = u;
const T s = 1.0f - u;
const T n0 = -s*s;
const T n1 = -t*t - 4.0f*(t*s);
const T n2 = s*s + 4.0f*(s*t);
const T n3 = t*t;
return T(0.5f)*Vec4<T>(n0,n1,n2,n3);
}
template<typename T>
static __forceinline Vec4<T> derivative2(const T& u)
{
const T t = u;
const T s = 1.0f - u;
const T n0 = s;
const T n1 = t - 2.0f*s;
const T n2 = s - 2.0f*t;
const T n3 = t;
return Vec4<T>(n0,n1,n2,n3);
}
};
struct PrecomputedBSplineBasis
{
enum { N = 16 };
public:
PrecomputedBSplineBasis() {}
PrecomputedBSplineBasis(int shift);
/* basis for bspline evaluation */
public:
float c0[N+1][N+1];
float c1[N+1][N+1];
float c2[N+1][N+1];
float c3[N+1][N+1];
/* basis for bspline derivative evaluation */
public:
float d0[N+1][N+1];
float d1[N+1][N+1];
float d2[N+1][N+1];
float d3[N+1][N+1];
};
extern PrecomputedBSplineBasis bspline_basis0;
extern PrecomputedBSplineBasis bspline_basis1;
template<typename Vertex>
struct BSplineCurveT
{
Vertex v0,v1,v2,v3;
__forceinline BSplineCurveT() {}
__forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
: v0(v0), v1(v1), v2(v2), v3(v3) {}
__forceinline Vertex begin() const {
return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2));
}
__forceinline Vertex end() const {
return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3));
}
__forceinline Vertex center() const {
return 0.25f*(v0+v1+v2+v3);
}
__forceinline BBox<Vertex> bounds() const {
return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
}
__forceinline friend BSplineCurveT operator -( const BSplineCurveT& a, const Vertex& b ) {
return BSplineCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
}
__forceinline BSplineCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
{
const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w);
const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w);
const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w);
const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w);
return BSplineCurveT<Vec3ff>(q0,q1,q2,q3);
}
__forceinline Vertex eval(const float t) const
{
const Vec4<float> b = BSplineBasis::eval(t);
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
}
__forceinline Vertex eval_du(const float t) const
{
const Vec4<float> b = BSplineBasis::derivative(t);
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
}
__forceinline Vertex eval_dudu(const float t) const
{
const Vec4<float> b = BSplineBasis::derivative2(t);
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
}
__forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
{
p = eval(t);
dp = eval_du(t);
ddp = eval_dudu(t);
}
template<int M>
__forceinline Vec4vf<M> veval(const vfloat<M>& t) const
{
const Vec4vf<M> b = BSplineBasis::eval(t);
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const
{
const Vec4vf<M> b = BSplineBasis::derivative(t);
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const
{
const Vec4vf<M> b = BSplineBasis::derivative2(t);
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
}
template<int M>
__forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
{
p = veval<M>(t);
dp = veval_du<M>(t);
}
template<int M>
__forceinline Vec4vf<M> eval0(const int ofs, const int size) const
{
assert(size <= PrecomputedBSplineBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&bspline_basis0.c0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&bspline_basis0.c1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&bspline_basis0.c2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&bspline_basis0.c3[size][ofs]) * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> eval1(const int ofs, const int size) const
{
assert(size <= PrecomputedBSplineBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&bspline_basis1.c0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&bspline_basis1.c1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&bspline_basis1.c2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&bspline_basis1.c3[size][ofs]) * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> derivative0(const int ofs, const int size) const
{
assert(size <= PrecomputedBSplineBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&bspline_basis0.d0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&bspline_basis0.d1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&bspline_basis0.d2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&bspline_basis0.d3[size][ofs]) * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> derivative1(const int ofs, const int size) const
{
assert(size <= PrecomputedBSplineBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&bspline_basis1.d0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&bspline_basis1.d1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&bspline_basis1.d2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&bspline_basis1.d3[size][ofs]) * Vec4vf<M>(v3))));
}
/* calculates bounds of bspline curve geometry */
__forceinline BBox3fa accurateRoundBounds() const
{
const int N = 7;
const float scale = 1.0f/(3.0f*(N-1));
Vec4vfx pl(pos_inf), pu(neg_inf);
for (int i=0; i<=N; i+=VSIZEX)
{
vintx vi = vintx(i)+vintx(step);
vboolx valid = vi <= vintx(N);
const Vec4vfx p = eval0<VSIZEX>(i,N);
const Vec4vfx dp = derivative0<VSIZEX>(i,N);
const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
}
const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
const float r_min = reduce_min(pl.w);
const float r_max = reduce_max(pu.w);
const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
return enlarge(BBox3fa(lower,upper),upper_r);
}
/* calculates bounds when tessellated into N line segments */
__forceinline BBox3fa accurateFlatBounds(int N) const
{
if (likely(N == 4))
{
const Vec4vf4 pi = eval0<4>(0,4);
const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
const Vec3ff pe = end();
return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w))));
}
else
{
Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
for (int i=0; i<=N; i+=VSIZEX)
{
vboolx valid = vintx(i)+vintx(step) <= vintx(N);
const Vec4vfx pi = eval0<VSIZEX>(i,N);
pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
pl.y = select(valid,min(pl.y,pi.y),pl.y);
pl.z = select(valid,min(pl.z,pi.z),pl.z);
pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
pu.y = select(valid,max(pu.y,pi.y),pu.y);
pu.z = select(valid,max(pu.z,pi.z),pu.z);
ru = select(valid,max(ru,abs(pi.w)),ru);
}
const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
const Vec3fa upper_r(reduce_max(ru));
return enlarge(BBox3fa(lower,upper),upper_r);
}
}
friend __forceinline embree_ostream operator<<(embree_ostream cout, const BSplineCurveT& curve) {
return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
}
};
template<typename Vertex>
__forceinline void convert(const BezierCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) {
ocurve = icurve;
}
template<typename Vertex>
__forceinline void convert(const BSplineCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) {
ocurve = icurve;
}
template<typename Vertex>
__forceinline void convert(const BezierCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve)
{
const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2));
const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2);
const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1);
const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3));
ocurve = BSplineCurveT<Vertex>(v0,v1,v2,v3);
}
template<typename Vertex>
__forceinline void convert(const BSplineCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve)
{
const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2));
const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2);
const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2);
const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3));
ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3);
}
template<typename CurveGeometry>
__forceinline BSplineCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const BSplineCurveT<Vec3ff>& curve)
{
return BSplineCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
}
typedef BSplineCurveT<Vec3fa> BSplineCurve3fa;
}
|