summaryrefslogtreecommitdiff
path: root/thirdparty/embree/kernels/common/scene_quad_mesh.h
blob: bd8eeaaeb7ad8f37a5ab95fed164153f16afa01a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "geometry.h"
#include "buffer.h"

namespace embree
{
  /*! Quad Mesh */
  struct QuadMesh : public Geometry
  {
    /*! type of this geometry */
    static const Geometry::GTypeMask geom_type = Geometry::MTY_QUAD_MESH;
    
    /*! triangle indices */
    struct Quad
    {
      uint32_t v[4];

      /*! outputs triangle indices */
      __forceinline friend embree_ostream operator<<(embree_ostream cout, const Quad& q) {
        return cout << "Quad {" << q.v[0] << ", " << q.v[1] << ", " << q.v[2] << ", " << q.v[3] << " }";
      }
    };

  public:

    /*! quad mesh construction */
    QuadMesh (Device* device); 
  
    /* geometry interface */
  public:
    void setMask(unsigned mask);
    void setNumTimeSteps (unsigned int numTimeSteps);
    void setVertexAttributeCount (unsigned int N);
    void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
    void* getBuffer(RTCBufferType type, unsigned int slot);
    void updateBuffer(RTCBufferType type, unsigned int slot);
    void commit();
    bool verify();
    void interpolate(const RTCInterpolateArguments* const args);
    void addElementsToCount (GeometryCounts & counts) const;

    template<int N>
      void interpolate_impl(const RTCInterpolateArguments* const args)
    {
      unsigned int primID = args->primID;
      float u = args->u;
      float v = args->v;
      RTCBufferType bufferType = args->bufferType;
      unsigned int bufferSlot = args->bufferSlot;
      float* P = args->P;
      float* dPdu = args->dPdu;
      float* dPdv = args->dPdv;
      float* ddPdudu = args->ddPdudu;
      float* ddPdvdv = args->ddPdvdv;
      float* ddPdudv = args->ddPdudv;
      unsigned int valueCount = args->valueCount;
      
      /* calculate base pointer and stride */
      assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
             (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
      const char* src = nullptr; 
      size_t stride = 0;
      if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
        src    = vertexAttribs[bufferSlot].getPtr();
        stride = vertexAttribs[bufferSlot].getStride();
      } else {
        src    = vertices[bufferSlot].getPtr();
        stride = vertices[bufferSlot].getStride();
      }
      
      for (unsigned int i=0; i<valueCount; i+=N)
      {
        const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>(int(valueCount));
        const size_t ofs = i*sizeof(float);
        const Quad& tri = quad(primID);
        const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[0]*stride+ofs]);
        const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[1]*stride+ofs]);
        const vfloat<N> p2 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[2]*stride+ofs]);
        const vfloat<N> p3 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[3]*stride+ofs]);      
        const vbool<N> left = u+v <= 1.0f;
        const vfloat<N> Q0 = select(left,p0,p2);
        const vfloat<N> Q1 = select(left,p1,p3);
        const vfloat<N> Q2 = select(left,p3,p1);
        const vfloat<N> U  = select(left,u,vfloat<N>(1.0f)-u);
        const vfloat<N> V  = select(left,v,vfloat<N>(1.0f)-v);
        const vfloat<N> W  = 1.0f-U-V;
        if (P) {
          mem<vfloat<N>>::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2)));
        }
        if (dPdu) { 
          assert(dPdu); mem<vfloat<N>>::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1));
          assert(dPdv); mem<vfloat<N>>::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2));
        }
        if (ddPdudu) { 
          assert(ddPdudu); mem<vfloat<N>>::storeu(valid,ddPdudu+i,vfloat<N>(zero));
          assert(ddPdvdv); mem<vfloat<N>>::storeu(valid,ddPdvdv+i,vfloat<N>(zero));
          assert(ddPdudv); mem<vfloat<N>>::storeu(valid,ddPdudv+i,vfloat<N>(zero));
        }
      }
    }
        
  public:

    /*! returns number of vertices */
    __forceinline size_t numVertices() const {
      return vertices[0].size();
    }
    
    /*! returns i'th quad */
    __forceinline const Quad& quad(size_t i) const {
      return quads[i];
    }

    /*! returns i'th vertex of itime'th timestep */
    __forceinline const Vec3fa vertex(size_t i) const {
      return vertices0[i];
    }

    /*! returns i'th vertex of itime'th timestep */
    __forceinline const char* vertexPtr(size_t i) const {
      return vertices0.getPtr(i);
    }

    /*! returns i'th vertex of itime'th timestep */
    __forceinline const Vec3fa vertex(size_t i, size_t itime) const {
      return vertices[itime][i];
    }

    /*! returns i'th vertex of itime'th timestep */
    __forceinline const char* vertexPtr(size_t i, size_t itime) const {
      return vertices[itime].getPtr(i);
    }

    /*! calculates the bounds of the i'th quad */
    __forceinline BBox3fa bounds(size_t i) const 
    {
      const Quad& q = quad(i);
      const Vec3fa v0 = vertex(q.v[0]);
      const Vec3fa v1 = vertex(q.v[1]);
      const Vec3fa v2 = vertex(q.v[2]);
      const Vec3fa v3 = vertex(q.v[3]);
      return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3));
    }

    /*! calculates the bounds of the i'th quad at the itime'th timestep */
    __forceinline BBox3fa bounds(size_t i, size_t itime) const
    {
      const Quad& q = quad(i);
      const Vec3fa v0 = vertex(q.v[0],itime);
      const Vec3fa v1 = vertex(q.v[1],itime);
      const Vec3fa v2 = vertex(q.v[2],itime);
      const Vec3fa v3 = vertex(q.v[3],itime);
      return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3));
    }

    /*! check if the i'th primitive is valid at the itime'th timestep */
    __forceinline bool valid(size_t i, size_t itime) const {
      return valid(i, make_range(itime, itime));
    }

    /*! check if the i'th primitive is valid between the specified time range */
    __forceinline bool valid(size_t i, const range<size_t>& itime_range) const
    {
      const Quad& q = quad(i);
      if (unlikely(q.v[0] >= numVertices())) return false;
      if (unlikely(q.v[1] >= numVertices())) return false;
      if (unlikely(q.v[2] >= numVertices())) return false;
      if (unlikely(q.v[3] >= numVertices())) return false;

      for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
      {
        if (!isvalid(vertex(q.v[0],itime))) return false;
        if (!isvalid(vertex(q.v[1],itime))) return false;
        if (!isvalid(vertex(q.v[2],itime))) return false;
        if (!isvalid(vertex(q.v[3],itime))) return false;
      }

      return true;
    }

    /*! calculates the linear bounds of the i'th quad at the itimeGlobal'th time segment */
    __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const {
      return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1));
    }

    /*! calculates the build bounds of the i'th primitive, if it's valid */
    __forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
    {
      const Quad& q = quad(i);
      if (q.v[0] >= numVertices()) return false;
      if (q.v[1] >= numVertices()) return false;
      if (q.v[2] >= numVertices()) return false;
      if (q.v[3] >= numVertices()) return false;

      for (unsigned int t=0; t<numTimeSteps; t++)
      {
        const Vec3fa v0 = vertex(q.v[0],t);
        const Vec3fa v1 = vertex(q.v[1],t);
        const Vec3fa v2 = vertex(q.v[2],t);
        const Vec3fa v3 = vertex(q.v[3],t);

        if (unlikely(!isvalid(v0) || !isvalid(v1) || !isvalid(v2) || !isvalid(v3)))
          return false;
      }

      if (bbox) 
        *bbox = bounds(i);

      return true;
    }

    /*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */
    __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
    {
      const Quad& q = quad(i);
      if (unlikely(q.v[0] >= numVertices())) return false;
      if (unlikely(q.v[1] >= numVertices())) return false;
      if (unlikely(q.v[2] >= numVertices())) return false;
      if (unlikely(q.v[3] >= numVertices())) return false;

      assert(itime+1 < numTimeSteps);
      const Vec3fa a0 = vertex(q.v[0],itime+0); if (unlikely(!isvalid(a0))) return false;
      const Vec3fa a1 = vertex(q.v[1],itime+0); if (unlikely(!isvalid(a1))) return false;
      const Vec3fa a2 = vertex(q.v[2],itime+0); if (unlikely(!isvalid(a2))) return false;
      const Vec3fa a3 = vertex(q.v[3],itime+0); if (unlikely(!isvalid(a3))) return false;
      const Vec3fa b0 = vertex(q.v[0],itime+1); if (unlikely(!isvalid(b0))) return false;
      const Vec3fa b1 = vertex(q.v[1],itime+1); if (unlikely(!isvalid(b1))) return false;
      const Vec3fa b2 = vertex(q.v[2],itime+1); if (unlikely(!isvalid(b2))) return false;
      const Vec3fa b3 = vertex(q.v[3],itime+1); if (unlikely(!isvalid(b3))) return false;
      
      /* use bounds of first time step in builder */
      bbox = BBox3fa(min(a0,a1,a2,a3),max(a0,a1,a2,a3));
      return true;
    }

    /*! calculates the linear bounds of the i'th primitive for the specified time range */
    __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const {
      return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments);
    }

    /*! calculates the linear bounds of the i'th primitive for the specified time range */
    __forceinline bool linearBounds(size_t i, const BBox1f& dt, LBBox3fa& bbox) const
    {
      if (!valid(i, timeSegmentRange(dt))) return false;
      bbox = linearBounds(i, dt);
      return true;
    }

    /*! get fast access to first vertex buffer */
    __forceinline float * getCompactVertexArray () const {
      return (float*) vertices0.getPtr();
    }

    /* gets version info of topology */
    unsigned int getTopologyVersion() const {
      return quads.modCounter;
    }
    
    /* returns true if topology changed */
    bool topologyChanged(unsigned int otherVersion) const {
      return quads.isModified(otherVersion); // || numPrimitivesChanged;
    }

    /* returns the projected area */
    __forceinline float projectedPrimitiveArea(const size_t i) const {
      const Quad& q = quad(i);
      const Vec3fa v0 = vertex(q.v[0]);
      const Vec3fa v1 = vertex(q.v[1]);
      const Vec3fa v2 = vertex(q.v[2]);
      const Vec3fa v3 = vertex(q.v[3]);
      return areaProjectedTriangle(v0,v1,v3) +
	areaProjectedTriangle(v1,v2,v3);
    }

  public:
    BufferView<Quad> quads;                 //!< array of quads
    BufferView<Vec3fa> vertices0;           //!< fast access to first vertex buffer
    vector<BufferView<Vec3fa>> vertices;    //!< vertex array for each timestep
    vector<BufferView<char>> vertexAttribs; //!< vertex attribute buffers
  };

  namespace isa
  {
    struct QuadMeshISA : public QuadMesh
    {
      QuadMeshISA (Device* device)
        : QuadMesh(device) {}

      PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const
      {
        PrimInfo pinfo(empty);
        for (size_t j=r.begin(); j<r.end(); j++)
        {
          BBox3fa bounds = empty;
          if (!buildBounds(j,&bounds)) continue;
          const PrimRef prim(bounds,geomID,unsigned(j));
          pinfo.add_center2(prim);
          prims[k++] = prim;
        }
        return pinfo;
      }

      PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
      {
        PrimInfo pinfo(empty);
        for (size_t j=r.begin(); j<r.end(); j++)
        {
          BBox3fa bounds = empty;
          if (!buildBounds(j,itime,bounds)) continue;
          const PrimRef prim(bounds,geomID,unsigned(j));
          pinfo.add_center2(prim);
          prims[k++] = prim;
        }
        return pinfo;
      }
      
      PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
      {
        PrimInfoMB pinfo(empty);
        for (size_t j=r.begin(); j<r.end(); j++)
        {
          if (!valid(j, timeSegmentRange(t0t1))) continue;
          const PrimRefMB prim(linearBounds(j,t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j));
          pinfo.add_primref(prim);
          prims[k++] = prim;
        }
        return pinfo;
      }
    };
  }

  DECLARE_ISA_FUNCTION(QuadMesh*, createQuadMesh, Device*);
}