summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h
blob: c999941a11cdb9a0ee689f835835a7316384b6cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "../common/primref_mb.h"
#include "../../common/algorithms/parallel_filter.h"

#define MBLUR_TIME_SPLIT_THRESHOLD 1.25f

namespace embree
{
  namespace isa
  { 
    /*! Performs standard object binning */
    template<typename PrimRefMB, typename RecalculatePrimRef, size_t BINS>
      struct HeuristicMBlurTemporalSplit
      {
        typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split;
        typedef mvector<PrimRefMB>* PrimRefVector;
        typedef typename PrimRefMB::BBox BBox; 

        static const size_t PARALLEL_THRESHOLD = 3 * 1024;
        static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024;
        static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128;

        HeuristicMBlurTemporalSplit (MemoryMonitorInterface* device, const RecalculatePrimRef& recalculatePrimRef)
          : device(device), recalculatePrimRef(recalculatePrimRef) {}

        struct TemporalBinInfo
        {
          __forceinline TemporalBinInfo () {
          }

          __forceinline TemporalBinInfo (EmptyTy)
          {
            for (size_t i=0; i<BINS-1; i++)
            {
              count0[i] = count1[i] = 0;
              bounds0[i] = bounds1[i] = empty;
            }
          }
          
          void bin(const PrimRefMB* prims, size_t begin, size_t end, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef)
          {
            for (int b=0; b<BINS-1; b++)
            {
              const float t = float(b+1)/float(BINS);
              const float ct = lerp(time_range.lower,time_range.upper,t);
              const float center_time = set.align_time(ct);
              if (center_time <= time_range.lower) continue;
              if (center_time >= time_range.upper) continue;
              const BBox1f dt0(time_range.lower,center_time);
              const BBox1f dt1(center_time,time_range.upper);
              
              /* find linear bounds for both time segments */
              for (size_t i=begin; i<end; i++) 
              {
                if (prims[i].time_range_overlap(dt0))
                {
                  const LBBox3fa bn0 = recalculatePrimRef.linearBounds(prims[i],dt0);
#if MBLUR_BIN_LBBOX
                  bounds0[b].extend(bn0);
#else
                  bounds0[b].extend(bn0.interpolate(0.5f));
#endif
                  count0[b] += prims[i].timeSegmentRange(dt0).size();
                }

                if (prims[i].time_range_overlap(dt1))
                {
                  const LBBox3fa bn1 = recalculatePrimRef.linearBounds(prims[i],dt1);
#if MBLUR_BIN_LBBOX
                  bounds1[b].extend(bn1);
#else
                  bounds1[b].extend(bn1.interpolate(0.5f));
#endif
                  count1[b] += prims[i].timeSegmentRange(dt1).size();
                }
              }
            }
          }

          __forceinline void bin_parallel(const PrimRefMB* prims, size_t begin, size_t end, size_t blockSize, size_t parallelThreshold, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) 
          {
            if (likely(end-begin < parallelThreshold)) {
              bin(prims,begin,end,time_range,set,recalculatePrimRef);
            } 
            else 
            {
              auto bin = [&](const range<size_t>& r) -> TemporalBinInfo { 
                TemporalBinInfo binner(empty); binner.bin(prims, r.begin(), r.end(), time_range, set, recalculatePrimRef); return binner; 
              };
              *this = parallel_reduce(begin,end,blockSize,TemporalBinInfo(empty),bin,merge2);
            }
          }
          
          /*! merges in other binning information */
          __forceinline void merge (const TemporalBinInfo& other)
          {
            for (size_t i=0; i<BINS-1; i++) 
            {
              count0[i] += other.count0[i];
              count1[i] += other.count1[i];
              bounds0[i].extend(other.bounds0[i]);
              bounds1[i].extend(other.bounds1[i]);
            }
          }

          static __forceinline const TemporalBinInfo merge2(const TemporalBinInfo& a, const TemporalBinInfo& b) {
            TemporalBinInfo r = a; r.merge(b); return r;
          }
                    
          Split best(int logBlockSize, BBox1f time_range, const SetMB& set)
          {
            float bestSAH = inf;
            float bestPos = 0.0f;
            for (int b=0; b<BINS-1; b++)
            {
              float t = float(b+1)/float(BINS);
              float ct = lerp(time_range.lower,time_range.upper,t);
              const float center_time = set.align_time(ct);
              if (center_time <= time_range.lower) continue;
              if (center_time >= time_range.upper) continue;
              const BBox1f dt0(time_range.lower,center_time);
              const BBox1f dt1(center_time,time_range.upper);
              
              /* calculate sah */
              const size_t lCount = (count0[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
              const size_t rCount = (count1[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
              float sah0 = expectedApproxHalfArea(bounds0[b])*float(lCount)*dt0.size();
              float sah1 = expectedApproxHalfArea(bounds1[b])*float(rCount)*dt1.size();
              if (unlikely(lCount == 0)) sah0 = 0.0f; // happens for initial splits when objects not alive over entire shutter time
              if (unlikely(rCount == 0)) sah1 = 0.0f;
              const float sah = sah0+sah1;
              if (sah < bestSAH) {
                bestSAH = sah;
                bestPos = center_time;
              }
            }
            return Split(bestSAH*MBLUR_TIME_SPLIT_THRESHOLD,(unsigned)Split::SPLIT_TEMPORAL,0,bestPos);
          }
          
        public:
          size_t count0[BINS-1];
          size_t count1[BINS-1];
          BBox bounds0[BINS-1];
          BBox bounds1[BINS-1];
        };
        
        /*! finds the best split */
        const Split find(const SetMB& set, const size_t logBlockSize)
        {
          assert(set.size() > 0);
          TemporalBinInfo binner(empty);
          binner.bin_parallel(set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,set.time_range,set,recalculatePrimRef);
          Split tsplit = binner.best((int)logBlockSize,set.time_range,set);
          if (!tsplit.valid()) tsplit.data = Split::SPLIT_FALLBACK; // use fallback split
          return tsplit;
        }

        __forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& tsplit, const SetMB& set, SetMB& lset, SetMB& rset)
        {
          assert(tsplit.sah != float(inf));
          assert(tsplit.fpos > set.time_range.lower);
          assert(tsplit.fpos < set.time_range.upper);

          float center_time = tsplit.fpos;
          const BBox1f time_range0(set.time_range.lower,center_time);
          const BBox1f time_range1(center_time,set.time_range.upper);
          mvector<PrimRefMB>& prims = *set.prims;
          
          /* calculate primrefs for first time range */
          std::unique_ptr<mvector<PrimRefMB>> new_vector(new mvector<PrimRefMB>(device, set.size()));
          PrimRefVector lprims = new_vector.get();
          
          auto reduction_func0 = [&] (const range<size_t>& r) {
            PrimInfoMB pinfo = empty;
            for (size_t i=r.begin(); i<r.end(); i++) 
            {
              if (likely(prims[i].time_range_overlap(time_range0)))
              {
                const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range0);
                (*lprims)[i-set.begin()] = prim;
                pinfo.add_primref(prim);
              }
              else
              {
                (*lprims)[i-set.begin()] = prims[i];
              }
            }
            return pinfo;
          };        
          PrimInfoMB linfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func0,PrimInfoMB::merge2);

          /* primrefs for first time range are in lprims[0 .. set.size()) */
          /* some primitives may need to be filtered out */
          if (linfo.size() != set.size())
            linfo.object_range._end = parallel_filter(lprims->data(), size_t(0), set.size(), size_t(1024),
                                                      [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range0); });
                      
          lset = SetMB(linfo,lprims,time_range0);

          /* calculate primrefs for second time range */
          auto reduction_func1 = [&] (const range<size_t>& r) {
            PrimInfoMB pinfo = empty;
            for (size_t i=r.begin(); i<r.end(); i++) 
            {
              if (likely(prims[i].time_range_overlap(time_range1)))
              {
                const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range1);
                prims[i] = prim;
                pinfo.add_primref(prim);
              }
            }
            return pinfo;
          };        
          PrimInfoMB rinfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func1,PrimInfoMB::merge2);
          rinfo.object_range = range<size_t>(set.begin(), set.begin() + rinfo.size());

          /* primrefs for second time range are in prims[set.begin() .. set.end()) */
          /* some primitives may need to be filtered out */
          if (rinfo.size() != set.size())
            rinfo.object_range._end = parallel_filter(prims.data(), set.begin(), set.end(), size_t(1024),
                                                      [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range1); });
        
          rset = SetMB(rinfo,&prims,time_range1);

          return new_vector;
        }

      private:
        MemoryMonitorInterface* device;              // device to report memory usage to
        const RecalculatePrimRef recalculatePrimRef;
      };
  }
}