1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "heuristic_binning_array_aligned.h"
#include "heuristic_spatial_array.h"
#include "heuristic_openmerge_array.h"
#if defined(__AVX512F__) && !defined(__AVX512VL__) // KNL
# define NUM_OBJECT_BINS 16
# define NUM_SPATIAL_BINS 16
#else
# define NUM_OBJECT_BINS 32
# define NUM_SPATIAL_BINS 16
#endif
namespace embree
{
namespace isa
{
MAYBE_UNUSED static const float travCost = 1.0f;
MAYBE_UNUSED static const size_t DEFAULT_SINGLE_THREAD_THRESHOLD = 1024;
struct GeneralBVHBuilder
{
static const size_t MAX_BRANCHING_FACTOR = 16; //!< maximum supported BVH branching factor
static const size_t MIN_LARGE_LEAF_LEVELS = 8; //!< create balanced tree of we are that many levels before the maximum tree depth
/*! settings for SAH builder */
struct Settings
{
/*! default settings */
Settings ()
: branchingFactor(2), maxDepth(32), logBlockSize(0), minLeafSize(1), maxLeafSize(7),
travCost(1.0f), intCost(1.0f), singleThreadThreshold(1024), primrefarrayalloc(inf) {}
/*! initialize settings from API settings */
Settings (const RTCBuildArguments& settings)
: branchingFactor(2), maxDepth(32), logBlockSize(0), minLeafSize(1), maxLeafSize(7),
travCost(1.0f), intCost(1.0f), singleThreadThreshold(1024), primrefarrayalloc(inf)
{
if (RTC_BUILD_ARGUMENTS_HAS(settings,maxBranchingFactor)) branchingFactor = settings.maxBranchingFactor;
if (RTC_BUILD_ARGUMENTS_HAS(settings,maxDepth )) maxDepth = settings.maxDepth;
if (RTC_BUILD_ARGUMENTS_HAS(settings,sahBlockSize )) logBlockSize = bsr(settings.sahBlockSize);
if (RTC_BUILD_ARGUMENTS_HAS(settings,minLeafSize )) minLeafSize = settings.minLeafSize;
if (RTC_BUILD_ARGUMENTS_HAS(settings,maxLeafSize )) maxLeafSize = settings.maxLeafSize;
if (RTC_BUILD_ARGUMENTS_HAS(settings,traversalCost )) travCost = settings.traversalCost;
if (RTC_BUILD_ARGUMENTS_HAS(settings,intersectionCost )) intCost = settings.intersectionCost;
minLeafSize = min(minLeafSize,maxLeafSize);
}
Settings (size_t sahBlockSize, size_t minLeafSize, size_t maxLeafSize, float travCost, float intCost, size_t singleThreadThreshold, size_t primrefarrayalloc = inf)
: branchingFactor(2), maxDepth(32), logBlockSize(bsr(sahBlockSize)), minLeafSize(minLeafSize), maxLeafSize(maxLeafSize),
travCost(travCost), intCost(intCost), singleThreadThreshold(singleThreadThreshold), primrefarrayalloc(primrefarrayalloc)
{
minLeafSize = min(minLeafSize,maxLeafSize);
}
public:
size_t branchingFactor; //!< branching factor of BVH to build
size_t maxDepth; //!< maximum depth of BVH to build
size_t logBlockSize; //!< log2 of blocksize for SAH heuristic
size_t minLeafSize; //!< minimum size of a leaf
size_t maxLeafSize; //!< maximum size of a leaf
float travCost; //!< estimated cost of one traversal step
float intCost; //!< estimated cost of one primitive intersection
size_t singleThreadThreshold; //!< threshold when we switch to single threaded build
size_t primrefarrayalloc; //!< builder uses prim ref array to allocate nodes and leaves when a subtree of that size is finished
};
/*! recursive state of builder */
template<typename Set, typename Split>
struct BuildRecordT
{
public:
__forceinline BuildRecordT () {}
__forceinline BuildRecordT (size_t depth)
: depth(depth), alloc_barrier(false), prims(empty) {}
__forceinline BuildRecordT (size_t depth, const Set& prims)
: depth(depth), alloc_barrier(false), prims(prims) {}
__forceinline BBox3fa bounds() const { return prims.geomBounds; }
__forceinline friend bool operator< (const BuildRecordT& a, const BuildRecordT& b) { return a.prims.size() < b.prims.size(); }
__forceinline friend bool operator> (const BuildRecordT& a, const BuildRecordT& b) { return a.prims.size() > b.prims.size(); }
__forceinline size_t size() const { return prims.size(); }
public:
size_t depth; //!< Depth of the root of this subtree.
bool alloc_barrier; //!< barrier used to reuse primref-array blocks to allocate nodes
Set prims; //!< The list of primitives.
};
template<typename PrimRef, typename Set>
struct DefaultCanCreateLeafFunc
{
__forceinline bool operator()(const PrimRef*, const Set&) const { return true; }
};
template<typename PrimRef, typename Set>
struct DefaultCanCreateLeafSplitFunc
{
__forceinline void operator()(PrimRef*, const Set&, Set&, Set&) const { }
};
template<typename BuildRecord,
typename Heuristic,
typename Set,
typename PrimRef,
typename ReductionTy,
typename Allocator,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename UpdateNodeFunc,
typename CreateLeafFunc,
typename CanCreateLeafFunc,
typename CanCreateLeafSplitFunc,
typename ProgressMonitor>
class BuilderT
{
friend struct GeneralBVHBuilder;
BuilderT (PrimRef* prims,
Heuristic& heuristic,
const CreateAllocFunc& createAlloc,
const CreateNodeFunc& createNode,
const UpdateNodeFunc& updateNode,
const CreateLeafFunc& createLeaf,
const CanCreateLeafFunc& canCreateLeaf,
const CanCreateLeafSplitFunc& canCreateLeafSplit,
const ProgressMonitor& progressMonitor,
const Settings& settings) :
cfg(settings),
prims(prims),
heuristic(heuristic),
createAlloc(createAlloc),
createNode(createNode),
updateNode(updateNode),
createLeaf(createLeaf),
canCreateLeaf(canCreateLeaf),
canCreateLeafSplit(canCreateLeafSplit),
progressMonitor(progressMonitor)
{
if (cfg.branchingFactor > MAX_BRANCHING_FACTOR)
throw_RTCError(RTC_ERROR_UNKNOWN,"bvh_builder: branching factor too large");
}
const ReductionTy createLargeLeaf(const BuildRecord& current, Allocator alloc)
{
/* this should never occur but is a fatal error */
if (current.depth > cfg.maxDepth)
throw_RTCError(RTC_ERROR_UNKNOWN,"depth limit reached");
/* create leaf for few primitives */
if (current.prims.size() <= cfg.maxLeafSize && canCreateLeaf(prims,current.prims))
return createLeaf(prims,current.prims,alloc);
/* fill all children by always splitting the largest one */
ReductionTy values[MAX_BRANCHING_FACTOR];
BuildRecord children[MAX_BRANCHING_FACTOR];
size_t numChildren = 1;
children[0] = current;
do {
/* find best child with largest bounding box area */
size_t bestChild = -1;
size_t bestSize = 0;
for (size_t i=0; i<numChildren; i++)
{
/* ignore leaves as they cannot get split */
if (children[i].prims.size() <= cfg.maxLeafSize && canCreateLeaf(prims,children[i].prims))
continue;
/* remember child with largest size */
if (children[i].prims.size() > bestSize) {
bestSize = children[i].prims.size();
bestChild = i;
}
}
if (bestChild == (size_t)-1) break;
/*! split best child into left and right child */
BuildRecord left(current.depth+1);
BuildRecord right(current.depth+1);
if (!canCreateLeaf(prims,children[bestChild].prims)) {
canCreateLeafSplit(prims,children[bestChild].prims,left.prims,right.prims);
} else {
heuristic.splitFallback(children[bestChild].prims,left.prims,right.prims);
}
/* add new children left and right */
children[bestChild] = children[numChildren-1];
children[numChildren-1] = left;
children[numChildren+0] = right;
numChildren++;
} while (numChildren < cfg.branchingFactor);
/* set barrier for primrefarrayalloc */
if (unlikely(current.size() > cfg.primrefarrayalloc))
for (size_t i=0; i<numChildren; i++)
children[i].alloc_barrier = children[i].size() <= cfg.primrefarrayalloc;
/* create node */
auto node = createNode(children,numChildren,alloc);
/* recurse into each child and perform reduction */
for (size_t i=0; i<numChildren; i++)
values[i] = createLargeLeaf(children[i],alloc);
/* perform reduction */
return updateNode(current,children,node,values,numChildren);
}
const ReductionTy recurse(BuildRecord& current, Allocator alloc, bool toplevel)
{
/* get thread local allocator */
if (!alloc)
alloc = createAlloc();
/* call memory monitor function to signal progress */
if (toplevel && current.size() <= cfg.singleThreadThreshold)
progressMonitor(current.size());
/*! find best split */
auto split = heuristic.find(current.prims,cfg.logBlockSize);
/*! compute leaf and split cost */
const float leafSAH = cfg.intCost*current.prims.leafSAH(cfg.logBlockSize);
const float splitSAH = cfg.travCost*halfArea(current.prims.geomBounds)+cfg.intCost*split.splitSAH();
assert((current.prims.size() == 0) || ((leafSAH >= 0) && (splitSAH >= 0)));
/*! create a leaf node when threshold reached or SAH tells us to stop */
if (current.prims.size() <= cfg.minLeafSize || current.depth+MIN_LARGE_LEAF_LEVELS >= cfg.maxDepth || (current.prims.size() <= cfg.maxLeafSize && leafSAH <= splitSAH)) {
heuristic.deterministic_order(current.prims);
return createLargeLeaf(current,alloc);
}
/*! perform initial split */
Set lprims,rprims;
heuristic.split(split,current.prims,lprims,rprims);
/*! initialize child list with initial split */
ReductionTy values[MAX_BRANCHING_FACTOR];
BuildRecord children[MAX_BRANCHING_FACTOR];
children[0] = BuildRecord(current.depth+1,lprims);
children[1] = BuildRecord(current.depth+1,rprims);
size_t numChildren = 2;
/*! split until node is full or SAH tells us to stop */
while (numChildren < cfg.branchingFactor)
{
/*! find best child to split */
float bestArea = neg_inf;
ssize_t bestChild = -1;
for (size_t i=0; i<numChildren; i++)
{
/* ignore leaves as they cannot get split */
if (children[i].prims.size() <= cfg.minLeafSize) continue;
/* find child with largest surface area */
if (halfArea(children[i].prims.geomBounds) > bestArea) {
bestChild = i;
bestArea = halfArea(children[i].prims.geomBounds);
}
}
if (bestChild == -1) break;
/* perform best found split */
BuildRecord& brecord = children[bestChild];
BuildRecord lrecord(current.depth+1);
BuildRecord rrecord(current.depth+1);
auto split = heuristic.find(brecord.prims,cfg.logBlockSize);
heuristic.split(split,brecord.prims,lrecord.prims,rrecord.prims);
children[bestChild ] = lrecord;
children[numChildren] = rrecord;
numChildren++;
}
/* set barrier for primrefarrayalloc */
if (unlikely(current.size() > cfg.primrefarrayalloc))
for (size_t i=0; i<numChildren; i++)
children[i].alloc_barrier = children[i].size() <= cfg.primrefarrayalloc;
/* sort buildrecords for faster shadow ray traversal */
std::sort(&children[0],&children[numChildren],std::greater<BuildRecord>());
/*! create an inner node */
auto node = createNode(children,numChildren,alloc);
/* spawn tasks */
if (current.size() > cfg.singleThreadThreshold)
{
/*! parallel_for is faster than spawning sub-tasks */
parallel_for(size_t(0), numChildren, [&] (const range<size_t>& r) { // FIXME: no range here
for (size_t i=r.begin(); i<r.end(); i++) {
values[i] = recurse(children[i],nullptr,true);
_mm_mfence(); // to allow non-temporal stores during build
}
});
return updateNode(current,children,node,values,numChildren);
}
/* recurse into each child */
else
{
for (size_t i=0; i<numChildren; i++)
values[i] = recurse(children[i],alloc,false);
return updateNode(current,children,node,values,numChildren);
}
}
private:
Settings cfg;
PrimRef* prims;
Heuristic& heuristic;
const CreateAllocFunc& createAlloc;
const CreateNodeFunc& createNode;
const UpdateNodeFunc& updateNode;
const CreateLeafFunc& createLeaf;
const CanCreateLeafFunc& canCreateLeaf;
const CanCreateLeafSplitFunc& canCreateLeafSplit;
const ProgressMonitor& progressMonitor;
};
template<
typename ReductionTy,
typename Heuristic,
typename Set,
typename PrimRef,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename UpdateNodeFunc,
typename CreateLeafFunc,
typename ProgressMonitor>
__noinline static ReductionTy build(Heuristic& heuristic,
PrimRef* prims,
const Set& set,
CreateAllocFunc createAlloc,
CreateNodeFunc createNode, UpdateNodeFunc updateNode,
const CreateLeafFunc& createLeaf,
const ProgressMonitor& progressMonitor,
const Settings& settings)
{
typedef BuildRecordT<Set,typename Heuristic::Split> BuildRecord;
typedef BuilderT<
BuildRecord,
Heuristic,
Set,
PrimRef,
ReductionTy,
decltype(createAlloc()),
CreateAllocFunc,
CreateNodeFunc,
UpdateNodeFunc,
CreateLeafFunc,
DefaultCanCreateLeafFunc<PrimRef, Set>,
DefaultCanCreateLeafSplitFunc<PrimRef, Set>,
ProgressMonitor> Builder;
/* instantiate builder */
Builder builder(prims,
heuristic,
createAlloc,
createNode,
updateNode,
createLeaf,
DefaultCanCreateLeafFunc<PrimRef, Set>(),
DefaultCanCreateLeafSplitFunc<PrimRef, Set>(),
progressMonitor,
settings);
/* build hierarchy */
BuildRecord record(1,set);
const ReductionTy root = builder.recurse(record,nullptr,true);
_mm_mfence(); // to allow non-temporal stores during build
return root;
}
template<
typename ReductionTy,
typename Heuristic,
typename Set,
typename PrimRef,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename UpdateNodeFunc,
typename CreateLeafFunc,
typename CanCreateLeafFunc,
typename CanCreateLeafSplitFunc,
typename ProgressMonitor>
__noinline static ReductionTy build(Heuristic& heuristic,
PrimRef* prims,
const Set& set,
CreateAllocFunc createAlloc,
CreateNodeFunc createNode, UpdateNodeFunc updateNode,
const CreateLeafFunc& createLeaf,
const CanCreateLeafFunc& canCreateLeaf,
const CanCreateLeafSplitFunc& canCreateLeafSplit,
const ProgressMonitor& progressMonitor,
const Settings& settings)
{
typedef BuildRecordT<Set,typename Heuristic::Split> BuildRecord;
typedef BuilderT<
BuildRecord,
Heuristic,
Set,
PrimRef,
ReductionTy,
decltype(createAlloc()),
CreateAllocFunc,
CreateNodeFunc,
UpdateNodeFunc,
CreateLeafFunc,
CanCreateLeafFunc,
CanCreateLeafSplitFunc,
ProgressMonitor> Builder;
/* instantiate builder */
Builder builder(prims,
heuristic,
createAlloc,
createNode,
updateNode,
createLeaf,
canCreateLeaf,
canCreateLeafSplit,
progressMonitor,
settings);
/* build hierarchy */
BuildRecord record(1,set);
const ReductionTy root = builder.recurse(record,nullptr,true);
_mm_mfence(); // to allow non-temporal stores during build
return root;
}
};
/* SAH builder that operates on an array of BuildRecords */
struct BVHBuilderBinnedSAH
{
typedef PrimInfoRange Set;
typedef HeuristicArrayBinningSAH<PrimRef,NUM_OBJECT_BINS> Heuristic;
typedef GeneralBVHBuilder::BuildRecordT<Set,typename Heuristic::Split> BuildRecord;
typedef GeneralBVHBuilder::Settings Settings;
/*! special builder that propagates reduction over the tree */
template<
typename ReductionTy,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename UpdateNodeFunc,
typename CreateLeafFunc,
typename ProgressMonitor>
static ReductionTy build(CreateAllocFunc createAlloc,
CreateNodeFunc createNode, UpdateNodeFunc updateNode,
const CreateLeafFunc& createLeaf,
const ProgressMonitor& progressMonitor,
PrimRef* prims, const PrimInfo& pinfo,
const Settings& settings)
{
Heuristic heuristic(prims);
return GeneralBVHBuilder::build<ReductionTy,Heuristic,Set,PrimRef>(
heuristic,
prims,
PrimInfoRange(0,pinfo.size(),pinfo),
createAlloc,
createNode,
updateNode,
createLeaf,
progressMonitor,
settings);
}
/*! special builder that propagates reduction over the tree */
template<
typename ReductionTy,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename UpdateNodeFunc,
typename CreateLeafFunc,
typename CanCreateLeafFunc,
typename CanCreateLeafSplitFunc,
typename ProgressMonitor>
static ReductionTy build(CreateAllocFunc createAlloc,
CreateNodeFunc createNode, UpdateNodeFunc updateNode,
const CreateLeafFunc& createLeaf,
const CanCreateLeafFunc& canCreateLeaf,
const CanCreateLeafSplitFunc& canCreateLeafSplit,
const ProgressMonitor& progressMonitor,
PrimRef* prims, const PrimInfo& pinfo,
const Settings& settings)
{
Heuristic heuristic(prims);
return GeneralBVHBuilder::build<ReductionTy,Heuristic,Set,PrimRef>(
heuristic,
prims,
PrimInfoRange(0,pinfo.size(),pinfo),
createAlloc,
createNode,
updateNode,
createLeaf,
canCreateLeaf,
canCreateLeafSplit,
progressMonitor,
settings);
}
};
/* Spatial SAH builder that operates on an double-buffered array of BuildRecords */
struct BVHBuilderBinnedFastSpatialSAH
{
typedef PrimInfoExtRange Set;
typedef Split2<BinSplit<NUM_OBJECT_BINS>,SpatialBinSplit<NUM_SPATIAL_BINS> > Split;
typedef GeneralBVHBuilder::BuildRecordT<Set,Split> BuildRecord;
typedef GeneralBVHBuilder::Settings Settings;
static const unsigned int GEOMID_MASK = 0xFFFFFFFF >> RESERVED_NUM_SPATIAL_SPLITS_GEOMID_BITS;
static const unsigned int SPLITS_MASK = 0xFFFFFFFF << (32-RESERVED_NUM_SPATIAL_SPLITS_GEOMID_BITS);
template<typename ReductionTy, typename UserCreateLeaf>
struct CreateLeafExt
{
__forceinline CreateLeafExt (const UserCreateLeaf userCreateLeaf)
: userCreateLeaf(userCreateLeaf) {}
// __noinline is workaround for ICC2016 compiler bug
template<typename Allocator>
__noinline ReductionTy operator() (PrimRef* prims, const range<size_t>& range, Allocator alloc) const
{
for (size_t i=range.begin(); i<range.end(); i++)
prims[i].lower.u &= GEOMID_MASK;
return userCreateLeaf(prims,range,alloc);
}
const UserCreateLeaf userCreateLeaf;
};
/*! special builder that propagates reduction over the tree */
template<
typename ReductionTy,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename UpdateNodeFunc,
typename CreateLeafFunc,
typename SplitPrimitiveFunc,
typename ProgressMonitor>
static ReductionTy build(CreateAllocFunc createAlloc,
CreateNodeFunc createNode,
UpdateNodeFunc updateNode,
const CreateLeafFunc& createLeaf,
SplitPrimitiveFunc splitPrimitive,
ProgressMonitor progressMonitor,
PrimRef* prims,
const size_t extSize,
const PrimInfo& pinfo,
const Settings& settings)
{
typedef HeuristicArraySpatialSAH<SplitPrimitiveFunc,PrimRef,NUM_OBJECT_BINS,NUM_SPATIAL_BINS> Heuristic;
Heuristic heuristic(splitPrimitive,prims,pinfo);
/* calculate total surface area */ // FIXME: this sum is not deterministic
const float A = (float) parallel_reduce(size_t(0),pinfo.size(),0.0, [&] (const range<size_t>& r) -> double {
double A = 0.0f;
for (size_t i=r.begin(); i<r.end(); i++)
{
PrimRef& prim = prims[i];
A += area(prim.bounds());
}
return A;
},std::plus<double>());
/* calculate maximum number of spatial splits per primitive */
const unsigned int maxSplits = ((size_t)1 << RESERVED_NUM_SPATIAL_SPLITS_GEOMID_BITS)-1;
const float f = 10.0f;
const float invA = 1.0f / A;
parallel_for( size_t(0), pinfo.size(), [&](const range<size_t>& r) {
for (size_t i=r.begin(); i<r.end(); i++)
{
PrimRef& prim = prims[i];
assert((prim.geomID() & SPLITS_MASK) == 0);
// FIXME: is there a better general heuristic ?
const float nf = ceilf(f*pinfo.size()*area(prim.bounds()) * invA);
unsigned int n = 4+min((int)maxSplits-4, max(1, (int)(nf)));
prim.lower.u |= n << (32-RESERVED_NUM_SPATIAL_SPLITS_GEOMID_BITS);
}
});
return GeneralBVHBuilder::build<ReductionTy,Heuristic,Set,PrimRef>(
heuristic,
prims,
PrimInfoExtRange(0,pinfo.size(),extSize,pinfo),
createAlloc,
createNode,
updateNode,
CreateLeafExt<ReductionTy,CreateLeafFunc>(createLeaf),
progressMonitor,
settings);
}
};
/* Open/Merge SAH builder that operates on an array of BuildRecords */
struct BVHBuilderBinnedOpenMergeSAH
{
static const size_t NUM_OBJECT_BINS_HQ = 32;
typedef PrimInfoExtRange Set;
typedef BinSplit<NUM_OBJECT_BINS_HQ> Split;
typedef GeneralBVHBuilder::BuildRecordT<Set,Split> BuildRecord;
typedef GeneralBVHBuilder::Settings Settings;
/*! special builder that propagates reduction over the tree */
template<
typename ReductionTy,
typename BuildRef,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename UpdateNodeFunc,
typename CreateLeafFunc,
typename NodeOpenerFunc,
typename ProgressMonitor>
static ReductionTy build(CreateAllocFunc createAlloc,
CreateNodeFunc createNode,
UpdateNodeFunc updateNode,
const CreateLeafFunc& createLeaf,
NodeOpenerFunc nodeOpenerFunc,
ProgressMonitor progressMonitor,
BuildRef* prims,
const size_t extSize,
const PrimInfo& pinfo,
const Settings& settings)
{
typedef HeuristicArrayOpenMergeSAH<NodeOpenerFunc,BuildRef,NUM_OBJECT_BINS_HQ> Heuristic;
Heuristic heuristic(nodeOpenerFunc,prims,settings.branchingFactor);
return GeneralBVHBuilder::build<ReductionTy,Heuristic,Set,BuildRef>(
heuristic,
prims,
PrimInfoExtRange(0,pinfo.size(),extSize,pinfo),
createAlloc,
createNode,
updateNode,
createLeaf,
progressMonitor,
settings);
}
};
}
}
|