1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "curve_intersector_precalculations.h"
namespace embree
{
namespace isa
{
namespace __coneline_internal
{
template<int M, typename Epilog, typename ray_tfar_func>
static __forceinline bool intersectCone(const vbool<M>& valid_i,
const Vec3vf<M>& ray_org_in, const Vec3vf<M>& ray_dir,
const vfloat<M>& ray_tnear, const ray_tfar_func& ray_tfar,
const Vec4vf<M>& v0, const Vec4vf<M>& v1,
const vbool<M>& cL, const vbool<M>& cR,
const Epilog& epilog)
{
vbool<M> valid = valid_i;
/* move ray origin closer to make calculations numerically stable */
const vfloat<M> dOdO = sqr(ray_dir);
const vfloat<M> rcp_dOdO = rcp(dOdO);
const Vec3vf<M> center = vfloat<M>(0.5f)*(v0.xyz()+v1.xyz());
const vfloat<M> dt = dot(center-ray_org_in,ray_dir)*rcp_dOdO;
const Vec3vf<M> ray_org = ray_org_in + dt*ray_dir;
const Vec3vf<M> dP = v1.xyz() - v0.xyz();
const Vec3vf<M> p0 = ray_org - v0.xyz();
const Vec3vf<M> p1 = ray_org - v1.xyz();
const vfloat<M> dPdP = sqr(dP);
const vfloat<M> dP0 = dot(p0,dP);
const vfloat<M> dP1 = dot(p1,dP);
const vfloat<M> dOdP = dot(ray_dir,dP);
// intersect cone body
const vfloat<M> dr = v0.w - v1.w;
const vfloat<M> hy = dPdP + sqr(dr);
const vfloat<M> dO0 = dot(ray_dir,p0);
const vfloat<M> OO = sqr(p0);
const vfloat<M> dPdP2 = sqr(dPdP);
const vfloat<M> dPdPr0 = dPdP*v0.w;
const vfloat<M> A = dPdP2 - sqr(dOdP)*hy;
const vfloat<M> B = dPdP2*dO0 - dP0*dOdP*hy + dPdPr0*(dr*dOdP);
const vfloat<M> C = dPdP2*OO - sqr(dP0)*hy + dPdPr0*(2.0f*dr*dP0 - dPdPr0);
const vfloat<M> D = B*B - A*C;
valid &= D >= 0.0f;
if (unlikely(none(valid))) {
return false;
}
/* standard case for "non-parallel" rays */
const vfloat<M> Q = sqrt(D);
const vfloat<M> rcp_A = rcp(A);
/* special case for rays that are "parallel" to the cone - assume miss */
const vbool<M> isParallel = abs(A) <= min_rcp_input;
vfloat<M> t_cone_lower = select (isParallel, neg_inf, (-B-Q)*rcp_A);
vfloat<M> t_cone_upper = select (isParallel, pos_inf, (-B+Q)*rcp_A);
const vfloat<M> y_lower = dP0 + t_cone_lower*dOdP;
const vfloat<M> y_upper = dP0 + t_cone_upper*dOdP;
t_cone_lower = select(valid & y_lower > 0.0f & y_lower < dPdP, t_cone_lower, pos_inf);
t_cone_upper = select(valid & y_upper > 0.0f & y_upper < dPdP, t_cone_upper, neg_inf);
const vbool<M> hitDisk0 = valid & cL;
const vbool<M> hitDisk1 = valid & cR;
const vfloat<M> rcp_dOdP = rcp(dOdP);
const vfloat<M> t_disk0 = select (hitDisk0, select (sqr(p0*dOdP-ray_dir*dP0)<(sqr(v0.w)*sqr(dOdP)), -dP0*rcp_dOdP, pos_inf), pos_inf);
const vfloat<M> t_disk1 = select (hitDisk1, select (sqr(p1*dOdP-ray_dir*dP1)<(sqr(v1.w)*sqr(dOdP)), -dP1*rcp_dOdP, pos_inf), pos_inf);
const vfloat<M> t_disk_lower = min(t_disk0, t_disk1);
const vfloat<M> t_disk_upper = max(t_disk0, t_disk1);
const vfloat<M> t_lower = min(t_cone_lower, t_disk_lower);
const vfloat<M> t_upper = max(t_cone_upper, select(t_lower==t_disk_lower,
select(t_disk_upper==vfloat<M>(pos_inf),neg_inf,t_disk_upper),
select(t_disk_lower==vfloat<M>(pos_inf),neg_inf,t_disk_lower)));
const vbool<M> valid_lower = valid & ray_tnear <= dt+t_lower & dt+t_lower <= ray_tfar() & t_lower != vfloat<M>(pos_inf);
const vbool<M> valid_upper = valid & ray_tnear <= dt+t_upper & dt+t_upper <= ray_tfar() & t_upper != vfloat<M>(neg_inf);
const vbool<M> valid_first = valid_lower | valid_upper;
if (unlikely(none(valid_first)))
return false;
const vfloat<M> t_first = select(valid_lower, t_lower, t_upper);
const vfloat<M> y_first = select(valid_lower, y_lower, y_upper);
const vfloat<M> rcp_dPdP = rcp(dPdP);
const Vec3vf<M> dP2drr0dP = dPdP*dr*v0.w*dP;
const Vec3vf<M> dPhy = dP*hy;
const vbool<M> cone_hit_first = valid & (t_first == t_cone_lower | t_first == t_cone_upper);
const vbool<M> disk0_hit_first = valid & (t_first == t_disk0);
const Vec3vf<M> Ng_first = select(cone_hit_first, dPdP2*(p0+t_first*ray_dir)+dP2drr0dP-dPhy*y_first, select(disk0_hit_first, -dP, dP));
const vfloat<M> u_first = select(cone_hit_first, y_first*rcp_dPdP, select(disk0_hit_first, vfloat<M>(zero), vfloat<M>(one)));
/* invoke intersection filter for first hit */
RoundLineIntersectorHitM<M> hit(u_first,zero,dt+t_first,Ng_first);
const bool is_hit_first = epilog(valid_first, hit);
/* check for possible second hits before potentially accepted hit */
const vfloat<M> t_second = t_upper;
const vfloat<M> y_second = y_upper;
const vbool<M> valid_second = valid_lower & valid_upper & (dt+t_upper <= ray_tfar());
if (unlikely(none(valid_second)))
return is_hit_first;
/* invoke intersection filter for second hit */
const vbool<M> cone_hit_second = t_second == t_cone_lower | t_second == t_cone_upper;
const vbool<M> disk0_hit_second = t_second == t_disk0;
const Vec3vf<M> Ng_second = select(cone_hit_second, dPdP2*(p0+t_second*ray_dir)+dP2drr0dP-dPhy*y_second, select(disk0_hit_second, -dP, dP));
const vfloat<M> u_second = select(cone_hit_second, y_second*rcp_dPdP, select(disk0_hit_first, vfloat<M>(zero), vfloat<M>(one)));
hit = RoundLineIntersectorHitM<M>(u_second,zero,dt+t_second,Ng_second);
const bool is_hit_second = epilog(valid_second, hit);
return is_hit_first | is_hit_second;
}
}
template<int M>
struct ConeLineIntersectorHitM
{
__forceinline ConeLineIntersectorHitM() {}
__forceinline ConeLineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng)
: vu(u), vv(v), vt(t), vNg(Ng) {}
__forceinline void finalize() {}
__forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
__forceinline float t (const size_t i) const { return vt[i]; }
__forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); }
public:
vfloat<M> vu;
vfloat<M> vv;
vfloat<M> vt;
Vec3vf<M> vNg;
};
template<int M>
struct ConeCurveIntersector1
{
typedef CurvePrecalculations1 Precalculations;
struct ray_tfar {
Ray& ray;
__forceinline ray_tfar(Ray& ray) : ray(ray) {}
__forceinline vfloat<M> operator() () const { return ray.tfar; };
};
template<typename Epilog>
static __forceinline bool intersect(const vbool<M>& valid_i,
Ray& ray,
IntersectContext* context,
const LineSegments* geom,
const Precalculations& pre,
const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
const vbool<M>& cL, const vbool<M>& cR,
const Epilog& epilog)
{
const Vec3vf<M> ray_org(ray.org.x, ray.org.y, ray.org.z);
const Vec3vf<M> ray_dir(ray.dir.x, ray.dir.y, ray.dir.z);
const vfloat<M> ray_tnear(ray.tnear());
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
return __coneline_internal::intersectCone<M>(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar(ray),v0,v1,cL,cR,epilog);
}
};
template<int M, int K>
struct ConeCurveIntersectorK
{
typedef CurvePrecalculationsK<K> Precalculations;
struct ray_tfar {
RayK<K>& ray;
size_t k;
__forceinline ray_tfar(RayK<K>& ray, size_t k) : ray(ray), k(k) {}
__forceinline vfloat<M> operator() () const { return ray.tfar[k]; };
};
template<typename Epilog>
static __forceinline bool intersect(const vbool<M>& valid_i,
RayK<K>& ray, size_t k,
IntersectContext* context,
const LineSegments* geom,
const Precalculations& pre,
const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
const vbool<M>& cL, const vbool<M>& cR,
const Epilog& epilog)
{
const Vec3vf<M> ray_org(ray.org.x[k], ray.org.y[k], ray.org.z[k]);
const Vec3vf<M> ray_dir(ray.dir.x[k], ray.dir.y[k], ray.dir.z[k]);
const vfloat<M> ray_tnear = ray.tnear()[k];
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
return __coneline_internal::intersectCone<M>(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar(ray,k),v0,v1,cL,cR,epilog);
}
};
}
}
|