1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
namespace embree
{
namespace isa
{
struct Cylinder
{
const Vec3fa p0; //!< start location
const Vec3fa p1; //!< end position
const float rr; //!< squared radius of cylinder
__forceinline Cylinder(const Vec3fa& p0, const Vec3fa& p1, const float r)
: p0(p0), p1(p1), rr(sqr(r)) {}
__forceinline Cylinder(const Vec3fa& p0, const Vec3fa& p1, const float rr, bool)
: p0(p0), p1(p1), rr(rr) {}
__forceinline bool intersect(const Vec3fa& org,
const Vec3fa& dir,
BBox1f& t_o,
float& u0_o, Vec3fa& Ng0_o,
float& u1_o, Vec3fa& Ng1_o) const
{
/* calculate quadratic equation to solve */
const float rl = rcp_length(p1-p0);
const Vec3fa P0 = p0, dP = (p1-p0)*rl;
const Vec3fa O = org-P0, dO = dir;
const float dOdO = dot(dO,dO);
const float OdO = dot(dO,O);
const float OO = dot(O,O);
const float dOz = dot(dP,dO);
const float Oz = dot(dP,O);
const float A = dOdO - sqr(dOz);
const float B = 2.0f * (OdO - dOz*Oz);
const float C = OO - sqr(Oz) - rr;
/* we miss the cylinder if determinant is smaller than zero */
const float D = B*B - 4.0f*A*C;
if (D < 0.0f) {
t_o = BBox1f(pos_inf,neg_inf);
return false;
}
/* special case for rays that are parallel to the cylinder */
const float eps = 16.0f*float(ulp)*max(abs(dOdO),abs(sqr(dOz)));
if (abs(A) < eps)
{
if (C <= 0.0f) {
t_o = BBox1f(neg_inf,pos_inf);
return true;
} else {
t_o = BBox1f(pos_inf,neg_inf);
return false;
}
}
/* standard case for rays that are not parallel to the cylinder */
const float Q = sqrt(D);
const float rcp_2A = rcp(2.0f*A);
const float t0 = (-B-Q)*rcp_2A;
const float t1 = (-B+Q)*rcp_2A;
/* calculates u and Ng for near hit */
{
u0_o = madd(t0,dOz,Oz)*rl;
const Vec3fa Pr = t0*dir;
const Vec3fa Pl = madd(u0_o,p1-p0,p0);
Ng0_o = Pr-Pl;
}
/* calculates u and Ng for far hit */
{
u1_o = madd(t1,dOz,Oz)*rl;
const Vec3fa Pr = t1*dir;
const Vec3fa Pl = madd(u1_o,p1-p0,p0);
Ng1_o = Pr-Pl;
}
t_o.lower = t0;
t_o.upper = t1;
return true;
}
__forceinline bool intersect(const Vec3fa& org_i, const Vec3fa& dir, BBox1f& t_o) const
{
float u0_o; Vec3fa Ng0_o;
float u1_o; Vec3fa Ng1_o;
return intersect(org_i,dir,t_o,u0_o,Ng0_o,u1_o,Ng1_o);
}
static bool verify(const size_t id, const Cylinder& cylinder, const RayHit& ray, bool shouldhit, const float t0, const float t1)
{
float eps = 0.001f;
BBox1f t; bool hit;
hit = cylinder.intersect(ray.org,ray.dir,t);
bool failed = hit != shouldhit;
if (shouldhit) failed |= std::isinf(t0) ? t0 != t.lower : abs(t0-t.lower) > eps;
if (shouldhit) failed |= std::isinf(t1) ? t1 != t.upper : abs(t1-t.upper) > eps;
if (!failed) return true;
embree_cout << "Cylinder test " << id << " failed: cylinder = " << cylinder << ", ray = " << ray << ", hit = " << hit << ", t = " << t << embree_endl;
return false;
}
/* verify cylinder class */
static bool verify()
{
bool passed = true;
const Cylinder cylinder(Vec3fa(0.0f,0.0f,0.0f),Vec3fa(1.0f,0.0f,0.0f),1.0f);
passed &= verify(0,cylinder,RayHit(Vec3fa(-2.0f,1.0f,0.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.0f,2.0f);
passed &= verify(1,cylinder,RayHit(Vec3fa(+2.0f,1.0f,0.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.0f,2.0f);
passed &= verify(2,cylinder,RayHit(Vec3fa(+2.0f,1.0f,2.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),false,0.0f,0.0f);
passed &= verify(3,cylinder,RayHit(Vec3fa(+0.0f,0.0f,0.0f),Vec3fa( 1.0f, 0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,pos_inf);
passed &= verify(4,cylinder,RayHit(Vec3fa(+0.0f,0.0f,0.0f),Vec3fa(-1.0f, 0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,pos_inf);
passed &= verify(5,cylinder,RayHit(Vec3fa(+0.0f,2.0f,0.0f),Vec3fa( 1.0f, 0.0f,+0.0f),0.0f,float(inf)),false,pos_inf,neg_inf);
passed &= verify(6,cylinder,RayHit(Vec3fa(+0.0f,2.0f,0.0f),Vec3fa(-1.0f, 0.0f,+0.0f),0.0f,float(inf)),false,pos_inf,neg_inf);
return passed;
}
/*! output operator */
friend __forceinline embree_ostream operator<<(embree_ostream cout, const Cylinder& c) {
return cout << "Cylinder { p0 = " << c.p0 << ", p1 = " << c.p1 << ", r = " << sqrtf(c.rr) << "}";
}
};
template<int N>
struct CylinderN
{
const Vec3vf<N> p0; //!< start location
const Vec3vf<N> p1; //!< end position
const vfloat<N> rr; //!< squared radius of cylinder
__forceinline CylinderN(const Vec3vf<N>& p0, const Vec3vf<N>& p1, const vfloat<N>& r)
: p0(p0), p1(p1), rr(sqr(r)) {}
__forceinline CylinderN(const Vec3vf<N>& p0, const Vec3vf<N>& p1, const vfloat<N>& rr, bool)
: p0(p0), p1(p1), rr(rr) {}
__forceinline vbool<N> intersect(const Vec3fa& org, const Vec3fa& dir,
BBox<vfloat<N>>& t_o,
vfloat<N>& u0_o, Vec3vf<N>& Ng0_o,
vfloat<N>& u1_o, Vec3vf<N>& Ng1_o) const
{
/* calculate quadratic equation to solve */
const vfloat<N> rl = rcp_length(p1-p0);
const Vec3vf<N> P0 = p0, dP = (p1-p0)*rl;
const Vec3vf<N> O = Vec3vf<N>(org)-P0, dO = dir;
const vfloat<N> dOdO = dot(dO,dO);
const vfloat<N> OdO = dot(dO,O);
const vfloat<N> OO = dot(O,O);
const vfloat<N> dOz = dot(dP,dO);
const vfloat<N> Oz = dot(dP,O);
const vfloat<N> A = dOdO - sqr(dOz);
const vfloat<N> B = 2.0f * (OdO - dOz*Oz);
const vfloat<N> C = OO - sqr(Oz) - rr;
/* we miss the cylinder if determinant is smaller than zero */
const vfloat<N> D = B*B - 4.0f*A*C;
vbool<N> valid = D >= 0.0f;
if (none(valid)) {
t_o = BBox<vfloat<N>>(empty);
return valid;
}
/* standard case for rays that are not parallel to the cylinder */
const vfloat<N> Q = sqrt(D);
const vfloat<N> rcp_2A = rcp(2.0f*A);
const vfloat<N> t0 = (-B-Q)*rcp_2A;
const vfloat<N> t1 = (-B+Q)*rcp_2A;
/* calculates u and Ng for near hit */
{
u0_o = madd(t0,dOz,Oz)*rl;
const Vec3vf<N> Pr = t0*Vec3vf<N>(dir);
const Vec3vf<N> Pl = madd(u0_o,p1-p0,p0);
Ng0_o = Pr-Pl;
}
/* calculates u and Ng for far hit */
{
u1_o = madd(t1,dOz,Oz)*rl;
const Vec3vf<N> Pr = t1*Vec3vf<N>(dir);
const Vec3vf<N> Pl = madd(u1_o,p1-p0,p0);
Ng1_o = Pr-Pl;
}
t_o.lower = select(valid, t0, vfloat<N>(pos_inf));
t_o.upper = select(valid, t1, vfloat<N>(neg_inf));
/* special case for rays that are parallel to the cylinder */
const vfloat<N> eps = 16.0f*float(ulp)*max(abs(dOdO),abs(sqr(dOz)));
vbool<N> validt = valid & (abs(A) < eps);
if (unlikely(any(validt)))
{
vbool<N> inside = C <= 0.0f;
t_o.lower = select(validt,select(inside,vfloat<N>(neg_inf),vfloat<N>(pos_inf)),t_o.lower);
t_o.upper = select(validt,select(inside,vfloat<N>(pos_inf),vfloat<N>(neg_inf)),t_o.upper);
valid &= !validt | inside;
}
return valid;
}
__forceinline vbool<N> intersect(const Vec3fa& org_i, const Vec3fa& dir, BBox<vfloat<N>>& t_o) const
{
vfloat<N> u0_o; Vec3vf<N> Ng0_o;
vfloat<N> u1_o; Vec3vf<N> Ng1_o;
return intersect(org_i,dir,t_o,u0_o,Ng0_o,u1_o,Ng1_o);
}
};
}
}
|