1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../bvh/bvh.h"
#include "../geometry/primitive.h"
#include "../builders/bvh_builder_msmblur.h"
#include "../builders/heuristic_binning_array_aligned.h"
#include "../builders/heuristic_binning_array_unaligned.h"
#include "../builders/heuristic_timesplit_array.h"
namespace embree
{
namespace isa
{
struct BVHBuilderHairMSMBlur
{
/*! settings for msmblur builder */
struct Settings
{
/*! default settings */
Settings ()
: branchingFactor(2), maxDepth(32), logBlockSize(0), minLeafSize(1), maxLeafSize(8) {}
public:
size_t branchingFactor; //!< branching factor of BVH to build
size_t maxDepth; //!< maximum depth of BVH to build
size_t logBlockSize; //!< log2 of blocksize for SAH heuristic
size_t minLeafSize; //!< minimum size of a leaf
size_t maxLeafSize; //!< maximum size of a leaf
};
struct BuildRecord
{
public:
__forceinline BuildRecord () {}
__forceinline BuildRecord (size_t depth)
: depth(depth) {}
__forceinline BuildRecord (const SetMB& prims, size_t depth)
: depth(depth), prims(prims) {}
__forceinline size_t size() const {
return prims.size();
}
public:
size_t depth; //!< depth of the root of this subtree
SetMB prims; //!< the list of primitives
};
template<typename NodeRef,
typename RecalculatePrimRef,
typename CreateAllocFunc,
typename CreateAABBNodeMBFunc,
typename SetAABBNodeMBFunc,
typename CreateOBBNodeMBFunc,
typename SetOBBNodeMBFunc,
typename CreateLeafFunc,
typename ProgressMonitor>
class BuilderT
{
ALIGNED_CLASS_(16);
static const size_t MAX_BRANCHING_FACTOR = 8; //!< maximum supported BVH branching factor
static const size_t MIN_LARGE_LEAF_LEVELS = 8; //!< create balanced tree if we are that many levels before the maximum tree depth
static const size_t SINGLE_THREADED_THRESHOLD = 4096; //!< threshold to switch to single threaded build
typedef BVHNodeRecordMB<NodeRef> NodeRecordMB;
typedef BVHNodeRecordMB4D<NodeRef> NodeRecordMB4D;
typedef FastAllocator::CachedAllocator Allocator;
typedef LocalChildListT<BuildRecord,MAX_BRANCHING_FACTOR> LocalChildList;
typedef HeuristicMBlurTemporalSplit<PrimRefMB,RecalculatePrimRef,MBLUR_NUM_TEMPORAL_BINS> HeuristicTemporal;
typedef HeuristicArrayBinningMB<PrimRefMB,MBLUR_NUM_OBJECT_BINS> HeuristicBinning;
typedef UnalignedHeuristicArrayBinningMB<PrimRefMB,MBLUR_NUM_OBJECT_BINS> UnalignedHeuristicBinning;
public:
BuilderT (Scene* scene,
const RecalculatePrimRef& recalculatePrimRef,
const CreateAllocFunc& createAlloc,
const CreateAABBNodeMBFunc& createAABBNodeMB,
const SetAABBNodeMBFunc& setAABBNodeMB,
const CreateOBBNodeMBFunc& createOBBNodeMB,
const SetOBBNodeMBFunc& setOBBNodeMB,
const CreateLeafFunc& createLeaf,
const ProgressMonitor& progressMonitor,
const Settings settings)
: cfg(settings),
scene(scene),
recalculatePrimRef(recalculatePrimRef),
createAlloc(createAlloc),
createAABBNodeMB(createAABBNodeMB), setAABBNodeMB(setAABBNodeMB),
createOBBNodeMB(createOBBNodeMB), setOBBNodeMB(setOBBNodeMB),
createLeaf(createLeaf),
progressMonitor(progressMonitor),
unalignedHeuristic(scene),
temporalSplitHeuristic(scene->device,recalculatePrimRef) {}
private:
/*! checks if all primitives are from the same geometry */
__forceinline bool sameGeometry(const SetMB& set)
{
mvector<PrimRefMB>& prims = *set.prims;
unsigned int firstGeomID = prims[set.begin()].geomID();
for (size_t i=set.begin()+1; i<set.end(); i++) {
if (prims[i].geomID() != firstGeomID){
return false;
}
}
return true;
}
/*! performs some split if SAH approaches fail */
void splitFallback(const SetMB& set, SetMB& lset, SetMB& rset)
{
mvector<PrimRefMB>& prims = *set.prims;
const size_t begin = set.begin();
const size_t end = set.end();
const size_t center = (begin + end)/2;
PrimInfoMB linfo = empty;
for (size_t i=begin; i<center; i++)
linfo.add_primref(prims[i]);
PrimInfoMB rinfo = empty;
for (size_t i=center; i<end; i++)
rinfo.add_primref(prims[i]);
new (&lset) SetMB(linfo,set.prims,range<size_t>(begin,center),set.time_range);
new (&rset) SetMB(rinfo,set.prims,range<size_t>(center,end ),set.time_range);
}
void splitByGeometry(const SetMB& set, SetMB& lset, SetMB& rset)
{
assert(set.size() > 1);
const size_t begin = set.begin();
const size_t end = set.end();
PrimInfoMB linfo(empty);
PrimInfoMB rinfo(empty);
unsigned int geomID = (*set.prims)[begin].geomID();
size_t center = serial_partitioning(set.prims->data(),begin,end,linfo,rinfo,
[&] ( const PrimRefMB& prim ) { return prim.geomID() == geomID; },
[ ] ( PrimInfoMB& a, const PrimRefMB& ref ) { a.add_primref(ref); });
new (&lset) SetMB(linfo,set.prims,range<size_t>(begin,center),set.time_range);
new (&rset) SetMB(rinfo,set.prims,range<size_t>(center,end ),set.time_range);
}
/*! creates a large leaf that could be larger than supported by the BVH */
NodeRecordMB4D createLargeLeaf(BuildRecord& current, Allocator alloc)
{
/* this should never occur but is a fatal error */
if (current.depth > cfg.maxDepth)
throw_RTCError(RTC_ERROR_UNKNOWN,"depth limit reached");
/* special case when directly creating leaf without any splits that could shrink time_range */
bool force_split = false;
if (current.depth == 1 && current.size() > 0)
{
BBox1f c = empty;
BBox1f p = current.prims.time_range;
for (size_t i=current.prims.begin(); i<current.prims.end(); i++) {
mvector<PrimRefMB>& prims = *current.prims.prims;
c.extend(prims[i].time_range);
}
force_split = c.lower > p.lower || c.upper < p.upper;
}
/* create leaf for few primitives */
if (current.size() <= cfg.maxLeafSize && sameGeometry(current.prims) && !force_split)
return createLeaf(current.prims,alloc);
/* fill all children by always splitting the largest one */
LocalChildList children(current);
NodeRecordMB4D values[MAX_BRANCHING_FACTOR];
do {
/* find best child with largest bounding box area */
int bestChild = -1;
size_t bestSize = 0;
for (unsigned i=0; i<children.size(); i++)
{
/* ignore leaves as they cannot get split */
if (children[i].size() <= cfg.maxLeafSize && sameGeometry(children[i].prims) && !force_split)
continue;
force_split = false;
/* remember child with largest size */
if (children[i].size() > bestSize) {
bestSize = children[i].size();
bestChild = i;
}
}
if (bestChild == -1) break;
/*! split best child into left and right child */
BuildRecord left(current.depth+1);
BuildRecord right(current.depth+1);
if (!sameGeometry(children[bestChild].prims)) {
splitByGeometry(children[bestChild].prims,left.prims,right.prims);
} else {
splitFallback(children[bestChild].prims,left.prims,right.prims);
}
children.split(bestChild,left,right,std::unique_ptr<mvector<PrimRefMB>>());
} while (children.size() < cfg.branchingFactor);
/* detect time_ranges that have shrunken */
bool timesplit = false;
for (size_t i=0; i<children.size(); i++) {
const BBox1f c = children[i].prims.time_range;
const BBox1f p = current.prims.time_range;
timesplit |= c.lower > p.lower || c.upper < p.upper;
}
/* create node */
NodeRef node = createAABBNodeMB(children.children.data(),children.numChildren,alloc,timesplit);
LBBox3fa bounds = empty;
for (size_t i=0; i<children.size(); i++) {
values[i] = createLargeLeaf(children[i],alloc);
bounds.extend(values[i].lbounds);
}
setAABBNodeMB(current,children.children.data(),node,values,children.numChildren);
if (timesplit)
bounds = current.prims.linearBounds(recalculatePrimRef);
return NodeRecordMB4D(node,bounds,current.prims.time_range);
}
/*! performs split */
std::unique_ptr<mvector<PrimRefMB>> split(const BuildRecord& current, BuildRecord& lrecord, BuildRecord& rrecord, bool& aligned, bool& timesplit)
{
/* variable to track the SAH of the best splitting approach */
float bestSAH = inf;
const float leafSAH = current.prims.leafSAH(cfg.logBlockSize);
/* perform standard binning in aligned space */
HeuristicBinning::Split alignedObjectSplit = alignedHeuristic.find(current.prims,cfg.logBlockSize);
float alignedObjectSAH = alignedObjectSplit.splitSAH();
bestSAH = min(alignedObjectSAH,bestSAH);
/* perform standard binning in unaligned space */
UnalignedHeuristicBinning::Split unalignedObjectSplit;
LinearSpace3fa uspace;
float unalignedObjectSAH = inf;
if (alignedObjectSAH > 0.7f*leafSAH) {
uspace = unalignedHeuristic.computeAlignedSpaceMB(scene,current.prims);
const SetMB sset = current.prims.primInfo(recalculatePrimRef,uspace);
unalignedObjectSplit = unalignedHeuristic.find(sset,cfg.logBlockSize,uspace);
unalignedObjectSAH = 1.3f*unalignedObjectSplit.splitSAH(); // makes unaligned splits more expensive
bestSAH = min(unalignedObjectSAH,bestSAH);
}
/* do temporal splits only if previous approaches failed to produce good SAH and the the time range is large enough */
float temporal_split_sah = inf;
typename HeuristicTemporal::Split temporal_split;
if (bestSAH > 0.5f*leafSAH) {
if (current.prims.time_range.size() > 1.01f/float(current.prims.max_num_time_segments)) {
temporal_split = temporalSplitHeuristic.find(current.prims,cfg.logBlockSize);
temporal_split_sah = temporal_split.splitSAH();
bestSAH = min(temporal_split_sah,bestSAH);
}
}
/* perform fallback split if SAH heuristics failed */
if (unlikely(!std::isfinite(bestSAH))) {
current.prims.deterministic_order();
splitFallback(current.prims,lrecord.prims,rrecord.prims);
}
/* perform aligned split if this is best */
else if (likely(bestSAH == alignedObjectSAH)) {
alignedHeuristic.split(alignedObjectSplit,current.prims,lrecord.prims,rrecord.prims);
}
/* perform unaligned split if this is best */
else if (likely(bestSAH == unalignedObjectSAH)) {
unalignedHeuristic.split(unalignedObjectSplit,uspace,current.prims,lrecord.prims,rrecord.prims);
aligned = false;
}
/* perform temporal split if this is best */
else if (likely(bestSAH == temporal_split_sah)) {
timesplit = true;
return temporalSplitHeuristic.split(temporal_split,current.prims,lrecord.prims,rrecord.prims);
}
else
assert(false);
return std::unique_ptr<mvector<PrimRefMB>>();
}
/*! recursive build */
NodeRecordMB4D recurse(BuildRecord& current, Allocator alloc, bool toplevel)
{
/* get thread local allocator */
if (!alloc)
alloc = createAlloc();
/* call memory monitor function to signal progress */
if (toplevel && current.size() <= SINGLE_THREADED_THRESHOLD)
progressMonitor(current.size());
/* create leaf node */
if (current.depth+MIN_LARGE_LEAF_LEVELS >= cfg.maxDepth || current.size() <= cfg.minLeafSize) {
current.prims.deterministic_order();
return createLargeLeaf(current,alloc);
}
/* fill all children by always splitting the one with the largest surface area */
NodeRecordMB4D values[MAX_BRANCHING_FACTOR];
LocalChildList children(current);
bool aligned = true;
bool timesplit = false;
do {
/* find best child with largest bounding box area */
ssize_t bestChild = -1;
float bestArea = neg_inf;
for (size_t i=0; i<children.size(); i++)
{
/* ignore leaves as they cannot get split */
if (children[i].size() <= cfg.minLeafSize)
continue;
/* remember child with largest area */
const float A = children[i].prims.halfArea();
if (A > bestArea) {
bestArea = children[i].prims.halfArea();
bestChild = i;
}
}
if (bestChild == -1) break;
/*! split best child into left and right child */
BuildRecord left(current.depth+1);
BuildRecord right(current.depth+1);
std::unique_ptr<mvector<PrimRefMB>> new_vector = split(children[bestChild],left,right,aligned,timesplit);
children.split(bestChild,left,right,std::move(new_vector));
} while (children.size() < cfg.branchingFactor);
/* detect time_ranges that have shrunken */
for (size_t i=0; i<children.size(); i++) {
const BBox1f c = children[i].prims.time_range;
const BBox1f p = current.prims.time_range;
timesplit |= c.lower > p.lower || c.upper < p.upper;
}
/* create time split node */
if (timesplit)
{
const NodeRef node = createAABBNodeMB(children.children.data(),children.numChildren,alloc,true);
/* spawn tasks or ... */
if (current.size() > SINGLE_THREADED_THRESHOLD)
{
parallel_for(size_t(0), children.size(), [&] (const range<size_t>& r) {
for (size_t i=r.begin(); i<r.end(); i++) {
values[i] = recurse(children[i],nullptr,true);
_mm_mfence(); // to allow non-temporal stores during build
}
});
}
/* ... continue sequential */
else {
for (size_t i=0; i<children.size(); i++) {
values[i] = recurse(children[i],alloc,false);
}
}
setAABBNodeMB(current,children.children.data(),node,values,children.numChildren);
const LBBox3fa bounds = current.prims.linearBounds(recalculatePrimRef);
return NodeRecordMB4D(node,bounds,current.prims.time_range);
}
/* create aligned node */
else if (aligned)
{
const NodeRef node = createAABBNodeMB(children.children.data(),children.numChildren,alloc,true);
/* spawn tasks or ... */
if (current.size() > SINGLE_THREADED_THRESHOLD)
{
LBBox3fa cbounds[MAX_BRANCHING_FACTOR];
parallel_for(size_t(0), children.size(), [&] (const range<size_t>& r) {
for (size_t i=r.begin(); i<r.end(); i++) {
values[i] = recurse(children[i],nullptr,true);
cbounds[i] = values[i].lbounds;
_mm_mfence(); // to allow non-temporal stores during build
}
});
LBBox3fa bounds = empty;
for (size_t i=0; i<children.size(); i++)
bounds.extend(cbounds[i]);
setAABBNodeMB(current,children.children.data(),node,values,children.numChildren);
return NodeRecordMB4D(node,bounds,current.prims.time_range);
}
/* ... continue sequentially */
else
{
LBBox3fa bounds = empty;
for (size_t i=0; i<children.size(); i++) {
values[i] = recurse(children[i],alloc,false);
bounds.extend(values[i].lbounds);
}
setAABBNodeMB(current,children.children.data(),node,values,children.numChildren);
return NodeRecordMB4D(node,bounds,current.prims.time_range);
}
}
/* create unaligned node */
else
{
const NodeRef node = createOBBNodeMB(alloc);
/* spawn tasks or ... */
if (current.size() > SINGLE_THREADED_THRESHOLD)
{
parallel_for(size_t(0), children.size(), [&] (const range<size_t>& r) {
for (size_t i=r.begin(); i<r.end(); i++) {
const LinearSpace3fa space = unalignedHeuristic.computeAlignedSpaceMB(scene,children[i].prims);
const LBBox3fa lbounds = children[i].prims.linearBounds(recalculatePrimRef,space);
const auto child = recurse(children[i],nullptr,true);
setOBBNodeMB(node,i,child.ref,space,lbounds,children[i].prims.time_range);
_mm_mfence(); // to allow non-temporal stores during build
}
});
}
/* ... continue sequentially */
else
{
for (size_t i=0; i<children.size(); i++) {
const LinearSpace3fa space = unalignedHeuristic.computeAlignedSpaceMB(scene,children[i].prims);
const LBBox3fa lbounds = children[i].prims.linearBounds(recalculatePrimRef,space);
const auto child = recurse(children[i],alloc,false);
setOBBNodeMB(node,i,child.ref,space,lbounds,children[i].prims.time_range);
}
}
const LBBox3fa bounds = current.prims.linearBounds(recalculatePrimRef);
return NodeRecordMB4D(node,bounds,current.prims.time_range);
}
}
public:
/*! entry point into builder */
NodeRecordMB4D operator() (mvector<PrimRefMB>& prims, const PrimInfoMB& pinfo)
{
BuildRecord record(SetMB(pinfo,&prims),1);
auto root = recurse(record,nullptr,true);
_mm_mfence(); // to allow non-temporal stores during build
return root;
}
private:
Settings cfg;
Scene* scene;
const RecalculatePrimRef& recalculatePrimRef;
const CreateAllocFunc& createAlloc;
const CreateAABBNodeMBFunc& createAABBNodeMB;
const SetAABBNodeMBFunc& setAABBNodeMB;
const CreateOBBNodeMBFunc& createOBBNodeMB;
const SetOBBNodeMBFunc& setOBBNodeMB;
const CreateLeafFunc& createLeaf;
const ProgressMonitor& progressMonitor;
private:
HeuristicBinning alignedHeuristic;
UnalignedHeuristicBinning unalignedHeuristic;
HeuristicTemporal temporalSplitHeuristic;
};
template<typename NodeRef,
typename RecalculatePrimRef,
typename CreateAllocFunc,
typename CreateAABBNodeMBFunc,
typename SetAABBNodeMBFunc,
typename CreateOBBNodeMBFunc,
typename SetOBBNodeMBFunc,
typename CreateLeafFunc,
typename ProgressMonitor>
static BVHNodeRecordMB4D<NodeRef> build (Scene* scene, mvector<PrimRefMB>& prims, const PrimInfoMB& pinfo,
const RecalculatePrimRef& recalculatePrimRef,
const CreateAllocFunc& createAlloc,
const CreateAABBNodeMBFunc& createAABBNodeMB,
const SetAABBNodeMBFunc& setAABBNodeMB,
const CreateOBBNodeMBFunc& createOBBNodeMB,
const SetOBBNodeMBFunc& setOBBNodeMB,
const CreateLeafFunc& createLeaf,
const ProgressMonitor& progressMonitor,
const Settings settings)
{
typedef BuilderT<NodeRef,RecalculatePrimRef,CreateAllocFunc,
CreateAABBNodeMBFunc,SetAABBNodeMBFunc,
CreateOBBNodeMBFunc,SetOBBNodeMBFunc,
CreateLeafFunc,ProgressMonitor> Builder;
Builder builder(scene,recalculatePrimRef,createAlloc,
createAABBNodeMB,setAABBNodeMB,
createOBBNodeMB,setOBBNodeMB,
createLeaf,progressMonitor,settings);
return builder(prims,pinfo);
}
};
}
}
|