1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "bvh.h"
#include <sstream>
namespace embree
{
template<int N>
class BVHNStatistics
{
typedef BVHN<N> BVH;
typedef typename BVH::AABBNode AABBNode;
typedef typename BVH::OBBNode OBBNode;
typedef typename BVH::AABBNodeMB AABBNodeMB;
typedef typename BVH::AABBNodeMB4D AABBNodeMB4D;
typedef typename BVH::OBBNodeMB OBBNodeMB;
typedef typename BVH::QuantizedNode QuantizedNode;
typedef typename BVH::NodeRef NodeRef;
struct Statistics
{
template<typename Node>
struct NodeStat
{
NodeStat ( double nodeSAH = 0,
size_t numNodes = 0,
size_t numChildren = 0)
: nodeSAH(nodeSAH),
numNodes(numNodes),
numChildren(numChildren) {}
double sah(BVH* bvh) const {
return nodeSAH/bvh->getLinearBounds().expectedHalfArea();
}
size_t bytes() const {
return numNodes*sizeof(Node);
}
size_t size() const {
return numNodes;
}
double fillRateNom () const { return double(numChildren); }
double fillRateDen () const { return double(numNodes*N); }
double fillRate () const { return fillRateNom()/fillRateDen(); }
__forceinline friend NodeStat operator+ ( const NodeStat& a, const NodeStat& b)
{
return NodeStat(a.nodeSAH + b.nodeSAH,
a.numNodes+b.numNodes,
a.numChildren+b.numChildren);
}
std::string toString(BVH* bvh, double sahTotal, size_t bytesTotal) const
{
std::ostringstream stream;
stream.setf(std::ios::fixed, std::ios::floatfield);
stream << "sah = " << std::setw(7) << std::setprecision(3) << sah(bvh);
stream << " (" << std::setw(6) << std::setprecision(2) << 100.0*sah(bvh)/sahTotal << "%), ";
stream << "#bytes = " << std::setw(7) << std::setprecision(2) << bytes()/1E6 << " MB ";
stream << "(" << std::setw(6) << std::setprecision(2) << 100.0*double(bytes())/double(bytesTotal) << "%), ";
stream << "#nodes = " << std::setw(7) << numNodes << " (" << std::setw(6) << std::setprecision(2) << 100.0*fillRate() << "% filled), ";
stream << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytes())/double(bvh->numPrimitives);
return stream.str();
}
public:
double nodeSAH;
size_t numNodes;
size_t numChildren;
};
struct LeafStat
{
static const int NHIST = 8;
LeafStat ( double leafSAH = 0.0f,
size_t numLeaves = 0,
size_t numPrimsActive = 0,
size_t numPrimsTotal = 0,
size_t numPrimBlocks = 0,
size_t numBytes = 0)
: leafSAH(leafSAH),
numLeaves(numLeaves),
numPrimsActive(numPrimsActive),
numPrimsTotal(numPrimsTotal),
numPrimBlocks(numPrimBlocks),
numBytes(numBytes)
{
for (size_t i=0; i<NHIST; i++)
numPrimBlocksHistogram[i] = 0;
}
double sah(BVH* bvh) const {
return leafSAH/bvh->getLinearBounds().expectedHalfArea();
}
size_t bytes(BVH* bvh) const {
return numBytes;
}
size_t size() const {
return numLeaves;
}
double fillRateNom (BVH* bvh) const { return double(numPrimsActive); }
double fillRateDen (BVH* bvh) const { return double(numPrimsTotal); }
double fillRate (BVH* bvh) const { return fillRateNom(bvh)/fillRateDen(bvh); }
__forceinline friend LeafStat operator+ ( const LeafStat& a, const LeafStat& b)
{
LeafStat stat(a.leafSAH + b.leafSAH,
a.numLeaves+b.numLeaves,
a.numPrimsActive+b.numPrimsActive,
a.numPrimsTotal+b.numPrimsTotal,
a.numPrimBlocks+b.numPrimBlocks,
a.numBytes+b.numBytes);
for (size_t i=0; i<NHIST; i++) {
stat.numPrimBlocksHistogram[i] += a.numPrimBlocksHistogram[i];
stat.numPrimBlocksHistogram[i] += b.numPrimBlocksHistogram[i];
}
return stat;
}
std::string toString(BVH* bvh, double sahTotal, size_t bytesTotal) const
{
std::ostringstream stream;
stream.setf(std::ios::fixed, std::ios::floatfield);
stream << "sah = " << std::setw(7) << std::setprecision(3) << sah(bvh);
stream << " (" << std::setw(6) << std::setprecision(2) << 100.0*sah(bvh)/sahTotal << "%), ";
stream << "#bytes = " << std::setw(7) << std::setprecision(2) << double(bytes(bvh))/1E6 << " MB ";
stream << "(" << std::setw(6) << std::setprecision(2) << 100.0*double(bytes(bvh))/double(bytesTotal) << "%), ";
stream << "#nodes = " << std::setw(7) << numLeaves << " (" << std::setw(6) << std::setprecision(2) << 100.0*fillRate(bvh) << "% filled), ";
stream << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytes(bvh))/double(bvh->numPrimitives);
return stream.str();
}
std::string histToString() const
{
std::ostringstream stream;
stream.setf(std::ios::fixed, std::ios::floatfield);
for (size_t i=0; i<NHIST; i++)
stream << std::setw(6) << std::setprecision(2) << 100.0f*float(numPrimBlocksHistogram[i])/float(numLeaves) << "% ";
return stream.str();
}
public:
double leafSAH; //!< SAH of the leaves only
size_t numLeaves; //!< Number of leaf nodes.
size_t numPrimsActive; //!< Number of active primitives (
size_t numPrimsTotal; //!< Number of active and inactive primitives
size_t numPrimBlocks; //!< Number of primitive blocks.
size_t numBytes; //!< Number of bytes of leaves.
size_t numPrimBlocksHistogram[8];
};
public:
Statistics (size_t depth = 0,
LeafStat statLeaf = LeafStat(),
NodeStat<AABBNode> statAABBNodes = NodeStat<AABBNode>(),
NodeStat<OBBNode> statOBBNodes = NodeStat<OBBNode>(),
NodeStat<AABBNodeMB> statAABBNodesMB = NodeStat<AABBNodeMB>(),
NodeStat<AABBNodeMB4D> statAABBNodesMB4D = NodeStat<AABBNodeMB4D>(),
NodeStat<OBBNodeMB> statOBBNodesMB = NodeStat<OBBNodeMB>(),
NodeStat<QuantizedNode> statQuantizedNodes = NodeStat<QuantizedNode>())
: depth(depth),
statLeaf(statLeaf),
statAABBNodes(statAABBNodes),
statOBBNodes(statOBBNodes),
statAABBNodesMB(statAABBNodesMB),
statAABBNodesMB4D(statAABBNodesMB4D),
statOBBNodesMB(statOBBNodesMB),
statQuantizedNodes(statQuantizedNodes) {}
double sah(BVH* bvh) const
{
return statLeaf.sah(bvh) +
statAABBNodes.sah(bvh) +
statOBBNodes.sah(bvh) +
statAABBNodesMB.sah(bvh) +
statAABBNodesMB4D.sah(bvh) +
statOBBNodesMB.sah(bvh) +
statQuantizedNodes.sah(bvh);
}
size_t bytes(BVH* bvh) const {
return statLeaf.bytes(bvh) +
statAABBNodes.bytes() +
statOBBNodes.bytes() +
statAABBNodesMB.bytes() +
statAABBNodesMB4D.bytes() +
statOBBNodesMB.bytes() +
statQuantizedNodes.bytes();
}
size_t size() const
{
return statLeaf.size() +
statAABBNodes.size() +
statOBBNodes.size() +
statAABBNodesMB.size() +
statAABBNodesMB4D.size() +
statOBBNodesMB.size() +
statQuantizedNodes.size();
}
double fillRate (BVH* bvh) const
{
double nom = statLeaf.fillRateNom(bvh) +
statAABBNodes.fillRateNom() +
statOBBNodes.fillRateNom() +
statAABBNodesMB.fillRateNom() +
statAABBNodesMB4D.fillRateNom() +
statOBBNodesMB.fillRateNom() +
statQuantizedNodes.fillRateNom();
double den = statLeaf.fillRateDen(bvh) +
statAABBNodes.fillRateDen() +
statOBBNodes.fillRateDen() +
statAABBNodesMB.fillRateDen() +
statAABBNodesMB4D.fillRateDen() +
statOBBNodesMB.fillRateDen() +
statQuantizedNodes.fillRateDen();
return nom/den;
}
friend Statistics operator+ ( const Statistics& a, const Statistics& b )
{
return Statistics(max(a.depth,b.depth),
a.statLeaf + b.statLeaf,
a.statAABBNodes + b.statAABBNodes,
a.statOBBNodes + b.statOBBNodes,
a.statAABBNodesMB + b.statAABBNodesMB,
a.statAABBNodesMB4D + b.statAABBNodesMB4D,
a.statOBBNodesMB + b.statOBBNodesMB,
a.statQuantizedNodes + b.statQuantizedNodes);
}
static Statistics add ( const Statistics& a, const Statistics& b ) {
return a+b;
}
public:
size_t depth;
LeafStat statLeaf;
NodeStat<AABBNode> statAABBNodes;
NodeStat<OBBNode> statOBBNodes;
NodeStat<AABBNodeMB> statAABBNodesMB;
NodeStat<AABBNodeMB4D> statAABBNodesMB4D;
NodeStat<OBBNodeMB> statOBBNodesMB;
NodeStat<QuantizedNode> statQuantizedNodes;
};
public:
/* Constructor gathers statistics. */
BVHNStatistics (BVH* bvh);
/*! Convert statistics into a string */
std::string str();
double sah() const {
return stat.sah(bvh);
}
size_t bytesUsed() const {
return stat.bytes(bvh);
}
private:
Statistics statistics(NodeRef node, const double A, const BBox1f dt);
private:
BVH* bvh;
Statistics stat;
};
typedef BVHNStatistics<4> BVH4Statistics;
typedef BVHNStatistics<8> BVH8Statistics;
}
|