summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/subdiv/bezier_curve.h
blob: c0e78820f8ecf944854c14b19f3a900ee5554e2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "../common/default.h"
#include "../common/scene_curves.h"

namespace embree
{
  class BezierBasis
  {
  public:

    template<typename T>
      static __forceinline Vec4<T> eval(const T& u) 
    {
      const T t1 = u;
      const T t0 = 1.0f-t1;
      const T B0 = t0 * t0 * t0;
      const T B1 = 3.0f * t1 * (t0 * t0);
      const T B2 = 3.0f * (t1 * t1) * t0;
      const T B3 = t1 * t1 * t1;
      return Vec4<T>(B0,B1,B2,B3);
    }
    
    template<typename T>
      static __forceinline Vec4<T>  derivative(const T& u)
    {
      const T t1 = u;
      const T t0 = 1.0f-t1;
      const T B0 = -(t0*t0);
      const T B1 = madd(-2.0f,t0*t1,t0*t0);
      const T B2 = msub(+2.0f,t0*t1,t1*t1);
      const T B3 = +(t1*t1);
      return T(3.0f)*Vec4<T>(B0,B1,B2,B3);
    }

    template<typename T>
      static __forceinline Vec4<T>  derivative2(const T& u)
    {
      const T t1 = u;
      const T t0 = 1.0f-t1;
      const T B0 = t0;
      const T B1 = madd(-2.0f,t0,t1);
      const T B2 = madd(-2.0f,t1,t0);
      const T B3 = t1;
      return T(6.0f)*Vec4<T>(B0,B1,B2,B3);
    }
  };
  
  struct PrecomputedBezierBasis
  {
    enum { N = 16 };
  public:
    PrecomputedBezierBasis() {}
    PrecomputedBezierBasis(int shift);

    /* basis for bezier evaluation */
  public:
    float c0[N+1][N+1];
    float c1[N+1][N+1];
    float c2[N+1][N+1];
    float c3[N+1][N+1];
    
    /* basis for bezier derivative evaluation */
  public:
    float d0[N+1][N+1];
    float d1[N+1][N+1];
    float d2[N+1][N+1];
    float d3[N+1][N+1];
  };
  extern PrecomputedBezierBasis bezier_basis0;
  extern PrecomputedBezierBasis bezier_basis1;

  
  template<typename V>
    struct LinearBezierCurve
    {
      V v0,v1;
      
      __forceinline LinearBezierCurve () {}
      
      __forceinline LinearBezierCurve (const LinearBezierCurve& other)
        : v0(other.v0), v1(other.v1) {}
      
      __forceinline LinearBezierCurve& operator= (const LinearBezierCurve& other) {
        v0 = other.v0; v1 = other.v1; return *this;
      }
        
        __forceinline LinearBezierCurve (const V& v0, const V& v1)
          : v0(v0), v1(v1) {}
      
      __forceinline V begin() const { return v0; }
      __forceinline V end  () const { return v1; }
      
      bool hasRoot() const;
      
      friend embree_ostream operator<<(embree_ostream cout, const LinearBezierCurve& a) {
        return cout << "LinearBezierCurve (" << a.v0 << ", " << a.v1 << ")";
      }
    };
  
  template<> __forceinline bool LinearBezierCurve<Interval1f>::hasRoot() const {
    return numRoots(v0,v1);
  }
  
  template<typename V>
    struct QuadraticBezierCurve
    {
      V v0,v1,v2;
      
      __forceinline QuadraticBezierCurve () {}
      
      __forceinline QuadraticBezierCurve (const QuadraticBezierCurve& other)
        : v0(other.v0), v1(other.v1), v2(other.v2) {}
      
      __forceinline QuadraticBezierCurve& operator= (const QuadraticBezierCurve& other) {
        v0 = other.v0; v1 = other.v1; v2 = other.v2; return *this;
      }
        
        __forceinline QuadraticBezierCurve (const V& v0, const V& v1, const V& v2)
          : v0(v0), v1(v1), v2(v2) {}
      
      __forceinline V begin() const { return v0; }
      __forceinline V end  () const { return v2; }
      
      __forceinline V interval() const {
        return merge(v0,v1,v2);
      }
      
      __forceinline BBox<V> bounds() const {
        return merge(BBox<V>(v0),BBox<V>(v1),BBox<V>(v2));
      }
      
      friend embree_ostream operator<<(embree_ostream cout, const QuadraticBezierCurve& a) {
        return cout << "QuadraticBezierCurve ( (" << a.u.lower << ", " << a.u.upper << "), " << a.v0 << ", " << a.v1 << ", " << a.v2 << ")";
      }
    };
  
  
  typedef QuadraticBezierCurve<float> QuadraticBezierCurve1f;
  typedef QuadraticBezierCurve<Vec2fa> QuadraticBezierCurve2fa;
  typedef QuadraticBezierCurve<Vec3fa> QuadraticBezierCurve3fa;

  template<typename Vertex>
    struct CubicBezierCurve
    {
      Vertex v0,v1,v2,v3;
      
      __forceinline CubicBezierCurve() {}

      template<typename T1>
      __forceinline CubicBezierCurve (const CubicBezierCurve<T1>& other)
      : v0(other.v0), v1(other.v1), v2(other.v2), v3(other.v3) {}
      
      __forceinline CubicBezierCurve& operator= (const CubicBezierCurve& other) {
        v0 = other.v0; v1 = other.v1; v2 = other.v2; v3 = other.v3; return *this;
      }
      
      __forceinline CubicBezierCurve(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
        : v0(v0), v1(v1), v2(v2), v3(v3) {}

      __forceinline Vertex begin() const {
        return v0;
      }

      __forceinline Vertex end() const {
        return v3;
      }

      __forceinline Vertex center() const {
        return 0.25f*(v0+v1+v2+v3);
      }

      __forceinline Vertex begin_direction() const {
        return v1-v0;
      }

      __forceinline Vertex end_direction() const {
        return v3-v2;
      }

      __forceinline CubicBezierCurve<float> xfm(const Vertex& dx) const {
        return CubicBezierCurve<float>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx));
      }
      
      __forceinline CubicBezierCurve<vfloatx> vxfm(const Vertex& dx) const {
        return CubicBezierCurve<vfloatx>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx));
      }
      
      __forceinline CubicBezierCurve<float> xfm(const Vertex& dx, const Vertex& p) const {
        return CubicBezierCurve<float>(dot(v0-p,dx),dot(v1-p,dx),dot(v2-p,dx),dot(v3-p,dx));
      }

       __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space) const
      {
        const Vec3fa q0 = xfmVector(space,v0);
        const Vec3fa q1 = xfmVector(space,v1);
        const Vec3fa q2 = xfmVector(space,v2);
        const Vec3fa q3 = xfmVector(space,v3);
        return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3);
      }
      
      __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p) const
      {
        const Vec3fa q0 = xfmVector(space,v0-p);
        const Vec3fa q1 = xfmVector(space,v1-p);
        const Vec3fa q2 = xfmVector(space,v2-p);
        const Vec3fa q3 = xfmVector(space,v3-p);
        return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3);
      }

      __forceinline CubicBezierCurve<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
      {
        const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w);
        const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w);
        const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w);
        const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w);
        return CubicBezierCurve<Vec3ff>(q0,q1,q2,q3);
      }

      __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p, const float s) const
      {
        const Vec3fa q0 = xfmVector(space,s*(v0-p));
        const Vec3fa q1 = xfmVector(space,s*(v1-p));
        const Vec3fa q2 = xfmVector(space,s*(v2-p));
        const Vec3fa q3 = xfmVector(space,s*(v3-p));
        return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3);
      }
      
      __forceinline int maxRoots() const;
      
      __forceinline BBox<Vertex> bounds() const {
        return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
      }
      
      __forceinline friend CubicBezierCurve operator +( const CubicBezierCurve& a, const CubicBezierCurve& b ) {
        return CubicBezierCurve(a.v0+b.v0,a.v1+b.v1,a.v2+b.v2,a.v3+b.v3);
      }
      
      __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const CubicBezierCurve& b ) {
        return CubicBezierCurve(a.v0-b.v0,a.v1-b.v1,a.v2-b.v2,a.v3-b.v3);
      }
      
      __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const Vertex& b ) {
        return CubicBezierCurve(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
      }
      
      __forceinline friend CubicBezierCurve operator *( const Vertex& a, const CubicBezierCurve& b ) {
        return CubicBezierCurve(a*b.v0,a*b.v1,a*b.v2,a*b.v3);
      }

      __forceinline friend CubicBezierCurve cmadd( const Vertex& a, const CubicBezierCurve& b,  const CubicBezierCurve& c) {
        return CubicBezierCurve(madd(a,b.v0,c.v0),madd(a,b.v1,c.v1),madd(a,b.v2,c.v2),madd(a,b.v3,c.v3));
      }
      
      __forceinline friend CubicBezierCurve clerp ( const CubicBezierCurve& a, const CubicBezierCurve& b, const Vertex& t ) {
        return cmadd((Vertex(1.0f)-t),a,t*b);
      }
      
      __forceinline friend CubicBezierCurve merge ( const CubicBezierCurve& a, const CubicBezierCurve& b ) {
        return CubicBezierCurve(merge(a.v0,b.v0),merge(a.v1,b.v1),merge(a.v2,b.v2),merge(a.v3,b.v3));
      }
      
      __forceinline void split(CubicBezierCurve& left, CubicBezierCurve& right, const float t = 0.5f) const
      {
        const Vertex p00 = v0;
        const Vertex p01 = v1;
        const Vertex p02 = v2;
        const Vertex p03 = v3;
        
        const Vertex p10 = lerp(p00,p01,t);
        const Vertex p11 = lerp(p01,p02,t);
        const Vertex p12 = lerp(p02,p03,t);
        const Vertex p20 = lerp(p10,p11,t);
        const Vertex p21 = lerp(p11,p12,t);
        const Vertex p30 = lerp(p20,p21,t);
        
        new (&left ) CubicBezierCurve(p00,p10,p20,p30);
        new (&right) CubicBezierCurve(p30,p21,p12,p03);
      }
      
      __forceinline CubicBezierCurve<Vec2vfx> split() const
      {
        const float u0 = 0.0f, u1 = 1.0f;
        const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1)));
        const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(VSIZEX-1)));
        Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale);
        const Vec2vfx P3 = shift_right_1(P0);
        const Vec2vfx dP3du = shift_right_1(dP0du); 
        const Vec2vfx P1 = P0 + dP0du; 
        const Vec2vfx P2 = P3 - dP3du;
        return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3);
      }
      
      __forceinline CubicBezierCurve<Vec2vfx> split(const BBox1f& u) const
      {
        const float u0 = u.lower, u1 = u.upper;
        const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1)));
        const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(VSIZEX-1)));
        Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale);
        const Vec2vfx P3 = shift_right_1(P0);
        const Vec2vfx dP3du = shift_right_1(dP0du); 
        const Vec2vfx P1 = P0 + dP0du; 
        const Vec2vfx P2 = P3 - dP3du;
        return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3);
      }
      
      __forceinline void eval(float t, Vertex& p, Vertex& dp) const
      {
        const Vertex p00 = v0;
        const Vertex p01 = v1;
        const Vertex p02 = v2;
        const Vertex p03 = v3;
        
        const Vertex p10 = lerp(p00,p01,t);
        const Vertex p11 = lerp(p01,p02,t);
        const Vertex p12 = lerp(p02,p03,t);
        const Vertex p20 = lerp(p10,p11,t);
        const Vertex p21 = lerp(p11,p12,t);
        const Vertex p30 = lerp(p20,p21,t);
        
        p = p30;
        dp = Vertex(3.0f)*(p21-p20);
      }

#if 0
      __forceinline Vertex eval(float t) const
      {
        const Vertex p00 = v0;
        const Vertex p01 = v1;
        const Vertex p02 = v2;
        const Vertex p03 = v3;
        
        const Vertex p10 = lerp(p00,p01,t);
        const Vertex p11 = lerp(p01,p02,t);
        const Vertex p12 = lerp(p02,p03,t);
        const Vertex p20 = lerp(p10,p11,t);
        const Vertex p21 = lerp(p11,p12,t);
        const Vertex p30 = lerp(p20,p21,t);
        
        return p30;
      }
#else
      __forceinline Vertex eval(const float t) const 
      {
        const Vec4<float> b = BezierBasis::eval(t);
        return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
      }
#endif
      
      __forceinline Vertex eval_dt(float t) const
      {
        const Vertex p00 = v1-v0;
        const Vertex p01 = v2-v1;
        const Vertex p02 = v3-v2;
        const Vertex p10 = lerp(p00,p01,t);
        const Vertex p11 = lerp(p01,p02,t);
        const Vertex p20 = lerp(p10,p11,t);
        return Vertex(3.0f)*p20;
      }

      __forceinline Vertex eval_du(const float t) const
      {
        const Vec4<float> b = BezierBasis::derivative(t);
        return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
      }

      __forceinline Vertex eval_dudu(const float t) const 
      {
        const Vec4<float> b = BezierBasis::derivative2(t);
        return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
      }
      
      __forceinline void evalN(const vfloatx& t, Vec2vfx& p, Vec2vfx& dp) const
      {
        const Vec2vfx p00 = v0;
        const Vec2vfx p01 = v1;
        const Vec2vfx p02 = v2;
        const Vec2vfx p03 = v3;
        
        const Vec2vfx p10 = lerp(p00,p01,t);
        const Vec2vfx p11 = lerp(p01,p02,t);
        const Vec2vfx p12 = lerp(p02,p03,t);
        
        const Vec2vfx p20 = lerp(p10,p11,t);
        const Vec2vfx p21 = lerp(p11,p12,t);
        
        const Vec2vfx p30 = lerp(p20,p21,t);
        
        p = p30;
        dp = vfloatx(3.0f)*(p21-p20);
      }

      __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
      {
        const Vertex p00 = v0;
        const Vertex p01 = v1;
        const Vertex p02 = v2;
        const Vertex p03 = v3;
        const Vertex p10 = lerp(p00,p01,t);
        const Vertex p11 = lerp(p01,p02,t);
        const Vertex p12 = lerp(p02,p03,t);
        const Vertex p20 = lerp(p10,p11,t);
        const Vertex p21 = lerp(p11,p12,t);
        const Vertex p30 = lerp(p20,p21,t);
        p = p30;
        dp = 3.0f*(p21-p20);
        ddp = eval_dudu(t);
      }
      
      __forceinline CubicBezierCurve clip(const Interval1f& u1) const
      {
        Vertex f0,df0; eval(u1.lower,f0,df0);
        Vertex f1,df1; eval(u1.upper,f1,df1);
        float s = u1.upper-u1.lower;
        return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1);
      }
      
      __forceinline QuadraticBezierCurve<Vertex> derivative() const
      {
        const Vertex q0 = 3.0f*(v1-v0);
        const Vertex q1 = 3.0f*(v2-v1);
        const Vertex q2 = 3.0f*(v3-v2);
        return QuadraticBezierCurve<Vertex>(q0,q1,q2);
      }
      
      __forceinline BBox<Vertex> derivative_bounds(const Interval1f& u1) const
      {
        Vertex f0,df0; eval(u1.lower,f0,df0);
        Vertex f3,df3; eval(u1.upper,f3,df3);
        const float s = u1.upper-u1.lower;
        const Vertex f1 = f0+s*(1.0f/3.0f)*df0;
        const Vertex f2 = f3-s*(1.0f/3.0f)*df3;
        const Vertex q0 = s*df0;
        const Vertex q1 = 3.0f*(f2-f1);
        const Vertex q2 = s*df3;
        return merge(BBox<Vertex>(q0),BBox<Vertex>(q1),BBox<Vertex>(q2));
      }
      
      template<int M>
      __forceinline Vec4vf<M> veval(const vfloat<M>& t) const 
      {
        const Vec4vf<M> b = BezierBasis::eval(t);
        return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
      }

      template<int M>
      __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const 
      {
        const Vec4vf<M> b = BezierBasis::derivative(t);
        return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
      }

      template<int M>
      __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const 
      {
        const Vec4vf<M> b = BezierBasis::derivative2(t);
        return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
      }
      
      template<int M>
      __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
      {
        const Vec4vf<M> p00 = v0;
        const Vec4vf<M> p01 = v1;
        const Vec4vf<M> p02 = v2;
        const Vec4vf<M> p03 = v3;
        
        const Vec4vf<M> p10 = lerp(p00,p01,t);
        const Vec4vf<M> p11 = lerp(p01,p02,t);
        const Vec4vf<M> p12 = lerp(p02,p03,t);
        const Vec4vf<M> p20 = lerp(p10,p11,t);
        const Vec4vf<M> p21 = lerp(p11,p12,t);
        const Vec4vf<M> p30 = lerp(p20,p21,t);
        
        p = p30;
        dp = vfloat<M>(3.0f)*(p21-p20);
      }
      
      template<int M, typename Vec = Vec4vf<M>>
      __forceinline Vec eval0(const int ofs, const int size) const
      {
        assert(size <= PrecomputedBezierBasis::N);
        assert(ofs <= size);
        return madd(vfloat<M>::loadu(&bezier_basis0.c0[size][ofs]), Vec(v0),
                    madd(vfloat<M>::loadu(&bezier_basis0.c1[size][ofs]), Vec(v1),
                         madd(vfloat<M>::loadu(&bezier_basis0.c2[size][ofs]), Vec(v2),
                              vfloat<M>::loadu(&bezier_basis0.c3[size][ofs]) * Vec(v3))));
      }
      
      template<int M, typename Vec = Vec4vf<M>>
      __forceinline Vec eval1(const int ofs, const int size) const
      {
        assert(size <= PrecomputedBezierBasis::N);
        assert(ofs <= size);
        return madd(vfloat<M>::loadu(&bezier_basis1.c0[size][ofs]), Vec(v0), 
                    madd(vfloat<M>::loadu(&bezier_basis1.c1[size][ofs]), Vec(v1),
                         madd(vfloat<M>::loadu(&bezier_basis1.c2[size][ofs]), Vec(v2),
                              vfloat<M>::loadu(&bezier_basis1.c3[size][ofs]) * Vec(v3))));
      }
      
      template<int M, typename Vec = Vec4vf<M>>
      __forceinline Vec derivative0(const int ofs, const int size) const
      {
        assert(size <= PrecomputedBezierBasis::N);
        assert(ofs <= size);
        return madd(vfloat<M>::loadu(&bezier_basis0.d0[size][ofs]), Vec(v0),
                    madd(vfloat<M>::loadu(&bezier_basis0.d1[size][ofs]), Vec(v1),
                         madd(vfloat<M>::loadu(&bezier_basis0.d2[size][ofs]), Vec(v2),
                              vfloat<M>::loadu(&bezier_basis0.d3[size][ofs]) * Vec(v3))));
      }
      
      template<int M, typename Vec = Vec4vf<M>>
      __forceinline Vec derivative1(const int ofs, const int size) const
      {
        assert(size <= PrecomputedBezierBasis::N);
        assert(ofs <= size);
        return madd(vfloat<M>::loadu(&bezier_basis1.d0[size][ofs]), Vec(v0),
                    madd(vfloat<M>::loadu(&bezier_basis1.d1[size][ofs]), Vec(v1),
                         madd(vfloat<M>::loadu(&bezier_basis1.d2[size][ofs]), Vec(v2),
                              vfloat<M>::loadu(&bezier_basis1.d3[size][ofs]) * Vec(v3))));
      }

      /* calculates bounds of bezier curve geometry */
      __forceinline BBox3fa accurateBounds() const
      {
        const int N = 7;
        const float scale = 1.0f/(3.0f*(N-1));
        Vec3vfx pl(pos_inf), pu(neg_inf);
        for (int i=0; i<=N; i+=VSIZEX)
        {
          vintx vi = vintx(i)+vintx(step);
          vboolx valid = vi <= vintx(N);
          const Vec3vfx p  = eval0<VSIZEX,Vec3vf<VSIZEX>>(i,N);
          const Vec3vfx dp = derivative0<VSIZEX,Vec3vf<VSIZEX>>(i,N);
          const Vec3vfx pm = p-Vec3vfx(scale)*select(vi!=vintx(0),dp,Vec3vfx(zero));
          const Vec3vfx pp = p+Vec3vfx(scale)*select(vi!=vintx(N),dp,Vec3vfx(zero));
          pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
          pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
        }
        const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
        const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
        return BBox3fa(lower,upper);
      }
      
      /* calculates bounds of bezier curve geometry */
      __forceinline BBox3fa accurateRoundBounds() const
      {
        const int N = 7;
        const float scale = 1.0f/(3.0f*(N-1));
        Vec4vfx pl(pos_inf), pu(neg_inf);
        for (int i=0; i<=N; i+=VSIZEX)
        {
          vintx vi = vintx(i)+vintx(step);
          vboolx valid = vi <= vintx(N);
          const Vec4vfx p  = eval0<VSIZEX>(i,N);
          const Vec4vfx dp = derivative0<VSIZEX>(i,N);
          const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
          const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
          pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
          pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
        }
        const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
        const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
        const float r_min = reduce_min(pl.w);
        const float r_max = reduce_max(pu.w);
        const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
        return enlarge(BBox3fa(lower,upper),upper_r);
      }
      
      /* calculates bounds when tessellated into N line segments */
      __forceinline BBox3fa accurateFlatBounds(int N) const
      {
        if (likely(N == 4))
        {
          const Vec4vf4 pi = eval0<4>(0,4);
          const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
          const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
          const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
          return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w))));
        } 
        else
        {
          Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
          for (int i=0; i<N; i+=VSIZEX)
          {
            vboolx valid = vintx(i)+vintx(step) < vintx(N);
            const Vec4vfx pi = eval0<VSIZEX>(i,N);
            
            pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
            pl.y = select(valid,min(pl.y,pi.y),pl.y); 
            pl.z = select(valid,min(pl.z,pi.z),pl.z); 
            
            pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
            pu.y = select(valid,max(pu.y,pi.y),pu.y); 
            pu.z = select(valid,max(pu.z,pi.z),pu.z); 
            
            ru   = select(valid,max(ru,abs(pi.w)),ru);
          }
          const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
          const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
          const Vec3fa upper_r(reduce_max(ru));
          return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w))));
        }
      }
      
      friend __forceinline embree_ostream operator<<(embree_ostream cout, const CubicBezierCurve& curve) {
        return cout << "CubicBezierCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
      }
    };

#if defined(__AVX__)
  template<>
    __forceinline CubicBezierCurve<vfloat4> CubicBezierCurve<vfloat4>::clip(const Interval1f& u1) const
  {
    const vfloat8 p00 = vfloat8(v0);
    const vfloat8 p01 = vfloat8(v1);
    const vfloat8 p02 = vfloat8(v2);
    const vfloat8 p03 = vfloat8(v3);

    const vfloat8 t(vfloat4(u1.lower),vfloat4(u1.upper));
    const vfloat8 p10 = lerp(p00,p01,t);
    const vfloat8 p11 = lerp(p01,p02,t);
    const vfloat8 p12 = lerp(p02,p03,t);
    const vfloat8 p20 = lerp(p10,p11,t);
    const vfloat8 p21 = lerp(p11,p12,t);
    const vfloat8 p30 = lerp(p20,p21,t);
    
    const vfloat8 f01  = p30;
    const vfloat8 df01 = vfloat8(3.0f)*(p21-p20);
        
    const vfloat4 f0  = extract4<0>(f01),  f1  = extract4<1>(f01);
    const vfloat4 df0 = extract4<0>(df01), df1 = extract4<1>(df01);
    const float s = u1.upper-u1.lower;
    return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1);
  }
#endif
  
  template<typename Vertex> using BezierCurveT = CubicBezierCurve<Vertex>;
  
  typedef CubicBezierCurve<float> CubicBezierCurve1f;
  typedef CubicBezierCurve<Vec2fa> CubicBezierCurve2fa;
  typedef CubicBezierCurve<Vec3fa> CubicBezierCurve3fa;
  typedef CubicBezierCurve<Vec3fa> BezierCurve3fa;
  
  template<> __forceinline int CubicBezierCurve<float>::maxRoots() const
  {
    float eps = 1E-4f;
    bool neg0 = v0 <= 0.0f; bool zero0 = fabs(v0) < eps;
    bool neg1 = v1 <= 0.0f; bool zero1 = fabs(v1) < eps;
    bool neg2 = v2 <= 0.0f; bool zero2 = fabs(v2) < eps;
    bool neg3 = v3 <= 0.0f; bool zero3 = fabs(v3) < eps;
    return (neg0 != neg1 || zero0) + (neg1 != neg2 || zero1) + (neg2 != neg3 || zero2 || zero3);
  }
  
  template<> __forceinline int CubicBezierCurve<Interval1f>::maxRoots() const {
    return numRoots(v0,v1) + numRoots(v1,v2) + numRoots(v2,v3);
  }

  __forceinline CubicBezierCurve<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CubicBezierCurve<Vec3ff>& curve)
  {
    return CubicBezierCurve<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
                                    enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
                                    enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
                                    enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
  }
}