summaryrefslogtreecommitdiff
path: root/thirdparty/embree/kernels/bvh/bvh_collider.cpp
blob: 9428c0b88e4f4a96af28ff8463e23897d98f55ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "bvh_collider.h"
#include "../geometry/triangle_triangle_intersector.h"

namespace embree
{ 
  namespace isa
  {
#define CSTAT(x)

    size_t parallel_depth_threshold = 3;
    CSTAT(std::atomic<size_t> bvh_collide_traversal_steps(0));
    CSTAT(std::atomic<size_t> bvh_collide_leaf_pairs(0));
    CSTAT(std::atomic<size_t> bvh_collide_leaf_iterations(0));
    CSTAT(std::atomic<size_t> bvh_collide_prim_intersections1(0));
    CSTAT(std::atomic<size_t> bvh_collide_prim_intersections2(0));
    CSTAT(std::atomic<size_t> bvh_collide_prim_intersections3(0));
    CSTAT(std::atomic<size_t> bvh_collide_prim_intersections4(0));
    CSTAT(std::atomic<size_t> bvh_collide_prim_intersections5(0));
    CSTAT(std::atomic<size_t> bvh_collide_prim_intersections(0));

    struct Collision
    {
      __forceinline Collision() {}

      __forceinline Collision (unsigned geomID0, unsigned primID0, unsigned geomID1, unsigned primID1)
        : geomID0(geomID0), primID0(primID0), geomID1(geomID1), primID1(primID1) {}

      unsigned geomID0;
      unsigned primID0;
      unsigned geomID1;
      unsigned primID1;
    };
    
    template<int N>
    __forceinline size_t overlap(const BBox3fa& box0, const typename BVHN<N>::AABBNode& node1)
    {
      const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),node1.lower_x);
      const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),node1.lower_y);
      const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),node1.lower_z);
      const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),node1.upper_x);
      const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),node1.upper_y);
      const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),node1.upper_z);
      return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z));
    }

    template<int N>
    __forceinline size_t overlap(const BBox3fa& box0, const BBox<Vec3<vfloat<N>>>& box1)
    {
      const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),box1.lower.x);
      const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),box1.lower.y);
      const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),box1.lower.z);
      const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),box1.upper.x);
      const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),box1.upper.y);
      const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),box1.upper.z);
      return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z));
    }

    template<int N>
    __forceinline size_t overlap(const BBox<Vec3<vfloat<N>>>& box0, size_t i, const BBox<Vec3<vfloat<N>>>& box1)
    {
      const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x[i]),box1.lower.x);
      const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y[i]),box1.lower.y);
      const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z[i]),box1.lower.z);
      const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x[i]),box1.upper.x);
      const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y[i]),box1.upper.y);
      const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z[i]),box1.upper.z);
      return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z));
    }

    bool intersect_triangle_triangle (Scene* scene0, unsigned geomID0, unsigned primID0, Scene* scene1, unsigned geomID1, unsigned primID1)
    {
      CSTAT(bvh_collide_prim_intersections1++);
      const TriangleMesh* mesh0 = scene0->get<TriangleMesh>(geomID0);
      const TriangleMesh* mesh1 = scene1->get<TriangleMesh>(geomID1);
      const TriangleMesh::Triangle& tri0 = mesh0->triangle(primID0);
      const TriangleMesh::Triangle& tri1 = mesh1->triangle(primID1);
      
      /* special culling for scene intersection with itself */
      if (scene0 == scene1 && geomID0 == geomID1)
      {
        /* ignore self intersections */
        if (primID0 == primID1)
          return false;
      }
      CSTAT(bvh_collide_prim_intersections2++);
      
      if (scene0 == scene1 && geomID0 == geomID1)
      {
        /* ignore intersection with topological neighbors */
        const vint4 t0(tri0.v[0],tri0.v[1],tri0.v[2],tri0.v[2]);
        if (any(vint4(tri1.v[0]) == t0)) return false;
        if (any(vint4(tri1.v[1]) == t0)) return false;
        if (any(vint4(tri1.v[2]) == t0)) return false;
      }
      CSTAT(bvh_collide_prim_intersections3++);
      
      const Vec3fa a0 = mesh0->vertex(tri0.v[0]);
      const Vec3fa a1 = mesh0->vertex(tri0.v[1]);
      const Vec3fa a2 = mesh0->vertex(tri0.v[2]);
      const Vec3fa b0 = mesh1->vertex(tri1.v[0]);
      const Vec3fa b1 = mesh1->vertex(tri1.v[1]);
      const Vec3fa b2 = mesh1->vertex(tri1.v[2]);
      
      return TriangleTriangleIntersector::intersect_triangle_triangle(a0,a1,a2,b0,b1,b2);
    }
    
    template<int N>
    __forceinline void BVHNColliderUserGeom<N>::processLeaf(NodeRef node0, NodeRef node1)
    {
      Collision collisions[16];
      size_t num_collisions = 0;

      size_t N0; Object* leaf0 = (Object*) node0.leaf(N0);
      size_t N1; Object* leaf1 = (Object*) node1.leaf(N1);
      for (size_t i=0; i<N0; i++) {
        for (size_t j=0; j<N1; j++) {
          const unsigned geomID0 = leaf0[i].geomID();
          const unsigned primID0 = leaf0[i].primID();
          const unsigned geomID1 = leaf1[j].geomID();
          const unsigned primID1 = leaf1[j].primID();
          if (this->scene0 == this->scene1 && geomID0 == geomID1 && primID0 == primID1) continue;
          collisions[num_collisions++] = Collision(geomID0,primID0,geomID1,primID1);
          if (num_collisions == 16) {
            this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions);
            num_collisions = 0;
          }
        }
      }
      if (num_collisions)
        this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions);
    }

    template<int N>
    void BVHNCollider<N>::collide_recurse(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1, size_t depth0, size_t depth1)
    {
      CSTAT(bvh_collide_traversal_steps++);
      if (unlikely(ref0.isLeaf())) {
        if (unlikely(ref1.isLeaf())) {
          CSTAT(bvh_collide_leaf_pairs++);
          processLeaf(ref0,ref1);
          return;
        } else goto recurse_node1;
        
      } else {
        if (unlikely(ref1.isLeaf())) {
          goto recurse_node0;
        } else {
          if (area(bounds0) > area(bounds1)) {
            goto recurse_node0;
          }
          else {
            goto recurse_node1;
          }
        }
      }

      {
      recurse_node0:
        AABBNode* node0 = ref0.getAABBNode();
        size_t mask = overlap<N>(bounds1,*node0);
        //for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
        //for (size_t i=0; i<N; i++) {
#if 0
        if (depth0 < parallel_depth_threshold) 
        {
          parallel_for(size_t(N), [&] ( size_t i ) {
              if (mask & ( 1 << i)) {
                BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE);
                collide_recurse(node0->child(i),node0->bounds(i),ref1,bounds1,depth0+1,depth1);
              }
            });
        } 
        else
#endif
        {
          for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
            BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE);
            collide_recurse(node0->child(i),node0->bounds(i),ref1,bounds1,depth0+1,depth1);
          }
        }
        return;
      }
      
      {
      recurse_node1:
        AABBNode* node1 = ref1.getAABBNode();
        size_t mask = overlap<N>(bounds0,*node1);
        //for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
        //for (size_t i=0; i<N; i++) {
#if 0
        if (depth1 < parallel_depth_threshold) 
        {
          parallel_for(size_t(N), [&] ( size_t i ) {
              if (mask & ( 1 << i)) {
                BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE);
                collide_recurse(ref0,bounds0,node1->child(i),node1->bounds(i),depth0,depth1+1);
              }
            });
        }
        else
#endif
        {
          for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
            BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE);
            collide_recurse(ref0,bounds0,node1->child(i),node1->bounds(i),depth0,depth1+1);
          }
        }
        return;
      }
    }

    template<int N>
    void BVHNCollider<N>::split(const CollideJob& job, jobvector& jobs)
    {
      if (unlikely(job.ref0.isLeaf())) {
        if (unlikely(job.ref1.isLeaf())) {
          jobs.push_back(job);
          return;
        } else goto recurse_node1;
      } else {
        if (unlikely(job.ref1.isLeaf())) {
          goto recurse_node0;
        } else {
          if (area(job.bounds0) > area(job.bounds1)) {
            goto recurse_node0;
          }
          else {
            goto recurse_node1;
          }
        }
      }
      
      {
      recurse_node0:
        const AABBNode* node0 = job.ref0.getAABBNode();
        size_t mask = overlap<N>(job.bounds1,*node0);
        for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
          jobs.push_back(CollideJob(node0->child(i),node0->bounds(i),job.depth0+1,job.ref1,job.bounds1,job.depth1));
        }
        return;
      }
      
      {
      recurse_node1:
        const AABBNode* node1 = job.ref1.getAABBNode();
        size_t mask = overlap<N>(job.bounds0,*node1);
        for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
          jobs.push_back(CollideJob(job.ref0,job.bounds0,job.depth0,node1->child(i),node1->bounds(i),job.depth1+1));
        }
        return;
      }
    }
    
    template<int N>
    void BVHNCollider<N>::collide_recurse_entry(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1)
    {
      CSTAT(bvh_collide_traversal_steps = 0);
      CSTAT(bvh_collide_leaf_pairs = 0);
      CSTAT(bvh_collide_leaf_iterations = 0);
      CSTAT(bvh_collide_prim_intersections1 = 0);
      CSTAT(bvh_collide_prim_intersections2 = 0);
      CSTAT(bvh_collide_prim_intersections3 = 0);
      CSTAT(bvh_collide_prim_intersections4 = 0);
      CSTAT(bvh_collide_prim_intersections5 = 0);
      CSTAT(bvh_collide_prim_intersections = 0);
#if 0
      collide_recurse(ref0,bounds0,ref1,bounds1,0,0);
#else
      const int M = 2048;
      jobvector jobs[2];
      jobs[0].reserve(M);
      jobs[1].reserve(M);
      jobs[0].push_back(CollideJob(ref0,bounds0,0,ref1,bounds1,0));
      int source = 0;
      int target = 1;

      /* try to split job until job list is full */
      while (jobs[source].size()+8 <= M)
      {
        for (size_t i=0; i<jobs[source].size(); i++)
        {
          const CollideJob& job = jobs[source][i];
          size_t remaining = jobs[source].size()-i;
          if (jobs[target].size()+remaining+8 > M) {
            jobs[target].push_back(job);
          } else {
            split(job,jobs[target]);
          }
        }

        /* stop splitting jobs if we reached only leaves and cannot make progress anymore */
        if (jobs[target].size() == jobs[source].size())
          break;

        jobs[source].resize(0);
        std::swap(source,target);
      }

      /* parallel processing of all jobs */
      parallel_for(size_t(jobs[source].size()), [&] ( size_t i ) {
          CollideJob& j = jobs[source][i];
          collide_recurse(j.ref0,j.bounds0,j.ref1,j.bounds1,j.depth0,j.depth1);
        });
      
      
#endif
      CSTAT(PRINT(bvh_collide_traversal_steps));
      CSTAT(PRINT(bvh_collide_leaf_pairs));
      CSTAT(PRINT(bvh_collide_leaf_iterations));
      CSTAT(PRINT(bvh_collide_prim_intersections1));
      CSTAT(PRINT(bvh_collide_prim_intersections2));
      CSTAT(PRINT(bvh_collide_prim_intersections3));
      CSTAT(PRINT(bvh_collide_prim_intersections4));
      CSTAT(PRINT(bvh_collide_prim_intersections5));
      CSTAT(PRINT(bvh_collide_prim_intersections));
    }
   
    template<int N>
    void BVHNColliderUserGeom<N>::collide(BVH* __restrict__ bvh0, BVH* __restrict__ bvh1, RTCCollideFunc callback, void* userPtr)
    { 
      BVHNColliderUserGeom<N>(bvh0->scene,bvh1->scene,callback,userPtr).
        collide_recurse_entry(bvh0->root,bvh0->bounds.bounds(),bvh1->root,bvh1->bounds.bounds());
    }

#if defined (EMBREE_LOWEST_ISA)
    struct collision_regression_test : public RegressionTest
    {
      collision_regression_test(const char* name) : RegressionTest(name) {
        registerRegressionTest(this);
      }
    
      bool run ()
      {
        bool passed = true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(-0.008815f, 0.041848f, -2.49875e-06f), Vec3fa(-0.008276f, 0.053318f, -2.49875e-06f), Vec3fa(0.003023f, 0.048969f, -2.49875e-06f),
                                                                            Vec3fa(0.00245f, 0.037612f, -2.49875e-06f), Vec3fa(0.01434f, 0.042634f, -2.49875e-06f), Vec3fa(0.013499f, 0.031309f, -2.49875e-06f)) == false;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,1),Vec3fa(1,0,1),Vec3fa(0,1,1)) == false;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,1),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,-0.1f),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(0.5f,0,0),Vec3fa(0,0.5f,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(0.5f,0,0),Vec3fa(0,0.5f,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,-0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(-0.1f,0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), 
                                               Vec3fa(-1,1,0) + Vec3fa(0,0,0),Vec3fa(-1,1,0) + Vec3fa(0.1f,0,0),Vec3fa(-1,1,0) + Vec3fa(0,0.1f,0)) == false;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), 
                                               Vec3fa( 2,0.5f,0) + Vec3fa(0,0,0),Vec3fa( 2,0.5f,0) + Vec3fa(0.1f,0,0),Vec3fa( 2,0.5f,0) + Vec3fa(0,0.1f,0)) == false;
        passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), 
                                               Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0,0),Vec3fa(0.5f,-2.0f,0) + Vec3fa(0.1f,0,0),Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0.1f,0)) == false;
        return passed;
      }
    };

    collision_regression_test collision_regression("collision_regression_test");
#endif

    ////////////////////////////////////////////////////////////////////////////////
    /// Collider Definitions
    ////////////////////////////////////////////////////////////////////////////////

    DEFINE_COLLIDER(BVH4ColliderUserGeom,BVHNColliderUserGeom<4>);

#if defined(__AVX__)
    DEFINE_COLLIDER(BVH8ColliderUserGeom,BVHNColliderUserGeom<8>);
#endif
  }
}