1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "geometry.h"
#include "accel.h"
namespace embree
{
struct MotionDerivativeCoefficients;
/*! Instanced acceleration structure */
struct Instance : public Geometry
{
ALIGNED_STRUCT_(16);
static const Geometry::GTypeMask geom_type = Geometry::MTY_INSTANCE;
public:
Instance (Device* device, Accel* object = nullptr, unsigned int numTimeSteps = 1);
~Instance();
private:
Instance (const Instance& other) DELETED; // do not implement
Instance& operator= (const Instance& other) DELETED; // do not implement
private:
LBBox3fa nonlinearBounds(const BBox1f& time_range_in,
const BBox1f& geom_time_range,
float geom_time_segments) const;
BBox3fa boundSegment(size_t itime,
BBox3fa const& obbox0, BBox3fa const& obbox1,
BBox3fa const& bbox0, BBox3fa const& bbox1,
float t_min, float t_max) const;
/* calculates the (correct) interpolated bounds */
__forceinline BBox3fa bounds(size_t itime0, size_t itime1, float f) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(slerp(local2world[itime0], local2world[itime1], f),
lerp(getObjectBounds(itime0), getObjectBounds(itime1), f));
return xfmBounds(lerp(local2world[itime0], local2world[itime1], f),
lerp(getObjectBounds(itime0), getObjectBounds(itime1), f));
}
public:
virtual void setNumTimeSteps (unsigned int numTimeSteps) override;
virtual void setInstancedScene(const Ref<Scene>& scene) override;
virtual void setTransform(const AffineSpace3fa& local2world, unsigned int timeStep) override;
virtual void setQuaternionDecomposition(const AffineSpace3ff& qd, unsigned int timeStep) override;
virtual AffineSpace3fa getTransform(float time) override;
virtual void setMask (unsigned mask) override;
virtual void build() {}
virtual void addElementsToCount (GeometryCounts & counts) const override;
virtual void commit() override;
public:
/*! calculates the bounds of instance */
__forceinline BBox3fa bounds(size_t i) const {
assert(i == 0);
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(quaternionDecompositionToAffineSpace(local2world[0]),object->bounds.bounds());
return xfmBounds(local2world[0],object->bounds.bounds());
}
/*! gets the bounds of the instanced scene */
__forceinline BBox3fa getObjectBounds(size_t itime) const {
return object->getBounds(timeStep(itime));
}
/*! calculates the bounds of instance */
__forceinline BBox3fa bounds(size_t i, size_t itime) const {
assert(i == 0);
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(quaternionDecompositionToAffineSpace(local2world[itime]),getObjectBounds(itime));
return xfmBounds(local2world[itime],getObjectBounds(itime));
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(size_t i, const BBox1f& dt) const {
assert(i == 0);
LBBox3fa lbbox = nonlinearBounds(dt, time_range, fnumTimeSegments);
return lbbox;
}
/*! calculates the build bounds of the i'th item, if it's valid */
__forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
{
assert(i==0);
const BBox3fa b = bounds(i);
if (bbox) *bbox = b;
return isvalid(b);
}
/*! calculates the build bounds of the i'th item at the itime'th time segment, if it's valid */
__forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
{
assert(i==0);
const LBBox3fa bounds = linearBounds(i,itime);
bbox = bounds.bounds ();
return isvalid(bounds);
}
/* gets version info of topology */
unsigned int getTopologyVersion() const {
return numPrimitives;
}
/* returns true if topology changed */
bool topologyChanged(unsigned int otherVersion) const {
return numPrimitives != otherVersion;
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t i, const range<size_t>& itime_range) const
{
assert(i == 0);
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
if (!isvalid(bounds(i,itime))) return false;
return true;
}
__forceinline AffineSpace3fa getLocal2World() const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return quaternionDecompositionToAffineSpace(local2world[0]);
return local2world[0];
}
__forceinline AffineSpace3fa getLocal2World(float t) const
{
float ftime; const unsigned int itime = timeSegment(t, ftime);
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return slerp(local2world[itime+0],local2world[itime+1],ftime);
return lerp(local2world[itime+0],local2world[itime+1],ftime);
}
__forceinline AffineSpace3fa getWorld2Local() const {
return world2local0;
}
__forceinline AffineSpace3fa getWorld2Local(float t) const {
return rcp(getLocal2World(t));
}
template<int K>
__forceinline AffineSpace3vf<K> getWorld2Local(const vbool<K>& valid, const vfloat<K>& t) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return getWorld2LocalSlerp(valid, t);
return getWorld2LocalLerp(valid, t);
}
private:
template<int K>
__forceinline AffineSpace3vf<K> getWorld2LocalSlerp(const vbool<K>& valid, const vfloat<K>& t) const
{
vfloat<K> ftime;
const vint<K> itime_k = timeSegment(t, ftime);
assert(any(valid));
const size_t index = bsf(movemask(valid));
const int itime = itime_k[index];
if (likely(all(valid, itime_k == vint<K>(itime)))) {
return rcp(slerp(AffineSpace3vff<K>(local2world[itime+0]),
AffineSpace3vff<K>(local2world[itime+1]),
ftime));
}
else {
AffineSpace3vff<K> space0,space1;
vbool<K> valid1 = valid;
while (any(valid1)) {
vbool<K> valid2;
const int itime = next_unique(valid1, itime_k, valid2);
space0 = select(valid2, AffineSpace3vff<K>(local2world[itime+0]), space0);
space1 = select(valid2, AffineSpace3vff<K>(local2world[itime+1]), space1);
}
return rcp(slerp(space0, space1, ftime));
}
}
template<int K>
__forceinline AffineSpace3vf<K> getWorld2LocalLerp(const vbool<K>& valid, const vfloat<K>& t) const
{
vfloat<K> ftime;
const vint<K> itime_k = timeSegment(t, ftime);
assert(any(valid));
const size_t index = bsf(movemask(valid));
const int itime = itime_k[index];
if (likely(all(valid, itime_k == vint<K>(itime)))) {
return rcp(lerp(AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+0]),
AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+1]),
ftime));
} else {
AffineSpace3vf<K> space0,space1;
vbool<K> valid1 = valid;
while (any(valid1)) {
vbool<K> valid2;
const int itime = next_unique(valid1, itime_k, valid2);
space0 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+0]), space0);
space1 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+1]), space1);
}
return rcp(lerp(space0, space1, ftime));
}
}
public:
Accel* object; //!< pointer to instanced acceleration structure
AffineSpace3ff* local2world; //!< transformation from local space to world space for each timestep (either normal matrix or quaternion decomposition)
AffineSpace3fa world2local0; //!< transformation from world space to local space for timestep 0
};
namespace isa
{
struct InstanceISA : public Instance
{
InstanceISA (Device* device)
: Instance(device) {}
PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const
{
assert(r.begin() == 0);
assert(r.end() == 1);
PrimInfo pinfo(empty);
BBox3fa b = empty;
if (!buildBounds(0,&b)) return pinfo;
// const BBox3fa b = bounds(0);
// if (!isvalid(b)) return pinfo;
const PrimRef prim(b,geomID,unsigned(0));
pinfo.add_center2(prim);
prims[k++] = prim;
return pinfo;
}
PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
{
assert(r.begin() == 0);
assert(r.end() == 1);
PrimInfo pinfo(empty);
BBox3fa b = empty;
if (!buildBounds(0,&b)) return pinfo;
// if (!valid(0,range<size_t>(itime))) return pinfo;
// const PrimRef prim(linearBounds(0,itime).bounds(),geomID,unsigned(0));
const PrimRef prim(b,geomID,unsigned(0));
pinfo.add_center2(prim);
prims[k++] = prim;
return pinfo;
}
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
{
assert(r.begin() == 0);
assert(r.end() == 1);
PrimInfoMB pinfo(empty);
if (!valid(0, timeSegmentRange(t0t1))) return pinfo;
const PrimRefMB prim(linearBounds(0,t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(0));
pinfo.add_primref(prim);
prims[k++] = prim;
return pinfo;
}
};
}
DECLARE_ISA_FUNCTION(Instance*, createInstance, Device*);
}
|