1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "heuristic_binning.h"
namespace embree
{
namespace isa
{
struct PrimInfoRange : public CentGeomBBox3fa, public range<size_t>
{
__forceinline PrimInfoRange () {
}
__forceinline PrimInfoRange(const PrimInfo& pinfo)
: CentGeomBBox3fa(pinfo), range<size_t>(pinfo.begin,pinfo.end) {}
__forceinline PrimInfoRange(EmptyTy)
: CentGeomBBox3fa(EmptyTy()), range<size_t>(0,0) {}
__forceinline PrimInfoRange (size_t begin, size_t end, const CentGeomBBox3fa& centGeomBounds)
: CentGeomBBox3fa(centGeomBounds), range<size_t>(begin,end) {}
__forceinline float leafSAH() const {
return expectedApproxHalfArea(geomBounds)*float(size());
}
__forceinline float leafSAH(size_t block_shift) const {
return expectedApproxHalfArea(geomBounds)*float((size()+(size_t(1)<<block_shift)-1) >> block_shift);
}
};
/*! Performs standard object binning */
template<typename PrimRef, size_t BINS>
struct HeuristicArrayBinningSAH
{
typedef BinSplit<BINS> Split;
typedef BinInfoT<BINS,PrimRef,BBox3fa> Binner;
typedef range<size_t> Set;
static const size_t PARALLEL_THRESHOLD = 3 * 1024;
static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024;
static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128;
__forceinline HeuristicArrayBinningSAH ()
: prims(nullptr) {}
/*! remember prim array */
__forceinline HeuristicArrayBinningSAH (PrimRef* prims)
: prims(prims) {}
/*! finds the best split */
__noinline const Split find(const PrimInfoRange& pinfo, const size_t logBlockSize)
{
if (likely(pinfo.size() < PARALLEL_THRESHOLD))
return find_template<false>(pinfo,logBlockSize);
else
return find_template<true>(pinfo,logBlockSize);
}
template<bool parallel>
__forceinline const Split find_template(const PrimInfoRange& pinfo, const size_t logBlockSize)
{
Binner binner(empty);
const BinMapping<BINS> mapping(pinfo);
bin_serial_or_parallel<parallel>(binner,prims,pinfo.begin(),pinfo.end(),PARALLEL_FIND_BLOCK_SIZE,mapping);
return binner.best(mapping,logBlockSize);
}
/*! array partitioning */
__forceinline void split(const Split& split, const PrimInfoRange& pinfo, PrimInfoRange& linfo, PrimInfoRange& rinfo)
{
if (likely(pinfo.size() < PARALLEL_THRESHOLD))
split_template<false>(split,pinfo,linfo,rinfo);
else
split_template<true>(split,pinfo,linfo,rinfo);
}
template<bool parallel>
__forceinline void split_template(const Split& split, const PrimInfoRange& set, PrimInfoRange& lset, PrimInfoRange& rset)
{
if (!split.valid()) {
deterministic_order(set);
return splitFallback(set,lset,rset);
}
const size_t begin = set.begin();
const size_t end = set.end();
CentGeomBBox3fa local_left(empty);
CentGeomBBox3fa local_right(empty);
const unsigned int splitPos = split.pos;
const unsigned int splitDim = split.dim;
const unsigned int splitDimMask = (unsigned int)1 << splitDim;
const typename Binner::vint vSplitPos(splitPos);
const typename Binner::vbool vSplitMask(splitDimMask);
auto isLeft = [&] (const PrimRef &ref) { return split.mapping.bin_unsafe(ref,vSplitPos,vSplitMask); };
size_t center = 0;
if (!parallel)
center = serial_partitioning(prims,begin,end,local_left,local_right,isLeft,
[] (CentGeomBBox3fa& pinfo,const PrimRef& ref) { pinfo.extend_center2(ref); });
else
center = parallel_partitioning(
prims,begin,end,EmptyTy(),local_left,local_right,isLeft,
[] (CentGeomBBox3fa& pinfo,const PrimRef& ref) { pinfo.extend_center2(ref); },
[] (CentGeomBBox3fa& pinfo0,const CentGeomBBox3fa& pinfo1) { pinfo0.merge(pinfo1); },
PARALLEL_PARTITION_BLOCK_SIZE);
new (&lset) PrimInfoRange(begin,center,local_left);
new (&rset) PrimInfoRange(center,end,local_right);
assert(area(lset.geomBounds) >= 0.0f);
assert(area(rset.geomBounds) >= 0.0f);
}
void deterministic_order(const PrimInfoRange& pinfo)
{
/* required as parallel partition destroys original primitive order */
std::sort(&prims[pinfo.begin()],&prims[pinfo.end()]);
}
void splitFallback(const PrimInfoRange& pinfo, PrimInfoRange& linfo, PrimInfoRange& rinfo)
{
const size_t begin = pinfo.begin();
const size_t end = pinfo.end();
const size_t center = (begin + end)/2;
CentGeomBBox3fa left(empty);
for (size_t i=begin; i<center; i++)
left.extend_center2(prims[i]);
new (&linfo) PrimInfoRange(begin,center,left);
CentGeomBBox3fa right(empty);
for (size_t i=center; i<end; i++)
right.extend_center2(prims[i]);
new (&rinfo) PrimInfoRange(center,end,right);
}
void splitByGeometry(const range<size_t>& range, PrimInfoRange& linfo, PrimInfoRange& rinfo)
{
assert(range.size() > 1);
CentGeomBBox3fa left(empty);
CentGeomBBox3fa right(empty);
unsigned int geomID = prims[range.begin()].geomID();
size_t center = serial_partitioning(prims,range.begin(),range.end(),left,right,
[&] ( const PrimRef& prim ) { return prim.geomID() == geomID; },
[ ] ( CentGeomBBox3fa& a, const PrimRef& ref ) { a.extend_center2(ref); });
new (&linfo) PrimInfoRange(range.begin(),center,left);
new (&rinfo) PrimInfoRange(center,range.end(),right);
}
private:
PrimRef* const prims;
};
/*! Performs standard object binning */
template<typename PrimRefMB, size_t BINS>
struct HeuristicArrayBinningMB
{
typedef BinSplit<BINS> Split;
typedef typename PrimRefMB::BBox BBox;
typedef BinInfoT<BINS,PrimRefMB,BBox> ObjectBinner;
static const size_t PARALLEL_THRESHOLD = 3 * 1024;
static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024;
static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128;
/*! finds the best split */
const Split find(const SetMB& set, const size_t logBlockSize)
{
ObjectBinner binner(empty);
const BinMapping<BINS> mapping(set.size(),set.centBounds);
bin_parallel(binner,set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,mapping);
Split osplit = binner.best(mapping,logBlockSize);
osplit.sah *= set.time_range.size();
if (!osplit.valid()) osplit.data = Split::SPLIT_FALLBACK; // use fallback split
return osplit;
}
/*! array partitioning */
__forceinline void split(const Split& split, const SetMB& set, SetMB& lset, SetMB& rset)
{
const size_t begin = set.begin();
const size_t end = set.end();
PrimInfoMB left = empty;
PrimInfoMB right = empty;
const vint4 vSplitPos(split.pos);
const vbool4 vSplitMask(1 << split.dim);
auto isLeft = [&] (const PrimRefMB &ref) { return any(((vint4)split.mapping.bin_unsafe(ref) < vSplitPos) & vSplitMask); };
auto reduction = [] (PrimInfoMB& pinfo, const PrimRefMB& ref) { pinfo.add_primref(ref); };
auto reduction2 = [] (PrimInfoMB& pinfo0,const PrimInfoMB& pinfo1) { pinfo0.merge(pinfo1); };
size_t center = parallel_partitioning(set.prims->data(),begin,end,EmptyTy(),left,right,isLeft,reduction,reduction2,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD);
new (&lset) SetMB(left, set.prims,range<size_t>(begin,center),set.time_range);
new (&rset) SetMB(right,set.prims,range<size_t>(center,end ),set.time_range);
}
};
}
}
|