1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "patch.h"
#include "catmullclark_patch.h"
#include "bspline_patch.h"
#include "gregory_patch.h"
#include "tessellation.h"
namespace embree
{
namespace isa
{
struct FeatureAdaptiveEvalGrid
{
typedef CatmullClark1Ring3fa CatmullClarkRing;
typedef CatmullClarkPatch3fa CatmullClarkPatch;
typedef BilinearPatch3fa BilinearPatch;
typedef BSplinePatch3fa BSplinePatch;
typedef BezierPatch3fa BezierPatch;
typedef GregoryPatch3fa GregoryPatch;
private:
const unsigned x0,x1;
const unsigned y0,y1;
const unsigned swidth,sheight;
const float rcp_swidth, rcp_sheight;
float* const Px;
float* const Py;
float* const Pz;
float* const U;
float* const V;
float* const Nx;
float* const Ny;
float* const Nz;
const unsigned dwidth;
//const unsigned dheight;
unsigned count;
public:
FeatureAdaptiveEvalGrid (const GeneralCatmullClarkPatch3fa& patch, unsigned subPatch,
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
float* Px, float* Py, float* Pz, float* U, float* V,
float* Nx, float* Ny, float* Nz,
const unsigned dwidth, const unsigned dheight)
: x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0)
{
assert(swidth < (2<<20) && sheight < (2<<20));
const BBox2f srange(Vec2f(0.0f,0.0f),Vec2f(float(swidth-1),float(sheight-1)));
const BBox2f erange(Vec2f((float)x0,(float)y0),Vec2f((float)x1,(float)y1));
/* convert into standard quad patch if possible */
if (likely(patch.isQuadPatch()))
{
CatmullClarkPatch3fa qpatch; patch.init(qpatch);
eval(qpatch, srange, erange, 0);
assert(count == (x1-x0+1)*(y1-y0+1));
return;
}
/* subdivide patch */
unsigned N;
array_t<CatmullClarkPatch3fa,GeneralCatmullClarkPatch3fa::SIZE> patches;
patch.subdivide(patches,N);
if (N == 4)
{
const Vec2f c = srange.center();
const BBox2f srange0(srange.lower,c);
const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
const BBox2f srange2(c,srange.upper);
const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
#if PATCH_USE_GREGORY == 2
BezierCurve3fa borders[GeneralCatmullClarkPatch3fa::SIZE]; patch.getLimitBorder(borders);
BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve3fa border1l,border1r; borders[1].subdivide(border1l,border1r);
BezierCurve3fa border2l,border2r; borders[2].subdivide(border2l,border2r);
BezierCurve3fa border3l,border3r; borders[3].subdivide(border3l,border3r);
GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches);
eval(patches[0],srange0,intersect(srange0,erange),1,&border0l,nullptr,nullptr,&border3r);
eval(patches[1],srange1,intersect(srange1,erange),1,&border0r,&border1l,nullptr,nullptr);
eval(patches[2],srange2,intersect(srange2,erange),1,nullptr,&border1r,&border2l,nullptr);
eval(patches[3],srange3,intersect(srange3,erange),1,nullptr,nullptr,&border2r,&border3l);
#else
GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches);
eval(patches[0],srange0,intersect(srange0,erange),1);
eval(patches[1],srange1,intersect(srange1,erange),1);
eval(patches[2],srange2,intersect(srange2,erange),1);
eval(patches[3],srange3,intersect(srange3,erange),1);
#endif
}
else
{
assert(subPatch < N);
#if PATCH_USE_GREGORY == 2
BezierCurve3fa borders[2]; patch.getLimitBorder(borders,subPatch);
BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve3fa border2l,border2r; borders[1].subdivide(border2l,border2r);
eval(patches[subPatch], srange, erange, 1, &border0l, nullptr, nullptr, &border2r);
#else
eval(patches[subPatch], srange, erange, 1);
#endif
}
assert(count == (x1-x0+1)*(y1-y0+1));
}
FeatureAdaptiveEvalGrid (const CatmullClarkPatch3fa& patch,
const BBox2f& srange, const BBox2f& erange, const unsigned depth,
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
float* Px, float* Py, float* Pz, float* U, float* V,
float* Nx, float* Ny, float* Nz,
const unsigned dwidth, const unsigned dheight)
: x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0)
{
eval(patch,srange,erange,depth);
}
template<typename Patch>
void evalLocalGrid(const Patch& patch, const BBox2f& srange, const int lx0, const int lx1, const int ly0, const int ly1)
{
const float scale_x = rcp(srange.upper.x-srange.lower.x);
const float scale_y = rcp(srange.upper.y-srange.lower.y);
count += (lx1-lx0)*(ly1-ly0);
#if 0
for (unsigned iy=ly0; iy<ly1; iy++) {
for (unsigned ix=lx0; ix<lx1; ix++) {
const float lu = select(ix == swidth -1, float(1.0f), (float(ix)-srange.lower.x)*scale_x);
const float lv = select(iy == sheight-1, float(1.0f), (float(iy)-srange.lower.y)*scale_y);
const Vec3fa p = patch.eval(lu,lv);
const float u = float(ix)*rcp_swidth;
const float v = float(iy)*rcp_sheight;
const int ofs = (iy-y0)*dwidth+(ix-x0);
Px[ofs] = p.x;
Py[ofs] = p.y;
Pz[ofs] = p.z;
U[ofs] = u;
V[ofs] = v;
}
}
#else
foreach2(lx0,lx1,ly0,ly1,[&](const vboolx& valid, const vintx& ix, const vintx& iy) {
const vfloatx lu = select(ix == swidth -1, vfloatx(1.0f), (vfloatx(ix)-srange.lower.x)*scale_x);
const vfloatx lv = select(iy == sheight-1, vfloatx(1.0f), (vfloatx(iy)-srange.lower.y)*scale_y);
const Vec3vfx p = patch.eval(lu,lv);
Vec3vfx n = zero;
if (unlikely(Nx != nullptr)) n = normalize_safe(patch.normal(lu,lv));
const vfloatx u = vfloatx(ix)*rcp_swidth;
const vfloatx v = vfloatx(iy)*rcp_sheight;
const vintx ofs = (iy-y0)*dwidth+(ix-x0);
if (likely(all(valid)) && all(iy==iy[0])) {
const unsigned ofs2 = ofs[0];
vfloatx::storeu(Px+ofs2,p.x);
vfloatx::storeu(Py+ofs2,p.y);
vfloatx::storeu(Pz+ofs2,p.z);
vfloatx::storeu(U+ofs2,u);
vfloatx::storeu(V+ofs2,v);
if (unlikely(Nx != nullptr)) {
vfloatx::storeu(Nx+ofs2,n.x);
vfloatx::storeu(Ny+ofs2,n.y);
vfloatx::storeu(Nz+ofs2,n.z);
}
} else {
foreach_unique_index(valid,iy,[&](const vboolx& valid, const int iy0, const int j) {
const unsigned ofs2 = ofs[j]-j;
vfloatx::storeu(valid,Px+ofs2,p.x);
vfloatx::storeu(valid,Py+ofs2,p.y);
vfloatx::storeu(valid,Pz+ofs2,p.z);
vfloatx::storeu(valid,U+ofs2,u);
vfloatx::storeu(valid,V+ofs2,v);
if (unlikely(Nx != nullptr)) {
vfloatx::storeu(valid,Nx+ofs2,n.x);
vfloatx::storeu(valid,Ny+ofs2,n.y);
vfloatx::storeu(valid,Nz+ofs2,n.z);
}
});
}
});
#endif
}
__forceinline bool final(const CatmullClarkPatch3fa& patch, const CatmullClarkRing::Type type, unsigned depth)
{
const unsigned max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
//#if PATCH_MIN_RESOLUTION
// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth;
//#else
return depth>=max_eval_depth;
//#endif
}
void eval(const CatmullClarkPatch3fa& patch, const BBox2f& srange, const BBox2f& erange, const unsigned depth,
const BezierCurve3fa* border0 = nullptr, const BezierCurve3fa* border1 = nullptr, const BezierCurve3fa* border2 = nullptr, const BezierCurve3fa* border3 = nullptr)
{
if (erange.empty())
return;
int lx0 = (int) ceilf(erange.lower.x);
int lx1 = (int) ceilf(erange.upper.x) + (erange.upper.x == x1 && (srange.lower.x < erange.upper.x || erange.upper.x == 0));
int ly0 = (int) ceilf(erange.lower.y);
int ly1 = (int) ceilf(erange.upper.y) + (erange.upper.y == y1 && (srange.lower.y < erange.upper.y || erange.upper.y == 0));
if (lx0 >= lx1 || ly0 >= ly1) return;
CatmullClarkPatch::Type ty = patch.type();
if (unlikely(final(patch,ty,depth)))
{
if (ty & CatmullClarkRing::TYPE_REGULAR) {
RegularPatch rpatch(patch,border0,border1,border2,border3);
evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1);
return;
} else {
IrregularFillPatch ipatch(patch,border0,border1,border2,border3);
evalLocalGrid(ipatch,srange,lx0,lx1,ly0,ly1);
return;
}
}
else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
assert(depth > 0);
RegularPatch rpatch(patch,border0,border1,border2,border3);
evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1);
return;
}
#if PATCH_USE_GREGORY == 2
else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
assert(depth > 0);
GregoryPatch gpatch(patch,border0,border1,border2,border3);
evalLocalGrid(gpatch,srange,lx0,lx1,ly0,ly1);
}
#endif
else
{
array_t<CatmullClarkPatch3fa,4> patches;
patch.subdivide(patches);
const Vec2f c = srange.center();
const BBox2f srange0(srange.lower,c);
const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
const BBox2f srange2(c,srange.upper);
const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
eval(patches[0],srange0,intersect(srange0,erange),depth+1);
eval(patches[1],srange1,intersect(srange1,erange),depth+1);
eval(patches[2],srange2,intersect(srange2,erange),depth+1);
eval(patches[3],srange3,intersect(srange3,erange),depth+1);
}
}
};
template<typename Eval, typename Patch>
bool stitch_col(const Patch& patch, int subPatch,
const bool right, const unsigned y0, const unsigned y1, const int fine_y, const int coarse_y,
float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dx0, const unsigned dwidth, const unsigned dheight)
{
assert(coarse_y <= fine_y);
if (likely(fine_y == coarse_y))
return false;
const unsigned y0s = stitch(y0,fine_y,coarse_y);
const unsigned y1s = stitch(y1,fine_y,coarse_y);
const unsigned M = y1s-y0s+1 + VSIZEX;
dynamic_large_stack_array(float,px,M,64*sizeof(float));
dynamic_large_stack_array(float,py,M,64*sizeof(float));
dynamic_large_stack_array(float,pz,M,64*sizeof(float));
dynamic_large_stack_array(float,u,M,64*sizeof(float));
dynamic_large_stack_array(float,v,M,64*sizeof(float));
dynamic_large_stack_array(float,nx,M,64*sizeof(float));
dynamic_large_stack_array(float,ny,M,64*sizeof(float));
dynamic_large_stack_array(float,nz,M,64*sizeof(float));
const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz));
Eval(patch,subPatch, right,right, y0s,y1s, 2,coarse_y+1, px,py,pz,u,v,
has_Nxyz ? (float*)nx : nullptr,has_Nxyz ? (float*)ny : nullptr ,has_Nxyz ? (float*)nz : nullptr, 1,4097);
for (unsigned y=y0; y<=y1; y++)
{
const unsigned ys = stitch(y,fine_y,coarse_y)-y0s;
Px[(y-y0)*dwidth+dx0] = px[ys];
Py[(y-y0)*dwidth+dx0] = py[ys];
Pz[(y-y0)*dwidth+dx0] = pz[ys];
U [(y-y0)*dwidth+dx0] = u[ys];
V [(y-y0)*dwidth+dx0] = v[ys];
if (unlikely(has_Nxyz)) {
Nx[(y-y0)*dwidth+dx0] = nx[ys];
Ny[(y-y0)*dwidth+dx0] = ny[ys];
Nz[(y-y0)*dwidth+dx0] = nz[ys];
}
}
return true;
}
template<typename Eval, typename Patch>
bool stitch_row(const Patch& patch, int subPatch,
const bool bottom, const unsigned x0, const unsigned x1, const int fine_x, const int coarse_x,
float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dy0, const unsigned dwidth, const unsigned dheight)
{
assert(coarse_x <= fine_x);
if (likely(fine_x == coarse_x))
return false;
const unsigned x0s = stitch(x0,fine_x,coarse_x);
const unsigned x1s = stitch(x1,fine_x,coarse_x);
const unsigned M = x1s-x0s+1 + VSIZEX;
dynamic_large_stack_array(float,px,M,32*sizeof(float));
dynamic_large_stack_array(float,py,M,32*sizeof(float));
dynamic_large_stack_array(float,pz,M,32*sizeof(float));
dynamic_large_stack_array(float,u,M,32*sizeof(float));
dynamic_large_stack_array(float,v,M,32*sizeof(float));
dynamic_large_stack_array(float,nx,M,32*sizeof(float));
dynamic_large_stack_array(float,ny,M,32*sizeof(float));
dynamic_large_stack_array(float,nz,M,32*sizeof(float));
const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz));
Eval(patch,subPatch, x0s,x1s, bottom,bottom, coarse_x+1,2, px,py,pz,u,v,
has_Nxyz ? (float*)nx :nullptr, has_Nxyz ? (float*)ny : nullptr , has_Nxyz ? (float*)nz : nullptr, 4097,1);
for (unsigned x=x0; x<=x1; x++)
{
const unsigned xs = stitch(x,fine_x,coarse_x)-x0s;
Px[dy0*dwidth+x-x0] = px[xs];
Py[dy0*dwidth+x-x0] = py[xs];
Pz[dy0*dwidth+x-x0] = pz[xs];
U [dy0*dwidth+x-x0] = u[xs];
V [dy0*dwidth+x-x0] = v[xs];
if (unlikely(has_Nxyz)) {
Nx[dy0*dwidth+x-x0] = nx[xs];
Ny[dy0*dwidth+x-x0] = ny[xs];
Nz[dy0*dwidth+x-x0] = nz[xs];
}
}
return true;
}
template<typename Eval, typename Patch>
void feature_adaptive_eval_grid (const Patch& patch, unsigned subPatch, const float levels[4],
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dwidth, const unsigned dheight)
{
bool sl = false, sr = false, st = false, sb = false;
if (levels) {
sl = x0 == 0 && stitch_col<Eval,Patch>(patch,subPatch,0,y0,y1,sheight-1,int(levels[3]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight);
sr = x1 == swidth-1 && stitch_col<Eval,Patch>(patch,subPatch,1,y0,y1,sheight-1,int(levels[1]), Px,Py,Pz,U,V,Nx,Ny,Nz, x1-x0,dwidth,dheight);
st = y0 == 0 && stitch_row<Eval,Patch>(patch,subPatch,0,x0,x1,swidth-1,int(levels[0]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight);
sb = y1 == sheight-1 && stitch_row<Eval,Patch>(patch,subPatch,1,x0,x1,swidth-1,int(levels[2]), Px,Py,Pz,U,V,Nx,Ny,Nz, y1-y0,dwidth,dheight);
}
const unsigned ofs = st*dwidth+sl;
Eval(patch,subPatch,x0+sl,x1-sr,y0+st,y1-sb, swidth,sheight, Px+ofs,Py+ofs,Pz+ofs,U+ofs,V+ofs,Nx?Nx+ofs:nullptr,Ny?Ny+ofs:nullptr,Nz?Nz+ofs:nullptr, dwidth,dheight);
}
}
}
|