summaryrefslogtreecommitdiff
path: root/thirdparty/embree/kernels/common/accelset.h
blob: 90b184a07b5c11b87706e116a7e428ffa4079b5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "default.h"
#include "builder.h"
#include "geometry.h"
#include "ray.h"
#include "hit.h"

namespace embree
{
  struct IntersectFunctionNArguments;
  struct OccludedFunctionNArguments;
  
  typedef void (*ReportIntersectionFunc) (IntersectFunctionNArguments* args, const RTCFilterFunctionNArguments* filter_args);
  typedef void (*ReportOcclusionFunc) (OccludedFunctionNArguments* args, const RTCFilterFunctionNArguments* filter_args);
  
  struct IntersectFunctionNArguments : public RTCIntersectFunctionNArguments
  {
    IntersectContext* internal_context;
    Geometry* geometry;
    ReportIntersectionFunc report;
  };

  struct OccludedFunctionNArguments : public RTCOccludedFunctionNArguments
  {
    IntersectContext* internal_context;
    Geometry* geometry;
    ReportOcclusionFunc report;
  };

  /*! Base class for set of acceleration structures. */
  class AccelSet : public Geometry
  {
  public:
    typedef RTCIntersectFunctionN IntersectFuncN;  
    typedef RTCOccludedFunctionN OccludedFuncN;
    typedef void (*ErrorFunc) ();

      struct IntersectorN
      {
        IntersectorN (ErrorFunc error = nullptr) ;
        IntersectorN (IntersectFuncN intersect, OccludedFuncN occluded, const char* name);
        
        operator bool() const { return name; }
        
      public:
        static const char* type;
        IntersectFuncN intersect;
        OccludedFuncN occluded; 
        const char* name;
      };
      
    public:
      
      /*! construction */
      AccelSet (Device* device, Geometry::GType gtype, size_t items, size_t numTimeSteps);
      
      /*! makes the acceleration structure immutable */
      virtual void immutable () {}
      
      /*! build accel */
      virtual void build () = 0;

      /*! check if the i'th primitive is valid between the specified time range */
      __forceinline bool valid(size_t i, const range<size_t>& itime_range) const
      {
        for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
          if (!isvalid_non_empty(bounds(i,itime))) return false;
        
        return true;
      }

      /*! Calculates the bounds of an item */
      __forceinline BBox3fa bounds(size_t i, size_t itime = 0) const
      {
        BBox3fa box;
        assert(i < size());
        RTCBoundsFunctionArguments args;
        args.geometryUserPtr = userPtr;
        args.primID = (unsigned int)i;
        args.timeStep = (unsigned int)itime;
        args.bounds_o = (RTCBounds*)&box;
        boundsFunc(&args);
        return box;
      }

      /*! calculates the linear bounds of the i'th item at the itime'th time segment */
      __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const
      {
        BBox3fa box[2];
        assert(i < size());
        RTCBoundsFunctionArguments args;
        args.geometryUserPtr = userPtr;
        args.primID = (unsigned int)i;
        args.timeStep = (unsigned int)(itime+0);
        args.bounds_o = (RTCBounds*)&box[0];
        boundsFunc(&args);
        args.timeStep = (unsigned int)(itime+1);
        args.bounds_o = (RTCBounds*)&box[1];
        boundsFunc(&args);
        return LBBox3fa(box[0],box[1]);
      }

      /*! calculates the build bounds of the i'th item, if it's valid */
      __forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
      {
        const BBox3fa b = bounds(i);
        if (bbox) *bbox = b;
        return isvalid_non_empty(b);
      }

      /*! calculates the build bounds of the i'th item at the itime'th time segment, if it's valid */
      __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
      {
        const LBBox3fa bounds = linearBounds(i,itime);
        bbox = bounds.bounds0; // use bounding box of first timestep to build BVH
        return isvalid_non_empty(bounds);
      }

      /*! calculates the linear bounds of the i'th primitive for the specified time range */
      __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const {
        return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments);
      }
      
      /*! calculates the linear bounds of the i'th primitive for the specified time range */
      __forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const  {
        if (!valid(i, timeSegmentRange(time_range))) return false;
        bbox = linearBounds(i, time_range);
        return true;
      }

      /* gets version info of topology */
      unsigned int getTopologyVersion() const {
        return numPrimitives;
      }
    
      /* returns true if topology changed */
      bool topologyChanged(unsigned int otherVersion) const {
        return numPrimitives != otherVersion;
      }

  public:

      /*! Intersects a single ray with the scene. */
      __forceinline void intersect (RayHit& ray, unsigned int geomID, unsigned int primID, IntersectContext* context, ReportIntersectionFunc report) 
      {
        assert(primID < size());
        assert(intersectorN.intersect);
        
        int mask = -1;
        IntersectFunctionNArguments args;
        args.valid = &mask;
        args.geometryUserPtr = userPtr;
        args.context = context->user;
        args.rayhit = (RTCRayHitN*)&ray;
        args.N = 1;
        args.geomID = geomID;
        args.primID = primID;
        args.internal_context = context;
        args.geometry = this;
        args.report = report;
        
        intersectorN.intersect(&args);
      }

      /*! Tests if single ray is occluded by the scene. */
      __forceinline void occluded (Ray& ray, unsigned int geomID, unsigned int primID, IntersectContext* context, ReportOcclusionFunc report)
      {
        assert(primID < size());
        assert(intersectorN.occluded);
        
        int mask = -1;
        OccludedFunctionNArguments args;
        args.valid = &mask;
        args.geometryUserPtr = userPtr;
        args.context = context->user;
        args.ray = (RTCRayN*)&ray;
        args.N = 1;
        args.geomID = geomID;
        args.primID = primID;
        args.internal_context = context;
        args.geometry = this;
        args.report = report;
        
        intersectorN.occluded(&args);
      }
   
      /*! Intersects a packet of K rays with the scene. */
      template<int K>
        __forceinline void intersect (const vbool<K>& valid, RayHitK<K>& ray, unsigned int geomID, unsigned int primID, IntersectContext* context, ReportIntersectionFunc report) 
      {
        assert(primID < size());
        assert(intersectorN.intersect);
        
        vint<K> mask = valid.mask32();
        IntersectFunctionNArguments args;
        args.valid = (int*)&mask;
        args.geometryUserPtr = userPtr;
        args.context = context->user;
        args.rayhit = (RTCRayHitN*)&ray;
        args.N = K;
        args.geomID = geomID;
        args.primID = primID;
        args.internal_context = context;
        args.geometry = this;
        args.report = report;
         
        intersectorN.intersect(&args);
      }

      /*! Tests if a packet of K rays is occluded by the scene. */
      template<int K>
        __forceinline void occluded (const vbool<K>& valid, RayK<K>& ray, unsigned int geomID, unsigned int primID, IntersectContext* context, ReportOcclusionFunc report)
      {
        assert(primID < size());
        assert(intersectorN.occluded);
        
        vint<K> mask = valid.mask32();
        OccludedFunctionNArguments args;
        args.valid = (int*)&mask;
        args.geometryUserPtr = userPtr;
        args.context = context->user;
        args.ray = (RTCRayN*)&ray;
        args.N = K;
        args.geomID = geomID;
        args.primID = primID;
        args.internal_context = context;
        args.geometry = this;
        args.report = report;
        
        intersectorN.occluded(&args);
      }

    public:
      RTCBoundsFunction boundsFunc;
      IntersectorN intersectorN;
  };
  
#define DEFINE_SET_INTERSECTORN(symbol,intersector)                     \
  AccelSet::IntersectorN symbol() {                                     \
    return AccelSet::IntersectorN(intersector::intersect, \
                                  intersector::occluded, \
                                  TOSTRING(isa) "::" TOSTRING(symbol)); \
  }
}