1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "catmullclark_patch.h"
#include "bezier_patch.h"
#include "bezier_curve.h"
#include "catmullclark_coefficients.h"
namespace embree
{
template<typename Vertex, typename Vertex_t = Vertex>
class __aligned(64) GregoryPatchT
{
typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClark1Ring;
typedef BezierCurveT<Vertex> BezierCurve;
public:
Vertex v[4][4];
Vertex f[2][2];
__forceinline GregoryPatchT() {}
__forceinline GregoryPatchT(const CatmullClarkPatch& patch) {
init(patch);
}
__forceinline GregoryPatchT(const CatmullClarkPatch& patch,
const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3)
{
init_crackfix(patch,border0,border1,border2,border3);
}
__forceinline GregoryPatchT (const HalfEdge* edge, const char* vertices, size_t stride) {
init(CatmullClarkPatch(edge,vertices,stride));
}
__forceinline Vertex& p0() { return v[0][0]; }
__forceinline Vertex& p1() { return v[0][3]; }
__forceinline Vertex& p2() { return v[3][3]; }
__forceinline Vertex& p3() { return v[3][0]; }
__forceinline Vertex& e0_p() { return v[0][1]; }
__forceinline Vertex& e0_m() { return v[1][0]; }
__forceinline Vertex& e1_p() { return v[1][3]; }
__forceinline Vertex& e1_m() { return v[0][2]; }
__forceinline Vertex& e2_p() { return v[3][2]; }
__forceinline Vertex& e2_m() { return v[2][3]; }
__forceinline Vertex& e3_p() { return v[2][0]; }
__forceinline Vertex& e3_m() { return v[3][1]; }
__forceinline Vertex& f0_p() { return v[1][1]; }
__forceinline Vertex& f1_p() { return v[1][2]; }
__forceinline Vertex& f2_p() { return v[2][2]; }
__forceinline Vertex& f3_p() { return v[2][1]; }
__forceinline Vertex& f0_m() { return f[0][0]; }
__forceinline Vertex& f1_m() { return f[0][1]; }
__forceinline Vertex& f2_m() { return f[1][1]; }
__forceinline Vertex& f3_m() { return f[1][0]; }
__forceinline const Vertex& p0() const { return v[0][0]; }
__forceinline const Vertex& p1() const { return v[0][3]; }
__forceinline const Vertex& p2() const { return v[3][3]; }
__forceinline const Vertex& p3() const { return v[3][0]; }
__forceinline const Vertex& e0_p() const { return v[0][1]; }
__forceinline const Vertex& e0_m() const { return v[1][0]; }
__forceinline const Vertex& e1_p() const { return v[1][3]; }
__forceinline const Vertex& e1_m() const { return v[0][2]; }
__forceinline const Vertex& e2_p() const { return v[3][2]; }
__forceinline const Vertex& e2_m() const { return v[2][3]; }
__forceinline const Vertex& e3_p() const { return v[2][0]; }
__forceinline const Vertex& e3_m() const { return v[3][1]; }
__forceinline const Vertex& f0_p() const { return v[1][1]; }
__forceinline const Vertex& f1_p() const { return v[1][2]; }
__forceinline const Vertex& f2_p() const { return v[2][2]; }
__forceinline const Vertex& f3_p() const { return v[2][1]; }
__forceinline const Vertex& f0_m() const { return f[0][0]; }
__forceinline const Vertex& f1_m() const { return f[0][1]; }
__forceinline const Vertex& f2_m() const { return f[1][1]; }
__forceinline const Vertex& f3_m() const { return f[1][0]; }
__forceinline Vertex initCornerVertex(const CatmullClarkPatch& irreg_patch, const size_t index) {
return irreg_patch.ring[index].getLimitVertex();
}
__forceinline Vertex initPositiveEdgeVertex(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx) {
return madd(1.0f/3.0f,irreg_patch.ring[index].getLimitTangent(),p_vtx);
}
__forceinline Vertex initNegativeEdgeVertex(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx) {
return madd(1.0f/3.0f,irreg_patch.ring[index].getSecondLimitTangent(),p_vtx);
}
__forceinline Vertex initPositiveEdgeVertex2(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx)
{
CatmullClark1Ring3fa r0,r1,r2;
irreg_patch.ring[index].subdivide(r0);
r0.subdivide(r1);
r1.subdivide(r2);
return madd(8.0f/3.0f,r2.getLimitTangent(),p_vtx);
}
__forceinline Vertex initNegativeEdgeVertex2(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx)
{
CatmullClark1Ring3fa r0,r1,r2;
irreg_patch.ring[index].subdivide(r0);
r0.subdivide(r1);
r1.subdivide(r2);
return madd(8.0f/3.0f,r2.getSecondLimitTangent(),p_vtx);
}
void initFaceVertex(const CatmullClarkPatch& irreg_patch,
const size_t index,
const Vertex& p_vtx,
const Vertex& e0_p_vtx,
const Vertex& e1_m_vtx,
const unsigned int face_valence_p1,
const Vertex& e0_m_vtx,
const Vertex& e3_p_vtx,
const unsigned int face_valence_p3,
Vertex& f_p_vtx,
Vertex& f_m_vtx)
{
const unsigned int face_valence = irreg_patch.ring[index].face_valence;
const unsigned int edge_valence = irreg_patch.ring[index].edge_valence;
const unsigned int border_index = irreg_patch.ring[index].border_index;
const Vertex& vtx = irreg_patch.ring[index].vtx;
const Vertex e_i = irreg_patch.ring[index].getEdgeCenter(0);
const Vertex c_i_m_1 = irreg_patch.ring[index].getQuadCenter(0);
const Vertex e_i_m_1 = irreg_patch.ring[index].getEdgeCenter(1);
Vertex c_i, e_i_p_1;
const bool hasHardEdge0 =
std::isinf(irreg_patch.ring[index].vertex_crease_weight) &&
std::isinf(irreg_patch.ring[index].crease_weight[0]);
if (unlikely((border_index == edge_valence-2) || hasHardEdge0))
{
/* mirror quad center and edge mid-point */
c_i = madd(2.0f, e_i - c_i_m_1, c_i_m_1);
e_i_p_1 = madd(2.0f, vtx - e_i_m_1, e_i_m_1);
}
else
{
c_i = irreg_patch.ring[index].getQuadCenter( face_valence-1 );
e_i_p_1 = irreg_patch.ring[index].getEdgeCenter( face_valence-1 );
}
Vertex c_i_m_2, e_i_m_2;
const bool hasHardEdge1 =
std::isinf(irreg_patch.ring[index].vertex_crease_weight) &&
std::isinf(irreg_patch.ring[index].crease_weight[1]);
if (unlikely(border_index == 2 || hasHardEdge1))
{
/* mirror quad center and edge mid-point */
c_i_m_2 = madd(2.0f, e_i_m_1 - c_i_m_1, c_i_m_1);
e_i_m_2 = madd(2.0f, vtx - e_i, + e_i);
}
else
{
c_i_m_2 = irreg_patch.ring[index].getQuadCenter( 1 );
e_i_m_2 = irreg_patch.ring[index].getEdgeCenter( 2 );
}
const float d = 3.0f;
//const float c = cosf(2.0f*M_PI/(float)face_valence);
//const float c_e_p = cosf(2.0f*M_PI/(float)face_valence_p1);
//const float c_e_m = cosf(2.0f*M_PI/(float)face_valence_p3);
const float c = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence);
const float c_e_p = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p1);
const float c_e_m = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p3);
const Vertex r_e_p = 1.0f/3.0f * (e_i_m_1 - e_i_p_1) + 2.0f/3.0f * (c_i_m_1 - c_i);
const Vertex r_e_m = 1.0f/3.0f * (e_i - e_i_m_2) + 2.0f/3.0f * (c_i_m_1 - c_i_m_2);
f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
}
__noinline void init(const CatmullClarkPatch& patch)
{
assert( patch.ring[0].hasValidPositions() );
assert( patch.ring[1].hasValidPositions() );
assert( patch.ring[2].hasValidPositions() );
assert( patch.ring[3].hasValidPositions() );
p0() = initCornerVertex(patch,0);
p1() = initCornerVertex(patch,1);
p2() = initCornerVertex(patch,2);
p3() = initCornerVertex(patch,3);
e0_p() = initPositiveEdgeVertex(patch,0, p0());
e1_p() = initPositiveEdgeVertex(patch,1, p1());
e2_p() = initPositiveEdgeVertex(patch,2, p2());
e3_p() = initPositiveEdgeVertex(patch,3, p3());
e0_m() = initNegativeEdgeVertex(patch,0, p0());
e1_m() = initNegativeEdgeVertex(patch,1, p1());
e2_m() = initNegativeEdgeVertex(patch,2, p2());
e3_m() = initNegativeEdgeVertex(patch,3, p3());
const unsigned int face_valence_p0 = patch.ring[0].face_valence;
const unsigned int face_valence_p1 = patch.ring[1].face_valence;
const unsigned int face_valence_p2 = patch.ring[2].face_valence;
const unsigned int face_valence_p3 = patch.ring[3].face_valence;
initFaceVertex(patch,0,p0(),e0_p(),e1_m(),face_valence_p1,e0_m(),e3_p(),face_valence_p3,f0_p(),f0_m() );
initFaceVertex(patch,1,p1(),e1_p(),e2_m(),face_valence_p2,e1_m(),e0_p(),face_valence_p0,f1_p(),f1_m() );
initFaceVertex(patch,2,p2(),e2_p(),e3_m(),face_valence_p3,e2_m(),e1_p(),face_valence_p1,f2_p(),f2_m() );
initFaceVertex(patch,3,p3(),e3_p(),e0_m(),face_valence_p0,e3_m(),e2_p(),face_valence_p3,f3_p(),f3_m() );
}
__noinline void init_crackfix(const CatmullClarkPatch& patch,
const BezierCurve* border0,
const BezierCurve* border1,
const BezierCurve* border2,
const BezierCurve* border3)
{
assert( patch.ring[0].hasValidPositions() );
assert( patch.ring[1].hasValidPositions() );
assert( patch.ring[2].hasValidPositions() );
assert( patch.ring[3].hasValidPositions() );
p0() = initCornerVertex(patch,0);
p1() = initCornerVertex(patch,1);
p2() = initCornerVertex(patch,2);
p3() = initCornerVertex(patch,3);
e0_p() = initPositiveEdgeVertex(patch,0, p0());
e1_p() = initPositiveEdgeVertex(patch,1, p1());
e2_p() = initPositiveEdgeVertex(patch,2, p2());
e3_p() = initPositiveEdgeVertex(patch,3, p3());
e0_m() = initNegativeEdgeVertex(patch,0, p0());
e1_m() = initNegativeEdgeVertex(patch,1, p1());
e2_m() = initNegativeEdgeVertex(patch,2, p2());
e3_m() = initNegativeEdgeVertex(patch,3, p3());
if (unlikely(border0 != nullptr))
{
p0() = border0->v0;
e0_p() = border0->v1;
e1_m() = border0->v2;
p1() = border0->v3;
}
if (unlikely(border1 != nullptr))
{
p1() = border1->v0;
e1_p() = border1->v1;
e2_m() = border1->v2;
p2() = border1->v3;
}
if (unlikely(border2 != nullptr))
{
p2() = border2->v0;
e2_p() = border2->v1;
e3_m() = border2->v2;
p3() = border2->v3;
}
if (unlikely(border3 != nullptr))
{
p3() = border3->v0;
e3_p() = border3->v1;
e0_m() = border3->v2;
p0() = border3->v3;
}
const unsigned int face_valence_p0 = patch.ring[0].face_valence;
const unsigned int face_valence_p1 = patch.ring[1].face_valence;
const unsigned int face_valence_p2 = patch.ring[2].face_valence;
const unsigned int face_valence_p3 = patch.ring[3].face_valence;
initFaceVertex(patch,0,p0(),e0_p(),e1_m(),face_valence_p1,e0_m(),e3_p(),face_valence_p3,f0_p(),f0_m() );
initFaceVertex(patch,1,p1(),e1_p(),e2_m(),face_valence_p2,e1_m(),e0_p(),face_valence_p0,f1_p(),f1_m() );
initFaceVertex(patch,2,p2(),e2_p(),e3_m(),face_valence_p3,e2_m(),e1_p(),face_valence_p1,f2_p(),f2_m() );
initFaceVertex(patch,3,p3(),e3_p(),e0_m(),face_valence_p0,e3_m(),e2_p(),face_valence_p3,f3_p(),f3_m() );
}
void computeGregoryPatchFacePoints(const unsigned int face_valence,
const Vertex& r_e_p,
const Vertex& r_e_m,
const Vertex& p_vtx,
const Vertex& e0_p_vtx,
const Vertex& e1_m_vtx,
const unsigned int face_valence_p1,
const Vertex& e0_m_vtx,
const Vertex& e3_p_vtx,
const unsigned int face_valence_p3,
Vertex& f_p_vtx,
Vertex& f_m_vtx,
const float d = 3.0f)
{
//const float c = cosf(2.0*M_PI/(float)face_valence);
//const float c_e_p = cosf(2.0*M_PI/(float)face_valence_p1);
//const float c_e_m = cosf(2.0*M_PI/(float)face_valence_p3);
const float c = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence);
const float c_e_p = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p1);
const float c_e_m = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p3);
f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
}
__noinline void init(const GeneralCatmullClarkPatch& patch)
{
assert(patch.size() == 4);
#if 0
CatmullClarkPatch qpatch; patch.init(qpatch);
init(qpatch);
#else
const float face_valence_p0 = patch.ring[0].face_valence;
const float face_valence_p1 = patch.ring[1].face_valence;
const float face_valence_p2 = patch.ring[2].face_valence;
const float face_valence_p3 = patch.ring[3].face_valence;
Vertex p0_r_p, p0_r_m;
patch.ring[0].computeGregoryPatchEdgePoints( p0(), e0_p(), e0_m(), p0_r_p, p0_r_m );
Vertex p1_r_p, p1_r_m;
patch.ring[1].computeGregoryPatchEdgePoints( p1(), e1_p(), e1_m(), p1_r_p, p1_r_m );
Vertex p2_r_p, p2_r_m;
patch.ring[2].computeGregoryPatchEdgePoints( p2(), e2_p(), e2_m(), p2_r_p, p2_r_m );
Vertex p3_r_p, p3_r_m;
patch.ring[3].computeGregoryPatchEdgePoints( p3(), e3_p(), e3_m(), p3_r_p, p3_r_m );
computeGregoryPatchFacePoints(face_valence_p0, p0_r_p, p0_r_m, p0(), e0_p(), e1_m(), face_valence_p1, e0_m(), e3_p(), face_valence_p3, f0_p(), f0_m() );
computeGregoryPatchFacePoints(face_valence_p1, p1_r_p, p1_r_m, p1(), e1_p(), e2_m(), face_valence_p2, e1_m(), e0_p(), face_valence_p0, f1_p(), f1_m() );
computeGregoryPatchFacePoints(face_valence_p2, p2_r_p, p2_r_m, p2(), e2_p(), e3_m(), face_valence_p3, e2_m(), e1_p(), face_valence_p1, f2_p(), f2_m() );
computeGregoryPatchFacePoints(face_valence_p3, p3_r_p, p3_r_m, p3(), e3_p(), e0_m(), face_valence_p0, e3_m(), e2_p(), face_valence_p3, f3_p(), f3_m() );
#endif
}
__forceinline void convert_to_bezier()
{
f0_p() = (f0_p() + f0_m()) * 0.5f;
f1_p() = (f1_p() + f1_m()) * 0.5f;
f2_p() = (f2_p() + f2_m()) * 0.5f;
f3_p() = (f3_p() + f3_m()) * 0.5f;
f0_m() = Vertex( zero );
f1_m() = Vertex( zero );
f2_m() = Vertex( zero );
f3_m() = Vertex( zero );
}
static __forceinline void computeInnerVertices(const Vertex matrix[4][4], const Vertex f_m[2][2], const float uu, const float vv,
Vertex_t& matrix_11, Vertex_t& matrix_12, Vertex_t& matrix_22, Vertex_t& matrix_21)
{
if (unlikely(uu == 0.0f || uu == 1.0f || vv == 0.0f || vv == 1.0f))
{
matrix_11 = matrix[1][1];
matrix_12 = matrix[1][2];
matrix_22 = matrix[2][2];
matrix_21 = matrix[2][1];
}
else
{
const Vertex_t f0_p = matrix[1][1];
const Vertex_t f1_p = matrix[1][2];
const Vertex_t f2_p = matrix[2][2];
const Vertex_t f3_p = matrix[2][1];
const Vertex_t f0_m = f_m[0][0];
const Vertex_t f1_m = f_m[0][1];
const Vertex_t f2_m = f_m[1][1];
const Vertex_t f3_m = f_m[1][0];
matrix_11 = ( uu * f0_p + vv * f0_m)*rcp(uu+vv);
matrix_12 = ((1.0f-uu) * f1_m + vv * f1_p)*rcp(1.0f-uu+vv);
matrix_22 = ((1.0f-uu) * f2_p + (1.0f-vv) * f2_m)*rcp(2.0f-uu-vv);
matrix_21 = ( uu * f3_m + (1.0f-vv) * f3_p)*rcp(1.0f+uu-vv);
}
}
template<typename vfloat>
static __forceinline void computeInnerVertices(const Vertex v[4][4], const Vertex f[2][2],
size_t i, const vfloat& uu, const vfloat& vv, vfloat& matrix_11, vfloat& matrix_12, vfloat& matrix_22, vfloat& matrix_21)
{
const auto m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
const vfloat f0_p = v[1][1][i];
const vfloat f1_p = v[1][2][i];
const vfloat f2_p = v[2][2][i];
const vfloat f3_p = v[2][1][i];
const vfloat f0_m = f[0][0][i];
const vfloat f1_m = f[0][1][i];
const vfloat f2_m = f[1][1][i];
const vfloat f3_m = f[1][0][i];
const vfloat one_minus_uu = vfloat(1.0f) - uu;
const vfloat one_minus_vv = vfloat(1.0f) - vv;
const vfloat f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
const vfloat f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
const vfloat f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
const vfloat f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
matrix_11 = select(m_border,f0_p,f0_i);
matrix_12 = select(m_border,f1_p,f1_i);
matrix_22 = select(m_border,f2_p,f2_i);
matrix_21 = select(m_border,f3_p,f3_i);
}
static __forceinline Vertex eval(const Vertex matrix[4][4], const Vertex f[2][2], const float& uu, const float& vv)
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::eval(uu);
const Vec4<float> Bv = BezierBasis::eval(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_du(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::derivative(uu);
const Vec4<float> Bv = BezierBasis::eval(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::eval(uu);
const Vec4<float> Bv = BezierBasis::derivative(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dudu(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::derivative2(uu);
const Vec4<float> Bv = BezierBasis::eval(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dvdv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::eval(uu);
const Vec4<float> Bv = BezierBasis::derivative2(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dudv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::derivative(uu);
const Vec4<float> Bv = BezierBasis::derivative(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
__forceinline Vertex eval(const float uu, const float vv) const {
return eval(v,f,uu,vv);
}
__forceinline Vertex eval_du( const float uu, const float vv) const {
return eval_du(v,f,uu,vv);
}
__forceinline Vertex eval_dv( const float uu, const float vv) const {
return eval_dv(v,f,uu,vv);
}
__forceinline Vertex eval_dudu( const float uu, const float vv) const {
return eval_dudu(v,f,uu,vv);
}
__forceinline Vertex eval_dvdv( const float uu, const float vv) const {
return eval_dvdv(v,f,uu,vv);
}
__forceinline Vertex eval_dudv( const float uu, const float vv) const {
return eval_dudv(v,f,uu,vv);
}
static __forceinline Vertex normal(const Vertex matrix[4][4], const Vertex f_m[2][2], const float uu, const float vv) // FIXME: why not using basis functions
{
/* interpolate inner vertices */
Vertex_t matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(matrix,f_m,uu,vv,matrix_11, matrix_12, matrix_22, matrix_21);
/* tangentU */
const Vertex_t col0 = deCasteljau(vv, (Vertex_t)matrix[0][0], (Vertex_t)matrix[1][0], (Vertex_t)matrix[2][0], (Vertex_t)matrix[3][0]);
const Vertex_t col1 = deCasteljau(vv, (Vertex_t)matrix[0][1], (Vertex_t)matrix_11 , (Vertex_t)matrix_21 , (Vertex_t)matrix[3][1]);
const Vertex_t col2 = deCasteljau(vv, (Vertex_t)matrix[0][2], (Vertex_t)matrix_12 , (Vertex_t)matrix_22 , (Vertex_t)matrix[3][2]);
const Vertex_t col3 = deCasteljau(vv, (Vertex_t)matrix[0][3], (Vertex_t)matrix[1][3], (Vertex_t)matrix[2][3], (Vertex_t)matrix[3][3]);
const Vertex_t tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
/* tangentV */
const Vertex_t row0 = deCasteljau(uu, (Vertex_t)matrix[0][0], (Vertex_t)matrix[0][1], (Vertex_t)matrix[0][2], (Vertex_t)matrix[0][3]);
const Vertex_t row1 = deCasteljau(uu, (Vertex_t)matrix[1][0], (Vertex_t)matrix_11 , (Vertex_t)matrix_12 , (Vertex_t)matrix[1][3]);
const Vertex_t row2 = deCasteljau(uu, (Vertex_t)matrix[2][0], (Vertex_t)matrix_21 , (Vertex_t)matrix_22 , (Vertex_t)matrix[2][3]);
const Vertex_t row3 = deCasteljau(uu, (Vertex_t)matrix[3][0], (Vertex_t)matrix[3][1], (Vertex_t)matrix[3][2], (Vertex_t)matrix[3][3]);
const Vertex_t tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
/* normal = tangentU x tangentV */
const Vertex_t n = cross(tangentU,tangentV);
return n;
}
__forceinline Vertex normal( const float uu, const float vv) const {
return normal(v,f,uu,vv);
}
__forceinline void eval(const float u, const float v,
Vertex* P, Vertex* dPdu, Vertex* dPdv,
Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv,
const float dscale = 1.0f) const
{
if (P) {
*P = eval(u,v);
}
if (dPdu) {
assert(dPdu); *dPdu = eval_du(u,v)*dscale;
assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
}
if (ddPdudu) {
assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
}
}
template<class vfloat>
static __forceinline vfloat eval(const Vertex v[4][4], const Vertex f[2][2],
const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n,
vfloat& matrix_11, vfloat& matrix_12, vfloat& matrix_22, vfloat& matrix_21)
{
const vfloat curve0_x = madd(v_n[0],vfloat(v[0][0][i]),madd(v_n[1],vfloat(v[1][0][i]),madd(v_n[2],vfloat(v[2][0][i]),v_n[3] * vfloat(v[3][0][i]))));
const vfloat curve1_x = madd(v_n[0],vfloat(v[0][1][i]),madd(v_n[1],vfloat(matrix_11 ),madd(v_n[2],vfloat(matrix_21 ),v_n[3] * vfloat(v[3][1][i]))));
const vfloat curve2_x = madd(v_n[0],vfloat(v[0][2][i]),madd(v_n[1],vfloat(matrix_12 ),madd(v_n[2],vfloat(matrix_22 ),v_n[3] * vfloat(v[3][2][i]))));
const vfloat curve3_x = madd(v_n[0],vfloat(v[0][3][i]),madd(v_n[1],vfloat(v[1][3][i]),madd(v_n[2],vfloat(v[2][3][i]),v_n[3] * vfloat(v[3][3][i]))));
return madd(u_n[0],curve0_x,madd(u_n[1],curve1_x,madd(u_n[2],curve2_x,u_n[3] * curve3_x)));
}
template<typename vbool, typename vfloat>
static __forceinline void eval(const Vertex v[4][4], const Vertex f[2][2],
const vbool& valid, const vfloat& uu, const vfloat& vv,
float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
const float dscale, const size_t dstride, const size_t N)
{
if (P) {
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,P+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21));
}
}
if (dPdu)
{
{
assert(dPdu);
const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,dPdu+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*dscale);
}
}
{
assert(dPdv);
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,dPdv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*dscale);
}
}
}
if (ddPdudu)
{
{
assert(ddPdudu);
const Vec4<vfloat> u_n = BezierBasis::derivative2(uu);
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,ddPdudu+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
}
}
{
assert(ddPdvdv);
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
const Vec4<vfloat> v_n = BezierBasis::derivative2(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,ddPdvdv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
}
}
{
assert(ddPdudv);
const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,ddPdudv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
}
}
}
}
template<typename vbool, typename vfloat>
__forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
const float dscale, const size_t dstride, const size_t N) const {
eval(v,f,valid,uu,vv,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
}
template<class T>
static __forceinline Vec3<T> eval_t(const Vertex matrix[4][4], const Vec3<T> f[2][2], const T& uu, const T& vv)
{
typedef typename T::Bool M;
const M m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
const Vec3<T> f0_p = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
const Vec3<T> f1_p = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
const Vec3<T> f2_p = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
const Vec3<T> f3_p = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
const Vec3<T> f0_m = f[0][0];
const Vec3<T> f1_m = f[0][1];
const Vec3<T> f2_m = f[1][1];
const Vec3<T> f3_m = f[1][0];
const T one_minus_uu = T(1.0f) - uu;
const T one_minus_vv = T(1.0f) - vv;
const Vec3<T> f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
const Vec3<T> f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
const Vec3<T> f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
const Vec3<T> f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
const Vec3<T> F0( select(m_border,f0_p.x,f0_i.x), select(m_border,f0_p.y,f0_i.y), select(m_border,f0_p.z,f0_i.z) );
const Vec3<T> F1( select(m_border,f1_p.x,f1_i.x), select(m_border,f1_p.y,f1_i.y), select(m_border,f1_p.z,f1_i.z) );
const Vec3<T> F2( select(m_border,f2_p.x,f2_i.x), select(m_border,f2_p.y,f2_i.y), select(m_border,f2_p.z,f2_i.z) );
const Vec3<T> F3( select(m_border,f3_p.x,f3_i.x), select(m_border,f3_p.y,f3_i.y), select(m_border,f3_p.z,f3_i.z) );
const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu;
const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv;
const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu);
const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv);
const T B2_u = 3.0f * (uu * one_minus_uu * uu);
const T B2_v = 3.0f * (vv * one_minus_vv * vv);
const T B3_u = uu * uu * uu;
const T B3_v = vv * vv * vv;
const T x = madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u * matrix[0][3].x))),
madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,F0.x ,madd(B2_u,F1.x ,B3_u * matrix[1][3].x))),
madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,F3.x ,madd(B2_u,F2.x ,B3_u * matrix[2][3].x))),
B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u * matrix[3][3].x))))));
const T y = madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u * matrix[0][3].y))),
madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,F0.y ,madd(B2_u,F1.y ,B3_u * matrix[1][3].y))),
madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,F3.y ,madd(B2_u,F2.y ,B3_u * matrix[2][3].y))),
B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u * matrix[3][3].y))))));
const T z = madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u * matrix[0][3].z))),
madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,F0.z ,madd(B2_u,F1.z ,B3_u * matrix[1][3].z))),
madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,F3.z ,madd(B2_u,F2.z ,B3_u * matrix[2][3].z))),
B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u * matrix[3][3].z))))));
return Vec3<T>(x,y,z);
}
template<class T>
__forceinline Vec3<T> eval(const T& uu, const T& vv) const
{
Vec3<T> ff[2][2];
ff[0][0] = Vec3<T>(f[0][0]);
ff[0][1] = Vec3<T>(f[0][1]);
ff[1][1] = Vec3<T>(f[1][1]);
ff[1][0] = Vec3<T>(f[1][0]);
return eval_t(v,ff,uu,vv);
}
template<class T>
static __forceinline Vec3<T> normal_t(const Vertex matrix[4][4], const Vec3<T> f[2][2], const T& uu, const T& vv)
{
typedef typename T::Bool M;
const Vec3<T> f0_p = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
const Vec3<T> f1_p = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
const Vec3<T> f2_p = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
const Vec3<T> f3_p = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
const Vec3<T> f0_m = f[0][0];
const Vec3<T> f1_m = f[0][1];
const Vec3<T> f2_m = f[1][1];
const Vec3<T> f3_m = f[1][0];
const T one_minus_uu = T(1.0f) - uu;
const T one_minus_vv = T(1.0f) - vv;
const Vec3<T> f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
const Vec3<T> f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
const Vec3<T> f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
const Vec3<T> f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
#if 1
const M m_corner0 = (uu == 0.0f) & (vv == 0.0f);
const M m_corner1 = (uu == 1.0f) & (vv == 0.0f);
const M m_corner2 = (uu == 1.0f) & (vv == 1.0f);
const M m_corner3 = (uu == 0.0f) & (vv == 1.0f);
const Vec3<T> matrix_11( select(m_corner0,f0_p.x,f0_i.x), select(m_corner0,f0_p.y,f0_i.y), select(m_corner0,f0_p.z,f0_i.z) );
const Vec3<T> matrix_12( select(m_corner1,f1_p.x,f1_i.x), select(m_corner1,f1_p.y,f1_i.y), select(m_corner1,f1_p.z,f1_i.z) );
const Vec3<T> matrix_22( select(m_corner2,f2_p.x,f2_i.x), select(m_corner2,f2_p.y,f2_i.y), select(m_corner2,f2_p.z,f2_i.z) );
const Vec3<T> matrix_21( select(m_corner3,f3_p.x,f3_i.x), select(m_corner3,f3_p.y,f3_i.y), select(m_corner3,f3_p.z,f3_i.z) );
#else
const M m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
const Vec3<T> matrix_11( select(m_border,f0_p.x,f0_i.x), select(m_border,f0_p.y,f0_i.y), select(m_border,f0_p.z,f0_i.z) );
const Vec3<T> matrix_12( select(m_border,f1_p.x,f1_i.x), select(m_border,f1_p.y,f1_i.y), select(m_border,f1_p.z,f1_i.z) );
const Vec3<T> matrix_22( select(m_border,f2_p.x,f2_i.x), select(m_border,f2_p.y,f2_i.y), select(m_border,f2_p.z,f2_i.z) );
const Vec3<T> matrix_21( select(m_border,f3_p.x,f3_i.x), select(m_border,f3_p.y,f3_i.y), select(m_border,f3_p.z,f3_i.z) );
#endif
const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z);
const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z);
const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z);
const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z);
const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z);
const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z);
const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z);
const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z);
const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z);
const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z);
const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z);
const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z);
/* tangentU */
const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30);
const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31);
const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32);
const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33);
const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
/* tangentV */
const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03);
const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13);
const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23);
const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33);
const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
/* normal = tangentU x tangentV */
const Vec3<T> n = cross(tangentU,tangentV);
return n;
}
template<class T>
__forceinline Vec3<T> normal(const T& uu, const T& vv) const
{
Vec3<T> ff[2][2];
ff[0][0] = Vec3<T>(f[0][0]);
ff[0][1] = Vec3<T>(f[0][1]);
ff[1][1] = Vec3<T>(f[1][1]);
ff[1][0] = Vec3<T>(f[1][0]);
return normal_t(v,ff,uu,vv);
}
__forceinline BBox<Vertex> bounds() const
{
const Vertex *const cv = &v[0][0];
BBox<Vertex> bounds (cv[0]);
for (size_t i=1; i<16; i++)
bounds.extend( cv[i] );
bounds.extend(f[0][0]);
bounds.extend(f[1][0]);
bounds.extend(f[1][1]);
bounds.extend(f[1][1]);
return bounds;
}
friend embree_ostream operator<<(embree_ostream o, const GregoryPatchT& p)
{
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
o << "v[" << y << "][" << x << "] " << p.v[y][x] << embree_endl;
for (size_t y=0; y<2; y++)
for (size_t x=0; x<2; x++)
o << "f[" << y << "][" << x << "] " << p.f[y][x] << embree_endl;
return o;
}
};
typedef GregoryPatchT<Vec3fa,Vec3fa_t> GregoryPatch3fa;
template<typename Vertex, typename Vertex_t>
__forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride)
{
CatmullClarkPatchT<Vertex,Vertex_t> patch(edge,vertices,stride);
GregoryPatchT<Vertex,Vertex_t> gpatch(patch);
gpatch.convert_to_bezier();
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
matrix[y][x] = (Vertex_t)gpatch.v[y][x];
}
template<typename Vertex, typename Vertex_t>
__forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch)
{
GregoryPatchT<Vertex,Vertex_t> gpatch(patch);
gpatch.convert_to_bezier();
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
matrix[y][x] = (Vertex_t)gpatch.v[y][x];
}
template<typename Vertex, typename Vertex_t>
__forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch,
const BezierCurveT<Vertex>* border0,
const BezierCurveT<Vertex>* border1,
const BezierCurveT<Vertex>* border2,
const BezierCurveT<Vertex>* border3)
{
GregoryPatchT<Vertex,Vertex_t> gpatch(patch,border0,border1,border2,border3);
gpatch.convert_to_bezier();
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
matrix[y][x] = (Vertex_t)gpatch.v[y][x];
}
}
|