1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "quadv.h"
#include "quad_intersector_moeller.h"
#include "quad_intersector_pluecker.h"
namespace embree
{
namespace isa
{
/*! Intersects M quads with 1 ray */
template<int M, bool filter>
struct QuadMvIntersector1Moeller
{
typedef QuadMv<M> Primitive;
typedef QuadMIntersector1MoellerTrumbore<M,filter> Precalculations;
/*! Intersect a ray with the M quads and updates the hit. */
static __forceinline void intersect(const Precalculations& pre, RayHit& ray, IntersectContext* context, const Primitive& quad)
{
STAT3(normal.trav_prims,1,1,1);
pre.intersect(ray,context,quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
/*! Test if the ray is occluded by one of M quads. */
static __forceinline bool occluded(const Precalculations& pre, Ray& ray, IntersectContext* context, const Primitive& quad)
{
STAT3(shadow.trav_prims,1,1,1);
return pre.occluded(ray,context, quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
static __forceinline bool pointQuery(PointQuery* query, PointQueryContext* context, const Primitive& quad)
{
return PrimitivePointQuery1<Primitive>::pointQuery(query, context, quad);
}
};
/*! Intersects M triangles with K rays. */
template<int M, int K, bool filter>
struct QuadMvIntersectorKMoeller
{
typedef QuadMv<M> Primitive;
typedef QuadMIntersectorKMoellerTrumbore<M,K,filter> Precalculations;
/*! Intersects K rays with M triangles. */
static __forceinline void intersect(const vbool<K>& valid_i, Precalculations& pre, RayHitK<K>& ray, IntersectContext* context, const QuadMv<M>& quad)
{
for (size_t i=0; i<QuadMv<M>::max_size(); i++)
{
if (!quad.valid(i)) break;
STAT3(normal.trav_prims,1,popcnt(valid_i),K);
const Vec3vf<K> p0 = broadcast<vfloat<K>>(quad.v0,i);
const Vec3vf<K> p1 = broadcast<vfloat<K>>(quad.v1,i);
const Vec3vf<K> p2 = broadcast<vfloat<K>>(quad.v2,i);
const Vec3vf<K> p3 = broadcast<vfloat<K>>(quad.v3,i);
pre.intersectK(valid_i,ray,p0,p1,p2,p3,IntersectKEpilogM<M,K,filter>(ray,context,quad.geomID(),quad.primID(),i));
}
}
/*! Test for K rays if they are occluded by any of the M triangles. */
static __forceinline vbool<K> occluded(const vbool<K>& valid_i, Precalculations& pre, RayK<K>& ray, IntersectContext* context, const QuadMv<M>& quad)
{
vbool<K> valid0 = valid_i;
for (size_t i=0; i<QuadMv<M>::max_size(); i++)
{
if (!quad.valid(i)) break;
STAT3(shadow.trav_prims,1,popcnt(valid0),K);
const Vec3vf<K> p0 = broadcast<vfloat<K>>(quad.v0,i);
const Vec3vf<K> p1 = broadcast<vfloat<K>>(quad.v1,i);
const Vec3vf<K> p2 = broadcast<vfloat<K>>(quad.v2,i);
const Vec3vf<K> p3 = broadcast<vfloat<K>>(quad.v3,i);
if (pre.intersectK(valid0,ray,p0,p1,p2,p3,OccludedKEpilogM<M,K,filter>(valid0,ray,context,quad.geomID(),quad.primID(),i)))
break;
}
return !valid0;
}
/*! Intersect a ray with M triangles and updates the hit. */
static __forceinline void intersect(Precalculations& pre, RayHitK<K>& ray, size_t k, IntersectContext* context, const QuadMv<M>& quad)
{
STAT3(normal.trav_prims,1,1,1);
pre.intersect1(ray,k,context,quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
/*! Test if the ray is occluded by one of the M triangles. */
static __forceinline bool occluded(Precalculations& pre, RayK<K>& ray, size_t k, IntersectContext* context, const QuadMv<M>& quad)
{
STAT3(shadow.trav_prims,1,1,1);
return pre.occluded1(ray,k,context,quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
};
/*! Intersects M quads with 1 ray */
template<int M, bool filter>
struct QuadMvIntersector1Pluecker
{
typedef QuadMv<M> Primitive;
typedef QuadMIntersector1Pluecker<M,filter> Precalculations;
/*! Intersect a ray with the M quads and updates the hit. */
static __forceinline void intersect(const Precalculations& pre, RayHit& ray, IntersectContext* context, const Primitive& quad)
{
STAT3(normal.trav_prims,1,1,1);
pre.intersect(ray,context,quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
/*! Test if the ray is occluded by one of M quads. */
static __forceinline bool occluded(const Precalculations& pre, Ray& ray, IntersectContext* context, const Primitive& quad)
{
STAT3(shadow.trav_prims,1,1,1);
return pre.occluded(ray,context, quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
static __forceinline bool pointQuery(PointQuery* query, PointQueryContext* context, const Primitive& quad)
{
return PrimitivePointQuery1<Primitive>::pointQuery(query, context, quad);
}
};
/*! Intersects M triangles with K rays. */
template<int M, int K, bool filter>
struct QuadMvIntersectorKPluecker
{
typedef QuadMv<M> Primitive;
typedef QuadMIntersectorKPluecker<M,K,filter> Precalculations;
/*! Intersects K rays with M triangles. */
static __forceinline void intersect(const vbool<K>& valid_i, Precalculations& pre, RayHitK<K>& ray, IntersectContext* context, const QuadMv<M>& quad)
{
for (size_t i=0; i<QuadMv<M>::max_size(); i++)
{
if (!quad.valid(i)) break;
STAT3(normal.trav_prims,1,popcnt(valid_i),K);
const Vec3vf<K> p0 = broadcast<vfloat<K>>(quad.v0,i);
const Vec3vf<K> p1 = broadcast<vfloat<K>>(quad.v1,i);
const Vec3vf<K> p2 = broadcast<vfloat<K>>(quad.v2,i);
const Vec3vf<K> p3 = broadcast<vfloat<K>>(quad.v3,i);
pre.intersectK(valid_i,ray,p0,p1,p2,p3,IntersectKEpilogM<M,K,filter>(ray,context,quad.geomID(),quad.primID(),i));
}
}
/*! Test for K rays if they are occluded by any of the M triangles. */
static __forceinline vbool<K> occluded(const vbool<K>& valid_i, Precalculations& pre, RayK<K>& ray, IntersectContext* context, const QuadMv<M>& quad)
{
vbool<K> valid0 = valid_i;
for (size_t i=0; i<QuadMv<M>::max_size(); i++)
{
if (!quad.valid(i)) break;
STAT3(shadow.trav_prims,1,popcnt(valid0),K);
const Vec3vf<K> p0 = broadcast<vfloat<K>>(quad.v0,i);
const Vec3vf<K> p1 = broadcast<vfloat<K>>(quad.v1,i);
const Vec3vf<K> p2 = broadcast<vfloat<K>>(quad.v2,i);
const Vec3vf<K> p3 = broadcast<vfloat<K>>(quad.v3,i);
if (pre.intersectK(valid0,ray,p0,p1,p2,p3,OccludedKEpilogM<M,K,filter>(valid0,ray,context,quad.geomID(),quad.primID(),i)))
break;
}
return !valid0;
}
/*! Intersect a ray with M triangles and updates the hit. */
static __forceinline void intersect(Precalculations& pre, RayHitK<K>& ray, size_t k, IntersectContext* context, const QuadMv<M>& quad)
{
STAT3(normal.trav_prims,1,1,1);
pre.intersect1(ray,k,context,quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
/*! Test if the ray is occluded by one of the M triangles. */
static __forceinline bool occluded(Precalculations& pre, RayK<K>& ray, size_t k, IntersectContext* context, const QuadMv<M>& quad)
{
STAT3(shadow.trav_prims,1,1,1);
return pre.occluded1(ray,k,context,quad.v0,quad.v1,quad.v2,quad.v3,quad.geomID(),quad.primID());
}
};
}
}
|