summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/subdiv/patch_eval_grid.h
blob: c05db55f4cdea91a9bdcc440609c4a32bb8b02aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "patch.h"
#include "feature_adaptive_eval_grid.h"

namespace embree
{
  namespace isa 
  {
    struct PatchEvalGrid
    {
      typedef Patch3fa Patch;
      typedef Patch::Ref Ref;
      typedef GeneralCatmullClarkPatch3fa GeneralCatmullClarkPatch;
      typedef CatmullClarkPatch3fa CatmullClarkPatch;
      typedef BSplinePatch3fa BSplinePatch;
      typedef BezierPatch3fa BezierPatch;
      typedef GregoryPatch3fa GregoryPatch;
      typedef BilinearPatch3fa BilinearPatch;

    private:
      const unsigned x0,x1;
      const unsigned y0,y1;
      const unsigned swidth,sheight;
      const float rcp_swidth, rcp_sheight;
      float* const Px;
      float* const Py;
      float* const Pz;
      float* const U;
      float* const V;
      float* const Nx;
      float* const Ny;
      float* const Nz;
      const unsigned dwidth,dheight;
      unsigned count;

    public:      

      PatchEvalGrid (Ref patch, unsigned subPatch,
                     const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight, 
                     float* Px, float* Py, float* Pz, float* U, float* V, 
                     float* Nx, float* Ny, float* Nz,
                     const unsigned dwidth, const unsigned dheight)
      : x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)), 
        Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), dheight(dheight), count(0)
      {
        assert(swidth < (2<<20) && sheight < (2<<20));
        const BBox2f srange(Vec2f(0.0f,0.0f),Vec2f(float(swidth-1),float(sheight-1)));
        const BBox2f erange(Vec2f(float(x0),float(y0)),Vec2f((float)x1,(float)y1));
        bool done MAYBE_UNUSED = eval(patch,subPatch,srange,erange);
        assert(done);
        assert(count == (x1-x0+1)*(y1-y0+1));
      }

      template<typename Patch>
      __forceinline void evalLocalGrid(const Patch* patch, const BBox2f& srange, const int lx0, const int lx1, const int ly0, const int ly1)
      {
        const float scale_x = rcp(srange.upper.x-srange.lower.x);
        const float scale_y = rcp(srange.upper.y-srange.lower.y);
        count += (lx1-lx0)*(ly1-ly0);
        
#if 0
        for (unsigned iy=ly0; iy<ly1; iy++) {
          for (unsigned ix=lx0; ix<lx1; ix++) {
            const float lu = select(ix == swidth -1, float(1.0f), (float(ix)-srange.lower.x)*scale_x);
            const float lv = select(iy == sheight-1, float(1.0f), (float(iy)-srange.lower.y)*scale_y);
            const Vec3fa p = patch->patch.eval(lu,lv);
            const float u = float(ix)*rcp_swidth;
            const float v = float(iy)*rcp_sheight;
            const int ofs = (iy-y0)*dwidth+(ix-x0);
            Px[ofs] = p.x;
            Py[ofs] = p.y;
            Pz[ofs] = p.z;
            U[ofs] = u;
            V[ofs] = v;
          }
        }
#else
        foreach2(lx0,lx1,ly0,ly1,[&](const vboolx& valid, const vintx& ix, const vintx& iy) {
            const vfloatx lu = select(ix == swidth -1, vfloatx(1.0f), (vfloatx(ix)-srange.lower.x)*scale_x);
            const vfloatx lv = select(iy == sheight-1, vfloatx(1.0f), (vfloatx(iy)-srange.lower.y)*scale_y);
            const Vec3vfx p = patch->patch.eval(lu,lv);
            Vec3vfx n = zero;
            if (unlikely(Nx != nullptr)) n = normalize_safe(patch->patch.normal(lu,lv));
            const vfloatx u = vfloatx(ix)*rcp_swidth;
            const vfloatx v = vfloatx(iy)*rcp_sheight;
            const vintx ofs = (iy-y0)*dwidth+(ix-x0);
            if (likely(all(valid)) && all(iy==iy[0])) {
              const unsigned ofs2 = ofs[0];
              vfloatx::storeu(Px+ofs2,p.x);
              vfloatx::storeu(Py+ofs2,p.y);
              vfloatx::storeu(Pz+ofs2,p.z);
              vfloatx::storeu(U+ofs2,u);
              vfloatx::storeu(V+ofs2,v);
              if (unlikely(Nx != nullptr)) {
                vfloatx::storeu(Nx+ofs2,n.x);
                vfloatx::storeu(Ny+ofs2,n.y);
                vfloatx::storeu(Nz+ofs2,n.z);
              }
            } else {
              foreach_unique_index(valid,iy,[&](const vboolx& valid, const int iy0, const int j) {
                  const unsigned ofs2 = ofs[j]-j;
                  vfloatx::storeu(valid,Px+ofs2,p.x);
                  vfloatx::storeu(valid,Py+ofs2,p.y);
                  vfloatx::storeu(valid,Pz+ofs2,p.z);
                  vfloatx::storeu(valid,U+ofs2,u);
                  vfloatx::storeu(valid,V+ofs2,v);
                  if (unlikely(Nx != nullptr)) {
                    vfloatx::storeu(valid,Nx+ofs2,n.x);
                    vfloatx::storeu(valid,Ny+ofs2,n.y);
                    vfloatx::storeu(valid,Nz+ofs2,n.z);
                  }
                });
            }
          });
#endif
      }

      bool eval(Ref This, const BBox2f& srange, const BBox2f& erange, const unsigned depth) 
      {
        if (erange.empty())
          return true;
        
        const int lx0 = (int) ceilf(erange.lower.x);
        const int lx1 = (int) ceilf(erange.upper.x) + (erange.upper.x == x1 && (srange.lower.x < erange.upper.x || erange.upper.x == 0));
        const int ly0 = (int) ceilf(erange.lower.y);
        const int ly1 = (int) ceilf(erange.upper.y) + (erange.upper.y == y1 && (srange.lower.y < erange.upper.y || erange.upper.y == 0));
        if (lx0 >= lx1 || ly0 >= ly1) 
          return true;

        if (!This) 
          return false;
        
        switch (This.type()) 
        {
        case Patch::BILINEAR_PATCH: {
          evalLocalGrid((Patch::BilinearPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
          return true;
        }
        case Patch::BSPLINE_PATCH: {
          evalLocalGrid((Patch::BSplinePatch*)This.object(),srange,lx0,lx1,ly0,ly1);
          return true;
        }
        case Patch::BEZIER_PATCH: {
          evalLocalGrid((Patch::BezierPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
          return true;
        }
        case Patch::GREGORY_PATCH: {
          evalLocalGrid((Patch::GregoryPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
          return true;
        }
        case Patch::SUBDIVIDED_QUAD_PATCH: 
        {
          const Vec2f c = srange.center();
          const BBox2f srange0(srange.lower,c);
          const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
          const BBox2f srange2(c,srange.upper);
          const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
          
          Patch::SubdividedQuadPatch* patch = (Patch::SubdividedQuadPatch*)This.object();
          eval(patch->child[0],srange0,intersect(srange0,erange),depth+1);
          eval(patch->child[1],srange1,intersect(srange1,erange),depth+1);
          eval(patch->child[2],srange2,intersect(srange2,erange),depth+1);
          eval(patch->child[3],srange3,intersect(srange3,erange),depth+1);
          return true;
        }
        case Patch::EVAL_PATCH: { 
          CatmullClarkPatch patch; patch.deserialize(This.object());
          FeatureAdaptiveEvalGrid(patch,srange,erange,depth,x0,x1,y0,y1,swidth,sheight,Px,Py,Pz,U,V,Nx,Ny,Nz,dwidth,dheight);
          count += (lx1-lx0)*(ly1-ly0);
          return true;
        }
        default: 
          assert(false); 
          return false;
        }
      }

      bool eval(Ref This, unsigned subPatch, const BBox2f& srange, const BBox2f& erange) 
      {
        if (!This) 
          return false;

        switch (This.type()) 
        {
        case Patch::SUBDIVIDED_GENERAL_PATCH: { 
          Patch::SubdividedGeneralPatch* patch = (Patch::SubdividedGeneralPatch*)This.object();
          assert(subPatch < patch->N);
          return eval(patch->child[subPatch],srange,erange,1);
        }
        default: 
          assert(subPatch == 0);
          return eval(This,srange,erange,0);
        }
      }
    };

    __forceinline unsigned patch_eval_subdivision_count (const HalfEdge* h)
    {
      const unsigned N = h->numEdges();
      if (N == 4) return 1;
      else return N;
    }
    
    template<typename Tessellator>
      inline void patch_eval_subdivision (const HalfEdge* h, Tessellator tessellator)
    {
      const unsigned N = h->numEdges();
      int neighborSubdiv[GeneralCatmullClarkPatch3fa::SIZE]; // FIXME: use array_t
      float levels[GeneralCatmullClarkPatch3fa::SIZE];
      for (unsigned i=0; i<N; i++) {
        assert(i<GeneralCatmullClarkPatch3fa::SIZE);
        neighborSubdiv[i] = h->hasOpposite() ? h->opposite()->numEdges() != 4 : 0; 
        levels[i] = h->edge_level;
        h = h->next();
      }      
      if (N == 4)
      {
        const Vec2f uv[4] = { Vec2f(0.0f,0.0f), Vec2f(1.0f,0.0f), Vec2f(1.0f,1.0f), Vec2f(0.0f,1.0f) };
        tessellator(uv,neighborSubdiv,levels,0);
      }
      else
      {
        for (unsigned i=0; i<N; i++) 
        {
          assert(i<MAX_PATCH_VALENCE);
          static_assert(MAX_PATCH_VALENCE <= 16, "MAX_PATCH_VALENCE > 16");
          const int h = (i >> 2) & 3, l = i & 3;
          const Vec2f subPatchID((float)l,(float)h);
          const Vec2f uv[4] = { 2.0f*subPatchID + (0.5f+Vec2f(0.0f,0.0f)),
                                2.0f*subPatchID + (0.5f+Vec2f(1.0f,0.0f)),
                                2.0f*subPatchID + (0.5f+Vec2f(1.0f,1.0f)),
                                2.0f*subPatchID + (0.5f+Vec2f(0.0f,1.0f)) };
          const int neighborSubdiv1[4] = { 0,0,0,0 }; 
          const float levels1[4] = { 0.5f*levels[(i+0)%N], 0.5f*levels[(i+0)%N], 0.5f*levels[(i+N-1)%N], 0.5f*levels[(i+N-1)%N] };
          tessellator(uv,neighborSubdiv1,levels1,i);
        }
      }
    }
  }
}